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Abstract

Understanding the human brain is an intriguing
goal for neuroscience research. Due to recent
advances in machine learning on graphs, repre-
senting the connections of the human brain as a
network has become one of the most pervasive an-
alytical paradigms. However, most existing graph
machine learning-based methods suffer from a
subset of three critical limitations: They are 1
designed for one type of data (e.g., fMRI or sMRI)
and one individual subject, limiting their ability to
use complementary information provided by dif-
ferent images, 2 designed in supervised or trans-
ductive settings, limiting their generalizability to
unseen patterns, 3 blackbox models, designed
for classifying brain networks, limiting their abil-
ity to reveal underlying patterns that might cause
the symptoms of a disease or disorder. To address
these limitations, we present ADMIRE, an induc-
tive and unsupervised anomaly detection method
for multimodal brain networks that can detect
anomalous patterns in the brains of people living
with a disease or disorder. It uses two different ca-
sual multiplex walks, inter-view and intra-view, to
automatically extract and learn temporal network
motifs. It then uses an anonymization strategy
to hide node and relation type identities, keeping
the model inductive. We then propose a simple,
tree-based explainable model, ADMIRE++, to ex-
plain ADMIRE predictions. Our experiments on
Parkinson’s Disease, Attention Deficit Hyperac-
tivity Disorder, and Autism Spectrum Disorder
show the efficiency and effectiveness of our ap-
proaches in detecting anomalous brain activity.
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1. Introduction
Recently, the fields of neuroscience and brain imaging re-
search have undergone a significant shift in focus from
region-specific analyses to network models (Bassett &
Sporns, 2017; Mišić & Sporns, 2016), largely due to the
rapid development of modern neuroimaging technology.
Network models of the brain represent regions of interest
(ROIs) as nodes and calculate pairwise similarities between
regions to form edges (Finn et al., 2015), usually derived
from functional Magnetic Resonance Imaging (fMRI) or
structural Magnetic Resonance Imaging (sMRI). These mod-
els have demonstrated their effectiveness in enhancing our
understanding of brain diseases and disorders (Chatterjee
et al., 2021; Preti et al., 2017). As a result, empirical data on
brain networks has substantially increased in size and com-
plexity, leading to a strong demand for appropriate tools and
methods to model and analyze this data (Preti et al., 2017).

At the same time, there has been significant interest in ma-
chine learning methods for analyzing graph-structured data
in various domains, such as drug discovery (Xiong et al.,
2019), neuroscience (Abrate & Bonchi, 2021), and biol-
ogy (Gao et al., 2023). While several studies demonstrated
the effectiveness of machine learning on graphs for analyz-
ing human brain networks, most focus on graph or node clas-
sification tasks (Kan et al., 2022c; Cui et al., 2022b). These
tasks involve detecting diseases (Zhu et al., 2022a), predict-
ing biological features (Kan et al., 2022c), and identifying
functional systems (Behrouz & Hashemi, 2022). However,
detecting abnormal brain activity in people with neurolog-
ical disorders is a crucial step in understanding the causal
mechanisms of symptoms, facilitating early detection, and
developing medical treatments. Most existing studies con-
sider a single brain network (from a single type of neu-
roimage or a single subject), which can be noisy or incom-
plete (Agrawal et al., 2020; Zhang et al., 2020). To address
this limitation, De Domenico (2017) suggests using static
multiplex networks. Multiplex networks are graphs where
nodes can be connected by different types of edges (Kivelä
et al., 2014; Hashemi et al., 2022). Edge types can be the
brain network of different subjects (Behrouz et al., 2022a)
or different neuroimaging modalities (Zhu et al., 2022b)
(see §3.1).

1



ADMIRE++

Limitation of Previous Methods. Although anomaly de-
tection in graphs is a well-studied problem, brain networks
have five unique traits that make directly applying exist-
ing graph anomaly detection models impractical: 1 Noisy
data: a single neuroimaging data sample can be extremely
noisy and inaccurate (Agrawal et al., 2020), which hinders
the identification of biological insights into the structure of
brain networks. Existing general anomaly detection meth-
ods can use only a single brain image, making them sensitive
to noise, or one must aggregate different neuroimages as
a pre-processing step, missing complex brain activity in
each brain image. 2 Multimodal neuroimaging: while
several studies discussed the importance of using different
neuroimage types (e.g., fMRI, sMRI, etc.), because differ-
ent modalities provide complementary information (Zhang
et al., 2018c; Zhu et al., 2022b), existing works are limited to
a single type of neuroimages and are unable to incorporate
information about different modalities. 3 Complex activ-
ity: brain activities are complex and potentially different in
different subjects, while existing methods are designed in
the transductive setting, which limits their generalizability
to unseen nodes or patterns. 4 Time alignment: existing
methods assume that the timestamps in different graphs are
meaningfully related. However, while modeling neuroim-
age data as temporal brain networks, the timestamps might
be shifted and are unlikely to be aligned across brain images
of different subjects. 5 Explainability: decision making
on health-related data, which is sensitive, requires explain-
able models, but existing methods are uninterpretable black
boxes.

There are two other limitations that plague existing studies:
i These studies assume pre-defined anomaly patterns or

man-made features. Such approaches do not easily general-
ize to the brain activity of different individuals. Moreover, in
a real-world scenario, brain activity might be more complex
in nature, and it is nearly impossible to detect anomalies
with high accuracy using pre-defined patterns/roles. ii
These methods are designed for static brain networks, miss-
ing the dynamics of brain activity over time.

To mitigate the limitations, we introduce ADMIRE
(Anomaly Detection in Multiplex Brain Networks). AD-
MIRE uses two novel temporal walks, inter-view and intra-
view walks, to capture the causal relationships between brain
activities across different views and within a single view,
respectively, over time. Next, it uses an anonymization
method based on the correlation between network motifs
to hide the identity of nodes and views, keeping the model
inductive during training. To overcome noise in the data
and/or to take advantage of complementary information pro-
vided by different neuroimage modalities, ADMIRE uses a
new attention mechanism to incorporate the node encodings
obtained from different views. To mitigate the time align-
ment issue, we use a non-periodic time encoding module

that encodes each timestamp. To learn the structural and
temporal properties of the network, ADMIRE encodes the
information about each walk by mixing the encoding of the
sequence of nodes that appears in the walk, along with their
timestamps, via an MLP-Mixer (Tolstikhin et al., 2021). Fi-
nally, we design a post-hoc decision-tree-based explanation
method to explain ADMIRE’s predictions based on its ex-
tracted motifs. Experimental evaluation shows the superior
performance of ADMIRE over baselines, and the impor-
tance of ADMIRE’s critical components. We use real-world
datasets to show how ADMIRE can be used to detect abnor-
mal brain activities in a control group with brain disease or
disorder.

2. Related Work

Anomaly Detection in Brain Networks. Several recent
studies focus on analyzing brain networks to distinguish
healthy and diseased human brains (Jie et al., 2016; Chen
et al., 2011; Wee et al., 2011). Due to the success of GNNs
in analyzing graph-structured data, deep models have been
proposed to predict brain diseases by learning the brain net-
work structure (Kan et al., 2021; Cui et al., 2021; Kan et al.,
2022a; Zhu et al., 2022a; Cui et al., 2022b). All these meth-
ods are designed for graph or node classification and cannot
directly be extended to edge-anomaly detection. Also, sev-
eral anomaly detection methods have been proposed to find
anomalous regions or subgraphs in the brain, which might
indicate the presence of a disease (Chatterjee et al., 2021;
Zhang et al., 2016; Liu et al., 2020). All these methods
are designed for node or subgraph anomaly detection tasks
in single brain networks and cannot easily be extended to
detect anomalous edges in multiplex brain networks. Also,
these methods are not learning-based and consider only
pre-defined patterns/rules for anomalies.

Anomaly Detection in Multiplex Networks. Several non-
machine learning methods for anomaly detection in static
multiplex networks have been proposed based on eigenvec-
tor centrality (Mittal & Bhatia, 2018), clique/near-clique
structures (Bindu et al., 2017), multi-normality (Bansal &
Sharma, 2020), node centrality (Maulana & Atzmueller,
2020), and persistence summary (Ofori-Boateng et al.,
2021). These models are not able to learn from data and
are limited to pre-defined rules/patterns. To address this
issue, recently, learning-based methods have been proposed.
ANOMMAN (Chen et al., 2022) uses an auto-encoder mod-
ule and a GCN-based decoder to detect node anomalies
in static multiplex networks. All of these approaches are
limited to static multiplex networks and are designed to
detect topological anomalous subgraphs, nodes, or events,
and cannot identify anomalous edges. The only exception
is ANOMULY (Behrouz & Seltzer, 2022), a GNN-based
anomaly detection method in multiplex networks. However,
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Figure 1. Schematic of the ADMIRE model. ADMIRE consists of four main stages called (1) Walk Sampling, (2) Anonymization, (3)
Walk Encoding, and (4) Training via generating negative samples.

it is designed for the transductive setting and cannot scale to
multiplex networks with a large number of views (see §4.1).

Additional related work is in Appendix B.

3. Methods
Definition 3.1 (Temporal Multiplex Networks). A tempo-
ral multiplex network G = {Gr}Lr=1 = (V, E ,X ), can be
represented as a sequence of connections with different
types that arrive over time, i.e., E = {(e1, t1), (e2, t2), . . . },
where V is the set of nodes, L is the set of relation types,
{e1, e2, . . . } ⊆ V×V×L, and X ∈ R|V|×f is a matrix that
encodes node attribute information for nodes in V . Given
a relation type r, we use Gr = (V, Er,X ) to denote the
corresponding graph of the relation type r (a.k.a the r-th
view of the graph), and we denote the set of vertices in the
neighborhood of u ∈ V in relation r as Nr(u). Given time t,
we use Et

r(u) = {(e, t′) ∈ Er|u ∈ e and t′ ≤ t} to represent
the set of connections attached to a node u in relation type
r before a given time t.

Our goal is to detect anomalous incoming edges. Specif-
ically, given the current time tnow, for each edge e =
(u, v, r, tnow) ∈ E , we produce an anomaly score φ(e).

3.1. Modeling Neuroimages as Multiplex Brain Network

To take advantage of complementary information provided
by different modalities of neuroimaging, neuroimages of
different subjects with the same disease/disorder, and differ-
ent frequency band filters, we focus on three ways to model
neuroimaging data as multiplex networks:

1 Activity in different frequency bands: previous works
on fMRI images utilize filtering procedures to extract signals
within a particular frequency range, typically between 0.01

and 0.1 Hz (De Vico Fallani et al., 2014). However, the se-
lection of the frequency band carries significant implications
for the functional representation of the brain. De Domenico
et al. (2016) shows that brain signals in a range between 0.01
and 0.25 Hz, in steps of 0.02 Hz provide unique information
and should be neither aggregated nor neglected. We suggest
using multiplex brain networks, where each view represents
the correlations graph of signals in a specific range.

2 Multimodal brain networks: Several studies discussed
the importance of using different neuroimage types (e.g.,
fMRI, sMRI, Diffusion Tensor Imaging (DTI), etc.) in brain
network analysis as different modalities of brain networks
provide complementary information (Zhang et al., 2018c;
Zhu et al., 2022b). In this case, a multiplex brain network is
a multimodal brain network, where each view represents the
obtained brain network from a specific type of neuroimage.

3 Different subjects: To mitigate the existence of noise
in a brain network generated from an individual (Lanciano
et al., 2020; Zhang et al., 2020), most existing methods
aggregate (e.g., averaging) the data from different individ-
uals (Chatterjee et al., 2021). However, this aggregation
discards complex patterns in each individual’s brain activi-
ties. Moreover, it is known that individuals having the same
disease or disorder share similar patterns (Kan et al., 2022b),
which means that disorder/disease-specific anomalous activ-
ities require consideration of the brain networks of different
subjects. We suggest using multiplex brain networks, where
each view represents the brain network of an individual.

3.2. Anonymous Multiplex Temporal Walk

When modeling neuroimage data as multiplex networks,
there are two advantages: 1 complementary information
from different views enhances the effectiveness and robust-
ness of learning brain activities, and 2 capturing causal ef-
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fects between different views improves performance. How-
ever, a major challenge in designing machine learning mod-
els for multiplex brain networks is learning the type of data
modeling. We address this challenge by automatically learn-
ing causal effects between activities in different neuroim-
ages and incorporating complementary information. We
propose two temporal multiplex walks to capture causal
effects and dynamics in different views over time. These
walks are combined using a learnable neural layer to au-
tomatically determine their importance. Additionally, we
define an anonymization process to preserve model induc-
tiveness during training. Our approach leverages multiplex
temporal walks as proxies for temporal motifs in multiplex
networks, extracting the causality of edge existence within
a specific view and across different views.

Inter-view Temporal Walk. To capture the correlation be-
tween different views and extract the causality of an edge
from different views of the network, in the inter-view tempo-
ral walk, we let the walker walk across views. Accordingly,
an inter-view temporal walk Winter on temporal multiplex
networks can be represented as:

Winter = ((u0, r0, t0), (u1, r1, t1), . . . , (um, rm, tm)) ,

where t0 ≥ t1 ≥ · · · ≥ tm and (ui, ui+1, ri+1, ti+1) ∈ E .
That is, the walker walks through time capturing tempo-
ral causality, and it walks over different views to capture
dependencies of connections in different views; this latter
ability leverages the complementary information provided
by different relation types (e.g., fMRI and sMRI). We let
Winter(i) denote the i-th element of the temporal multiplex
walk, (ui, ri, ti). Also, we use Winter(i, 0),Winter(i, 1), and
Winter(i, 2) to refer to ui, ri, and ti, respectively.

Intra-view Temporal Walk. When there is no causal rela-
tionship between different types of interactions (e.g., brain
networks of different subjects), we limit our walks to a
specific type of connection. Given a type of relation r, an
intra-view temporal walk W r

intra on a view of a temporal
multiplex network can be represented as:

W r
intra = ((u0, r, t0), (u1, r, t1), . . . , (um, r, tm)) ,

where t0 ≥ t1 ≥ · · · ≥ tm and (ui, ui+1, r, ti+1) ∈ E .
However, different views still provide complementary infor-
mation (see §3.1). To take advantage of this complementary
information, in §3.3, we design an attention mechanism that
incorporates the information of different connection types.

How to sample a temporal multiplex walk? Newer con-
nections are usually more informative than older connec-
tions (Wang et al., 2021; Jin et al., 2022; Behrouz et al.,
2023). Therefore, we use a biased sampling method with
hyperparameter µ to control the importance of recent con-
nections. Given the time of a previously sampled edge,

t0, we sample an adjacent edge at time t with probability
proportional to exp (µ(t− t0)). In multiplex networks, the
correlation of different pairs of views can be different (Park
et al., 2020; Behrouz & Hashemi, 2022) and for connec-
tions in a given view r, a subset of views might play more
important roles in causality extraction. Accordingly, in inter-
view temporal walks, we use a biased sampling method and
sample link (u′1, u

′
2, r

′, t′) after previously sampled link
(u1, u2, r, t) with probability proportional to ψ(r, r′). In
fact, ψ(r, r′) shows the importance of view r for view r′. In
§3.3, we discuss how to calculate ψ(r, r′). See Appendix C
for the pseudocode.

Given a (potential) link (u, v, r, t), we use the above pro-
cedure to generate M inter-view and M ′ intra-view walks
with m steps starting from each of nodes u and v. We use
Sinter(u), Sintra(u), Sinter(v), and Sintra(v) to store started
walks from u and v, respectively.

Anonymization Process. Micali & Zhu (2016) studied
Anonymous Walks (AWs), which replace a node’s identity
by the order of its appearance in each walk. The main lim-
itation of AWs is that the position encoding of each node
depends only on its specific walk, missing the dependency
and correlation of different sampled walks (Wang et al.,
2021). To mitigate this drawback, Wang et al. (2021) sug-
gest replacing node identities with the hitting counts of the
nodes based on a set of sampled walks, capturing the corre-
lation between different walks (Wang et al., 2021; Jin et al.,
2022; Behrouz et al., 2023). In multiplex networks, we
need to hide the identity of both nodes and views (e.g., rela-
tion types) to keep the model inductive. Given a (potential)
link (u, v, r, t), let w0 ∈ {u, v}. To capture the correla-
tion across different walks, which is a key to reflecting the
network dynamics, for a given node w that appears on at
least one walk in Sinter(u) ∪ Sinter(v), we use a relative vec-
tor C(Sinter(w0), w) ∈ Zm+1 that represents the number of
times in Sinter(w0) that node w appears at certain positions.
That is,

Ci (Sinter(w0), w) =

|{Winter|Winter ∈ Sinter(w0), w =Winter(i, 0)}| ,

for 0 ≤ i ≤ m. Similarly, we define C(Sintra(w0), w)
over intra-view temporal walks. Now, we assign a hidden
identity to node w, ID(w), as the set of Ci (Sinter(w0), w)
and Ci (Sintra(w0), w).

Given a set of walks (e.g., Sinter(w0)), we count the number
of times we see a relation type at certain positions when we
start from a specific relation type to capture the correlation
of different views. For a given relation type r, we use
a relative vector Cview(Sinter(w0), r) ∈ Zm+1 that counts
number of times that a relation with type r appears at certain
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positions in Sinter(w0):

Cview
i (Sinter(w0), r) =

|{Winter|Winter ∈ Sinter(w0), r =Winter(i, 1)}| ,

for 0 ≤ i ≤ m. Accordingly, we use IDview(r) =
{Cview (Sinter(u), r) , Cview (Sinter(v), r)} to hide the identity
of view r. Note that, although intra-view walks are within
a single view, we still need to hide the identity of the view
and we use the same IDview(r) as above.

3.3. Neural Encoding

Most existing methods on walk encoding see a walk as a
sequence of vertices and uses sequence encoders such as
RNNs or TRANSFORMERs to encode each walk. The main
drawback of these methods is that they fail to directly pro-
cess temporal walks with irregular gaps between timestamps.
That is, sequential encoders can be seen as discrete approx-
imations of dynamic systems; however, this discretization
often fails if we have irregularly observed data (Kidger et al.,
2020). We present a neural network to encode temporal
multiplex walks so that we can extract structural and tem-
poral information from the network with continuous time
dyanamic. The process consists of 1 time encoding module
to encode the time, 2 node encoding module to encode the
position of vertices, 3 view encoding to encode relation
type, and 4 walk encoding to encode each extracted motifs.

Time Encoding. Existing methods in temporal graph learn-
ing (Cong et al., 2023; Wang et al., 2021) use random
Fourier features (Kazemi et al., 2019) to encode time. How-
ever, this approach captures only periodicity in the data,
while in brain activity patterns we also need to learn non-
periodic patterns dependent on the progression of time (e.g.,
in task-based fMRI). To this end, we also add a learnable
linear term to the feature representation of time encoding.
That is, we encode a given time t as:

T (t) = (ωlt+ bl) || cos(tω), (1)

where ωl,bl ∈ R and ω ∈ Rd are learnable parameters,
and || denotes concatenation.

Node Encoding. We define a node encoding function ζ(.)
that encodes each node w based on ID(w). However, since
the concept and task of intra-view and inter-view walks are
different, we first break the ζ(.) function over these walks,
called ζintra(.) and ζinter(.), respectively, and then interpolate
between them by a learnable parameter λ to obtain ζ(.).

For each node w that appears on at least one walk in
Sinter(u) ∪ Sinter(v), we use one simple MLP to encode the
w’s hidden identities:

ζinter(w) = MLP (C(Sinter(u), w)) + MLP (C(Sinter(v), w)) .
(2)

While inter-view walks naturally capture the causal relation-
ship and correlation between different types of connections,
intra-view walks capture causality within one type of con-
nection. To take advantage of complementary information
in multiplex networks, we need to aggregate the information
provided by inter-view walks in different views. However,
the importance of views might be different (e.g., one disease
might be more correlated with functional connectivity than
structural connectivity). We design an attention mechanism
that learns the importance of each view for other views.
Given two arbitrary views r1, r2, let η(r1) and η(r2) be the
learned encoding of r1 and r2. The importance of r2 for r1,
ψ(r1, r2), is defined as:

ψ(r1, r2) =
exp

(
σ
(
a⃗T .[Watt η(r1) || Watt η(r2)]

))∑
r′∈L exp (σ (⃗aT .[Watt η(r1) || Watt η(r′)]))

,

where a⃗ and Watt are learnable parameters and σ(.) is an
activation function (e.g., ReLU). Given a relation type r′ ∈
L, we define view-based node encoding ζr

′

intra(w) as:

ζr
′

intra(w) = MLP
(
C(Sr′

intra(u), w)
)
+MLP

(
C(Sr′

intra(v), w)
)
.

Next, we aggregate these node embeddings to incorporate
information from different views and obtain ζintra(w):

ζintra(w) =
∑
r′∈L

ψ(r, r′)ζr
′

intra(w). (3)

Now, we use a learnable parameter λ to automatically learn
the importance of each ζintra(w) and ζinter(w) based on the
data. This formulation lets our model learn to interpolate
between Equation 2 and Equation 3, which enables it to
be flexible in each way the neuroimaging data is modeled
(§3.1). Therefore, ζ(w) is defined as:

ζ(w) = ζintra(w) + λ× ζinter(w).

When there is no causal relation between different views
(e.g., when views are brain networks of different subjects),
our model is expected to set λ ≈ 0 (see §4.1).

View Encoding. For each view r ∈ L, we use one simple
MLP to encode r’s hidden identities:

η(r) = MLP
(
Cview(Sinter(u), r)

)
+MLP

(
Cview(Sinter(v), r)

)
.

Walk Encoding. Given a walk Ŵ ∈ {Winter,Wintra}, we
use node encoding function ζ(.) : Z(m+1)×4 → Rk1 to
encode hidden node identities and η(.) : Z(m+1)×2 → Rk2

to encode hidden view identities. We then concatenate their
outputs with the embedding of the node’s corresponding
timestamp. Finally, we use an MLP-Mixer (Tolstikhin et al.,
2021) to mix these encodings to obtain the walk encoding:

ENC(Ŵ ) =

MEAN
(
Htoken +W(2)σ

(
LayerNorm (Htoken)W

(1)
))

,
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where the i-th row of Htoken is the concatenation of
ζ
(

ID
(
Ŵ (i, 0)

))
, η

(
IDview

(
Ŵ (i, 1)

))
and T (ti). In

the above equations, W(1)and W(2) are learnable parame-
ters, LayerNorm is layer normalization (Ba et al., 2016)
and σ(.) is a nonlinear function (e.g., Gaussian error linear
units, GeLU (Hendrycks & Gimpel, 2020)).

Anomaly Score. Given a link e = (u, v, r, t) ∈ E , we
sample temporal multiplex walks and then encode each walk
W ∈ Sinter(u)∪Sinter(v)∪Sintra(u)∪Sintra(v) as described
above. Next, we use mean-pooling to aggregate walks’
encodings and encode link e. Finally, we use a 2-layer
perceptron to make the anomaly score:

φ(e) = MLP

 1

M +M ′

∑
Ŵ

ENC(Ŵ )

 , (4)

where M and M ′ are the numbers of inter-view and intra-
view walks.

Negative Sample Generator. We generate negative sam-
ples to train ADMIRE in an unsupervised manner. Previous
anomaly detection methods mostly use (simple or biased)
random negative samples (Zheng et al., 2019; Behrouz &
Seltzer, 2022), which limit their generalizability to real
anomalous patterns (Poursafaei et al., 2022). Moreover,
these methods are designed for simple networks and can-
not generalize to anomalous patterns in multiplex networks
(see §4.1). Inspired by Poursafaei et al. (2022), we design
a novel negative sampling method for temporal multiplex
networks.

Let Etrain and Et be the set of edges in the training set and
in timestamp t, respectively. For each edge in the training
set e = (u, v, r, t) ∈ E , we generate three types of nega-
tive samples: 1 Inter-view negative samples: We use these
negative samples so our model learns to detect connections
that are anomalous across different views. We randomly
generate a negative connection with relation type r with
probability inversely proportional to the number of views
in which this connection appears. The intuition is that if
two nodes are already connected with several types of con-
nections, a connection of yet another type is unlikely to
be an anomalous connection. 2 Intra-view negative sam-
ples: Here, we follow previous negative sampling generation
methods (Zheng et al., 2019; Behrouz & Seltzer, 2022) and
randomly change one endpoint of a connection to another
node and keep the type of connection unchanged. 3 His-
torical negative samples: we generate negative edges from
the set of edges that have been observed during previous
timestamps but are absent in the current timestamp. That is,
we randomly sample an edge e ∈ Etrain ∩ Ēt.

Training and Loss Function. Let Etrain be the set of edges

in the training set and Eneg be the set of generated negative
samples. For each link e ∈ Etrain∪Eneg we generate temporal
multiplex walks to find view-aware edge encoding of e.
Next, we use the margin-based pairwise loss (Bordes et al.,
2013) to train the model. To avoid overfitting, we also use
an L2-regularization loss, L reg

r , which is the summation of
the L2 norm of all trainable parameters.

3.4. ADMIRE++: Post-hoc Explanation of ADMIRE

Prediction and decision-making on brain networks is a sen-
sitive area that requires expert supervision. Accordingly,
machine learning methods should be interpretable or, at a
minimum, provide explanations for their predictions. AD-
MIRE automatically extracts underlying temporal motifs
that result in a future brain activity. Here, we take advantage
of extracted motifs and use a decision tree to explain why a
link is labeled as anomalous.

For each link e = (u1, u2, r) in the network, we sam-
ple inter-view and intra-view walks starting from w0 ∈
{u1, u2}, and then encode each walk (motifs) as discussed
in Section 3.3. In the neural encoding phase motifs with
similar temporal and structural patterns are expected to be
close in the embedding space. Accordingly, given k ≥ 2, we
use a k-mean clustering algorithm (Lloyd, 1982) to cluster
walks in the embedding space. Next, we construct fea-
ture vector ve =

(
p11 p12 . . . p1k p21 p22 . . . p2k

)
,

where p1i and p2i are normalized counting number of sam-
pled walks (motifs) starting from u1 and u2 in cluster i. That
is, p1i =

C1
i

C , whereC1
i is the number of sampled walks start-

ing from u1 that are in cluster i, and C is the total number
of sampled walks. In this design, p1i s and p2i s describe the
distribution of motifs in the neighborhoods of nodes u1 and
u2, respectively. Now for each link in the data, we have a
feature vector and a binary label assigned by Equation 4.

Sparse decision trees are one of the most popular forms
of interpretable models (Rudin et al., 2022), and have
shown competitive or better performance than blackbox
models (McTavish et al., 2022). Since the importance of
each motif (whether from an inter-view or intra-view walk)
is different, we use a weighted optimal sparse decision tree
model (Behrouz et al., 2022b), and train it on feature vectors
ves with binary labels assigned by Equation 4. This fast
algorithm finds a weighted sparse decision tree provably
close to the optimal tree, with arbitrary given depth, which
provides both a performance guarantee and flexibility. For a
given link e, this post-hoc explanation method can explain
which motifs have important roles in ADMIRE’s predic-
tion on e. This process can help to expose the causes of
abnormal brain activity in people living with a disease or
disorder. For more details about optimal sparse decision
tree and ADMIRE++ see Appendix D.
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4. Experiments

Datasets. We use three real-world datasets: 1 PD (Day
et al., 2019) consists of the structural and the functional MRI
images of 25 participants with and 21 participants without
PD, who do the ANT task (Fan et al., 2005). The first
view represents the fMRI, while the second view represents
the T1-weighted structural MRI. 2 ADHD (Brown et al.,
2012) contains data for 50 subjects in the ADHD group
and 50 subjects in the typically developed (TD) control
group. Here, each view represents the brain network of
an individual. 3 ASD (Craddock et al., 2013) contains
data for 45 subjects in the ASD group and 45 subjects in
the TD control group. The i-th view represents the brain
network obtained by filtering the fMRI values in the range
[0.01 + (i− 1)× 0.02, 0.01 + i× 0.02] Hz.

For the first part of the experiment, we follow the methodol-
ogy used in existing studies (Akoglu et al., 2015; Behrouz
& Seltzer, 2022) and synthetically inject anomalous edges
into the brain networks in the control group (healthy or TD).

Baselines. We use ANOMULY (Behrouz & Seltzer, 2022),
GOutlier (Aggarwal et al., 2011), NetWalk (Yu et al.,
2018b), AddGraph (Zheng et al., 2019), ML-GCN (Behrouz
& Hashemi, 2022), and MNE (Zhang et al., 2018b) as base-
lines in the transductive setting. Since there is no prior
work on inductive learning in multiplex networks, we com-
pare our model with inductive monoplex methods, CAW-
N (Wang et al., 2021), TGAT (da Xu et al., 2020), and
EvolveGCN (Pareja et al., 2020). For the detailed explana-
tion of baselines see Appendix H.

4.1. Results on Synthetic Experiments

Effectiveness Evaluation. Table 1 reports the AUC for
the edge anomaly detection task for the baselines and AD-
MIRE. ADMIRE outperforms all baselines by a signifi-
cant margin, min = 6.42% and max = 18.04% improve-
ment in the transductive setting and with min = 11.08%
and max = 26.89% improvement in the inductive setting.
There are four reasons for ADMIRE’s superior performance:
ADMIRE is 1 a multiplex method and can learn from dif-
ferent subjects, image modalities, or frequency bands. 2
a stream-based method, using a time encoding module to
capture continuous time information, while the baselines
are snapshot-based and aggregate links, which removes use-
ful time information (Wang et al., 2021). 3 scalable with
respect to the number of views and can be trained on many
data sources. 4 an end-to-end method with an exclusive
design of architecture and generating negative samples for
brain networks, while baselines are designed to learn the
temporal and structural properties of a general network.

Ablation Studies. We next conduct an ablation study to val-

Table 1. Performance comparison (AUC).
Methods PD ADHD ASD

Anomaly % 1% 5 % 1% 5 % 1% 5 %

Tr
an

sd
uc

tiv
e

Monoplex Methods

GOUTLIER 61.42 59.98 65.37 64.70 60.85 59.13
NETWALK 69.71 0.6902 70.29 69.86 69.07 68.52
ADDGRAPH 71.94 70.33 71.89 70.11 71.30 70.96

Multiplex Methods

MNE 70.39 70.54 73.78 72.31 70.19 69.94
ML-GCN 68.50 68.33 -∗ -∗ 69.56 69.35
ANOMULY 78.07 79.85 -∗ -∗ 77.14 77.08
ADMIRE 85.09 84.98 88.67 88.53 91.06 89.95

In
du

ct
iv

e EvolveGCN 55.18 55.06 57.23 57.41 56.89 56.21
TGAT 59.34 58.72 60.19 60.10 60.28 59.93
CAW-N 75.85 75.90 71.64 71.02 71.31 71.96
ADMIRE 84.72 84.31 88.03 88.97 90.49 90.28

∗ Training time exceeds the threshold.

idate the effectiveness of each ADMIRE component. The
results are summarized in Table 2. Rows 2 and 3 show
the effectiveness of inter-view and intra-view walks. The
ADHD dataset does not benefit from inter-view walks, be-
cause there is no causal relation between brain networks
from different individuals, so inter-view walks are not in-
formative, and our model should learn to ignore them (sets
λ = 0). Rows 4 and 5 show the importance of the learnable
parameter λ and attention mechanism to incorporate infor-
mation from different views. Rows 7, 8, and 9 show the
importance of our new negative sample generator. When
using an RNN instead of MLP-Mixer in the walk encoding
phase (row 10), we gain better performance due to its ability
to learn continuous time dynamics and the dependency of
nodes’ encodings in a walk. Finally, the last row shows the
superior performance of multiplex ADMIRE over monoplex
ADMIRE, when using only one brain network generated
from a subject, image modality, or frequency band.

Parameter Sensitivity. We systematically analyze the ef-
fect of hyperparameters used in ADMIRE on the perfor-
mance. Figure 2(a) shows that only a small number of intra-
view walks are enough to achieve competitive performance.
A similar pattern can be seen for increasing the number
of intra-view walks (Figure 2(b)). Figure 2(c) shows that
ADMIRE might achieve the best performance at a certain
walk length, while the exact value depends on the complex-
ity of motifs that are required to learn underlying network
dynamic law as well as the number of views. Finally, Fig-
ure 2(d) shows the evolution of λ in training. As expected,
in datasets with no causal relationship between different
views (e.g., ADHD), ADMIRE learns to set λ ≤ 0.1 in a
few numbers of epochs. For other datasets, it shows that
ADMIRE converges very quickly to the best value of λ.

Noisy Brain Images. As we discussed in § 3.1, one of
the main motivations for modeling neuroimaging datasets
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Figure 2. The effect of hyperparameters on the performance (a-c), and λ evolution (d).
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Figure 3. The advantage of multiplex brain networks over monoplex brain networks.

Table 2. Ablation study (AUC).

Methods PD ADHD ASD

1 ADMIRE 85.09 88.67∗ 91.06
2 w/o inter-view 78.59 88.73∗ 80.65
3 w/o intra-view 77.14 69.59 79.62
4 w/o λ (λ = 1) 80.42 80.36 89.30
5 w/o attention 84.79 86.14 86.57
6 w/o time encoding 84.16 82.78 85.92
7 w/o inter-view NS 84.77 84.28 83.46
8 w/o intra-view NS 79.91 78.75 81.09
9 w/o historical NS 84.68 84.16 84.31
10 w/ RNN 83.90 85.32 89.13
11 Monoplex-ADMIRE 76.52 72.07 74.15
∗ There is no causal relation between views.

as multiplex networks is to make the model more robust
against noise in each brain image. To validate it, in this
experiment, we add Gaussian noise to a subset of brain im-
ages (5%, 10%, 20%, 30% and 40%) in the ADHD dataset.
We model the noisy dataset as a multiplex brain network
and use it to train ADMIRE. Next, as a baseline, follow-
ing previous methods (Lanciano et al., 2020; Zhang et al.,
2020), we take the average of all brain images in the noisy
dataset and use it to train the monoplex ADMIRE. Figure 3
reports the performance of ADMIRE and monoplex AD-
MIRE with varying the size of noisy samples. Not only
ADMIRE achieves superior performance with a significant
margin, but it also shows to be more robust against noise
than the monoplex ADMIRE. This experiment shows the

importance of multiplex modeling and also the effectiveness
of the proposed attention mechanism that can learn to ignore
noisy samples.

4.2. Results on Real-world Datasets

We next train our model on the healthy control group and
then test on the condition group to find anomalous brain
activities of people in the condition group. Additional visu-
alizations and results are in Appendix I.

Parkinson’s Disease. We study how anomalous connec-
tions found by ADMIRE are distributed in the brain of
people living with PD. Figure 4(a) reports the average dis-
tribution of anomalous edges in the brain networks of peo-
ple living with PD. Most anomalous edges found by AD-
MIRE have a vertex in either Posterior Cingulate, Superior
Parietal, Medial Orbitofrontal, Pars Opercularis, or Supra-
marginal Gyrus (≥ 95% of all found anomalies). Next, we
apply ADMIRE on the healthy control group to see whether
these findings are exclusive to the PD group and to identify
possible noise in the dataset. We observe that ADMIRE
finds 94.2% fewer anomalous connections in the healthy
control group; most of these edges have a node in either
Temporal Pole or Anterior Insula.

Attention Deficit Hyperactivity Disorder. Figure 4(b)
shows the average distribution of anomalous edges in the
brain networks of subjects in the condition ADHD group.
Most abnormal connections found by ADMIRE have an
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Figure 4. The distribution of anomalous edges in condition groups.
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Figure 5. (Left) Motif clusters and example of an extracted motif in each cluster. (Middle) The ADMIRE++ tree explanation on PD
dataset (depth=3). (Right) Accuracy (%) of generated tree explanation.

endpoint in either Frontal Pole, Right Lateral Occipital Cor-
tex, Lingual Gyrus, Left Temporal Pole, or Right Superior
Parietal Lobule (≥ 95% of all found anomalies). Apply-
ing ADMIRE on the healthy control group, we observe
that ADMIRE finds 89.6% fewer anomalous connections
in the healthy control group; most of these edges have an
endpoint in either Planum Polare or Angular Gyrus. Inter-
estingly, these findings are consistent with previous stud-
ies on ADHD, using voxel-wise estimation of regional tis-
sue volume changes (Wang et al., 2007), abnormality in
DTI images (Lei et al., 2014), and Forman–Ricci curvature
changes (Chatterjee et al., 2021), which shows the potential
of ADMIRE in revealing abnormal connections that might
be correlated to a brain disease or disorder.

Autism Spectrum Disorder. Figure 4(b) shows the aver-
age distribution in the brain networks in the ASD group.
Most abnormal connections found by ADMIRE have an
endpoint in either Right Superior Temporal Gyrus, Right
Cerebellum Cortex, Right Precuneus, Frontal Pole, Left
Lateral Occipital (≥ 95% of all found anomalies). Apply-
ing ADMIRE on the healthy control group, ADMIRE finds
93.7% fewer anomalous connections in the healthy control
group, most of which have an endpoint in either Temporal
Pole or Posterior Cingulate Cortex. Although several works
have studied ASD and found different abnormality patterns,
there is still no known ASD biomarker (Müller & Linke,
2021). However, a part of our findings about the abnormal
activity in the cerebellum cortex is consistent with previous
studies (Rogers et al., 2013).

ADMIRE++ Explanations. To evaluate the quality of AD-

MIRE++, we use the PD dataset and set k = 4, so we have
4 clusters and 8 features for each link (4 features for each of
its endpoints). Figure 5 (left) and (middle) show an example
of motifs in each cluster and a decision tree with depth 3 that
mimics the ADMIRE’s predictions. While motifs in cluster
1 and 2 shows that the neighborhood of a node is sparse,
motifs in cluster 3 and 4 show that the neighborhood of the
node is dense. One can interpret the decision tree prediction
as: a link is normal if the neighborhoods of its endpoints are
both sparse or dense and is abnormal otherwise. The table
on the right reports the accuracy of how well ADMIRE++
mimics ADMIRE’s predictions. Even with small depths,
ADMIRE++ produces explanations with high accuracy.

5. Conclusion
We present ADMIRE, an end-to-end inductive unsupervised
learning method on multiplex networks to detect abnormal
brain activity that might suggest a brain disease or disorder.
ADMIRE uses inter-view (resp. intra-view) temporal walks
to implicitly extract network motifs and causal relationships
across different views (resp. within a view) and adopts novel
anonymization based on the correlation between network
motifs to hide the identity of nodes and views. Next, it uses
an MLP-Mixer to encode the sequence of nodes in a walk.
To explain its prediction, we design ADMIRE++, a post-
hoc decision-tree-based method that explains ADMIRE’s
predictions via extracted motifs. Our experimental results
show the superior performance of ADMIRE against base-
lines and the potential of ADMIRE in detecting abnormal
brain activity, undetected in previous studies.
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A. Reproducibility
The implementation of ADMIRE is available in https://github.com/ubc-systopia/ADMIRE.

B. Additional Related Work
To situate our research in a broader context, we briefly review research in 1 temporal graph learning methods, 2 multiplex
graph learning, 3 feature learning in brain networks, 4 anomaly detection in brain networks, and 5 anomaly detection in
multiplex networks.

Temporal Graph Learning. Learning from temporal networks has been a widely studied topic in the literature (Longa
et al., 2023). The first group of methods uses a Graph Neural Network (GNN) as a feature encoder and then uses a sequence
model on top of the GNN to capture temporal properties (Peng et al., 2020; Wang et al., 2020b; Yu et al., 2018a). The
second group uses Recurrent Neural Networks (RNNs) with a GNN layer replacing the linear layer to learn from the
temporal network (Li et al., 2018; Seo et al., 2018; Zhao et al., 2019; You et al., 2022; Hashemi et al., 2023). Recently, more
conceptually complicated learning methods for temporal graphs have been designed based on temporal random walks (Wang
et al., 2021; Jin et al., 2022; Behrouz et al., 2023), line graphs (Chanpuriya et al., 2023), neighborhood representation (Luo
& Li, 2022), and subgraph sketching (Chamberlain et al., 2023). Cong et al. (2023) design a simple but effective temporal
edge encoding method and show that self-attention mechanisms and RNNs are not essential for temporal graph learning.
However, all these methods differ from our approach as they are designed for simple temporal graphs and cannot easily be
extended to graphs with different types of edges (multiplex networks).

Multiplex Graph Learning. In the literature, multiplex networks (also known as multi-view, multilayer, or multi-
dimensional networks) are graphs with a node type but multiple edge types (relations) (Kivelä et al., 2014). Several
methods have been proposed to learn network embeddings on multiplex networks by integrating information from individual
relation types (Cen et al., 2019; Pio-Lopez et al., 2021; Yan et al., 2021; Chang et al., 2015; Xie et al., 2021; Wang et al.,
2020a). Other work proposed Graph Convolutional Networks (GCNs) methods for multiplex networks (Behrouz & Hashemi,
2022; Cheng et al., 2021; Zhang et al., 2018a). Inspired by Deep Graph Infomax (Veličković et al., 2019), Park et al. (2020)
and Jing et al. (2021) proposed unsupervised approaches to learn node embeddings by maximizing the mutual information
between local patches and the global representation of the entire graph. Zhang et al. (2018b) proposed a method that uses a
latent space to integrate the information across multiple views. Recently, Wang et al. (2022) proposed DPMNE to learn
from incomplete multiplex networks. All these methods are designed in the transductive setting for static multiplex networks,
which is different from our formulation.

Feature Learning in Brain Networks. In recent years, several studies focused on analyzing brain networks to understand
and distinguish healthy and diseased human brains (Jie et al., 2016; Chen et al., 2011; Wee et al., 2011). Recently, due
to the success of GNNs in analyzing graph-structured data, deep models have been proposed to predict brain diseases by
learning the graph structures of brain networks (Kan et al., 2021; Cui et al., 2021; Kan et al., 2022a; Zhu et al., 2022a; Cui
et al., 2022b). All these methods are designed for the graph or node classification and cannot easily be extended to the
edge-anomaly detection task.

Anomaly Detection in Brain Networks. In addition to predicting disease in brain networks, understanding the cause of
the disease is important. To this end, several anomaly detection methods have been proposed to find anomalous connections,
regions, or subgraphs in the brain, which can cause a disease (Chatterjee et al., 2021; Zhang et al., 2016; Liu et al., 2020). All
these methods are designed for node or subgraph anomaly detection tasks and cannot easily be extended to the edge-anomaly
detection task.

Anomaly Detection in Multiplex Networks. The problem of anomaly detection in multiplex networks has recently at-
tracted attention. Mittal & Bhatia (2018) use eigenvector centrality, page rank centrality, and degree centrality as handcrafted
features for nodes to detect anomalies in static multiplex networks. Bindu et al. (2017) proposed a node anomaly detection
algorithm in static multiplex networks that uses handcrafted features based on clique/near-clique and star/near-star structures.
Bansal & Sharma (2020) defined a quality measure, Multi-Normality, which uses the structure and attributes together of
each view to detect attribute coherence in neighborhoods between layers. Maulana & Atzmueller (2020) use centrality
of all nodes in each view and apply many-objective optimization with full enumeration based on minimization to obtain
Pareto Front. Then, they use Pareto Front as a basis for finding suspected anomaly nodes. Chen et al. (2022) proposed
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Algorithm 1 Temporal multiplex walk sampling procedure
Require: The edge set E , previously sampled node wp in view rp at time t, and hyperparameter µ
Ensure: Next sampled connection (wn, wp, rn, tn)

1: for e = (wn, wp, rn, tn) ∈ Etp(wp) do
2: Sample b ∼ UNIFORM(0, 1);
3: if b < q

tp
rp(wp, e)× φ(rp, rn) then

4: return e = (wn, wp, rn, tn);
5: end if
6: end for
7: return EOA;

ANOMMAN that uses an auto-encoder module and a GCN-based decoder to detect node anomalies in static multiplex
networks. Although this model can learn from the data, it is limited to static networks, and it treats each view equally in
the Structure Reconstruction step. Finally, Ofori-Boateng et al. (2021) developed a new persistence summary and used
it to detect events in dynamic multiplex blockchain networks. All of these approaches are designed to detect topological
anomalous subgraphs, nodes, or events, and cannot identify anomalous edges. Moreover, these methods, except ANOMAN
(Chen et al., 2022), are based on pre-defined patterns/roles or handcrafted features, while real-world network anomalies
have complex nature. Therefore, these models cannot be generalized to different domains, limiting their application.

The only exception and also the closest method to our approach is ANOMULY (Behrouz & Seltzer, 2022), a GNN-based
anomaly detection method in multiplex networks. However, this method suffers from four main limitations: 1 Transductive
learning: The ANOMULY framework is designed in a transductive setting and cannot be applied to unseen nodes/patterns.
In contrast, ADMIRE anonymizes nodes in such a way to work in the inductive setting. 2 Memory and scalability:
The ANOMULY framework is snapshot-based. That is, it requires storing the entire snapshot of the temporal network
at each timestamp, which consumes a great deal of memory. Moreover, since it uses different GNN modules for each
type of connection, it cannot be utilized for multiplex brain networks with a large number of views (e.g., in datasets
with a large number of participants). However, ADMIRE is a streaming method, requiring only constant memory (see
Appendix C). Moreover, our random walk encoder scales to brain multiplex networks with more than 100 views. 3 Lack of
generalizability: The ANOMULY framework uses a simple negative sampling method by randomly changing one endpoint
of a connection to learn anomalous interactions. While this negative sampling method is fast and lets the model be trained
in an unsupervised manner, these negative sample generator methods are too simple and can cause poor performance in
more complicated datasets (Poursafaei et al., 2022). ADMIRE introduces a novel negative sampling method for multiplex
networks and shows its efficacy in § 4.1. 4 Many hyperparameters: The ANOMULY framework has many hyperparameters
that require tuning before the model achieves good performance. However, tuning these hyperparameters is difficult in
real-world datasets, limiting its applications. In ADMIRE, there are only four hyperparameters, which can simply be tuned
based on the dataset properties.

C. Efficient Sampling
The first step in our sampling is to compute the sampling probability of an incoming connection in relation type r. For an
incoming edge e = (u, v, r, t) we compute the probabilities qtr(w) for w ∈ {u, v} as follows:

qtr(w, e) =
exp (µt)∑

(w0,t′)∈N t
r (w) exp (µt

′)
, (5)

where N t
r (w) represents the set of w’s neighbor in view r and before time t. This probability needs to be computed one time

when arrives and does not need to be updated anymore. Also, for calculating the probability of sampling this connection
after a connection from another relation type r′, we simply multiply this probability by φ(r, r′).

Algorithm 1 shows the sampling procedure. Given a previously sampled connection in view r at time t, we sample the next
connection in view r′ at tme t′ < t with a probability proportional to exp (µ(t′ − t))× φ(r, r′). It is not hard to show that
Algorithm 1 sample the next connection with a probability proportional to exp (µ(tn − tp))× φ(rp, rn). Inspired by Wang

et al. (2021), in our experiments, we store most k recent connections with k ∝ O
(

1
µ

)
. The intuition is that if we sort

connections in Et(wp) by their timestamp {ti}hi=1, and assume that exp (µ(ti − t)) are i.i.d., the probability of sampling
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j-th connection is:

P[sampling j-th connection] =
∏j

i=1 exp (µ(ti − t))× φ(rp, ri)∑h
i=1

∏i
s=1 exp (µ(ts − t))× φ(rp, rs)

.

It is not hard to see that this probability is very small when we increase the value of j. Accordingly, in practice, we only
need to store a constant number of the most recent connections at each time.

D. Optimal Sparse Decision Trees and ADMIRE++

Optimal Sparse Decision Trees. Sparse decision trees, a prominent category of interpretable machine learning models, are
widely utilized for decision making (e.g., Ernst et al., 2005; Silva et al., 2020). Traditionally, the optimization of decision
trees involved a greedy approach, constructing trees from the top down (Quinlan, 1993; Breiman et al., 1984). However,
recent advancements have introduced several methods that thoroughly optimize sparse trees to achieve an optimal balance
between performance and interpretability (Farhangfar et al., 2008; Bertsimas & Dunn, 2017; Günlük et al., 2021). It is worth
noting that optimizing sparse optimal trees is a computationally challenging task, with NP-hard complexity. Nevertheless,
recent research has exploited the discrete nature of the loss function, resulting in computational advantages (Aghaei et al.,
2021; McTavish et al., 2022; Lin et al., 2020). Recently, to optimize decision trees over weighted datasets, where each
sample has a weight, Behrouz et al. (2022b) design three efficient algorithms to optimize weighted sparse decision trees. Let
T be a decision tree that gives predictions {ŷTi }Ni=1 on dataset (x,y). The weighted loss of T is defined as:

Lw(T ,x,y) = 1∑N
i=1 wi

N∑
i=1

1[yi ̸= ŷTi ]× wi . (6)

The algorithm aims to maximize the loss with depth and sparsity constraints:

minimize
T

Lw(T ,x,y) + λHT s.t. depth(T ) ≤ d, (7)

where HT is the number of leaves in T and λ is a per-leaf regularization parameter. It is theoretically proven that their
algorithms can find a decision tree very close to the globally optimal decision tree, which guarantees the performance of
found tree.

ADMIRE++. We design a post-hoc explainability method to mimic the predictions of ADMIRE. The main intuition of
ADMIRE is to extracts causality of network dynamic by backtracking over time and extracts network multiplex motifs. We
use these extracted motifs to describe the neighborhood of each node and then use this data to train a decision tree model.
Accordingly, the decision tree can explain why a connection is abnormal based on the neighborhoods of its endpoints.
However, the main challenge is that we have diverse network motifs in large and dense networks like brain networks, and
accordingly, we need so many features to accurately describe the neighborhood of each node. To this end, we apply k-mean
clustering algorithm (Lloyd, 1982) to the walk embeddings obtained in subsection 3.3, and group network motifs based on
their similarity. Clearly, the larger k results in a better explanation. Next, to construct features that we can use to train the
decision tree, we define ve =

(
p11 p12 . . . p1k p21 p22 . . . p2k

)
, where p1i and p2i are normalized counting number

of sampled walks (motifs) starting from u1 and u2 in cluster i. That is, p1i =
C1

i

C , where C1
i is the number of sampled

walks starting from u1 that are in cluster i, and C is the total number of sampled walks. Similarly, p2i =
C2

i

C , where C2
i

is the number of sampled walks starting from u2 that are in cluster i. Therefore, in this design, p1i s and p2i s describe the
distribution of motifs in the neighborhoods of nodes u1 and u2, respectively. For each link e in the data, we have a feature
vector ve and a binary label assigned by Equation 4. Accordingly, we train our decision tree on these features and labels via
algorithm proposed by Behrouz et al. (2022b). The sparsity in optimal sparse decision tress guarantees the interpratability
and also the algorithm proposed by Behrouz et al. (2022b) guarantees the performance quality of the trained model.

Note that, to assign a weight to each sample, which here is a link, we use the inner product of its type encoding and the
average of its endpoints. That is, given e = (u1, u2, r):

we = µ(r).(
ζ(u1) + ζ(u2)

2
), (8)

where µ(r), ζ(u1), and ζ(u2) are calculated in subsection 3.3.
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E. Attention Mechanism: Motivation
As we discussed, in multiplex networks the importance of views might be different. For example, one disease might be more
correlated with functional connectivity than structural connectivity, or a brain network of an individual can be noisy and
we need to automatically ignore it in the training process. To this end, we design an attention mechanism that learns the
importance of each view for other views. Existing attention mechanisms (Behrouz & Seltzer, 2022; Park et al., 2020) are
designed for general multiplex networks, assuming that the importance of each view for each node is different. Although
these mechanisms are more general, they are required to learn many parameters, limiting their scalability to large networks
with a large number of views. Here, in our experimental evaluations on multiplex brain networks, we observe that the
importance of one view for different nodes is almost the same. Given a view r and a node u, we use Ω(u, r) to show the
importance of view r for node u. We use the attention mechanism proposed by Behrouz & Seltzer (2022) instead of our
attention mechanism and train the model on PD, ADHD, and ASD datasets. While it requires ≈ 1.8× training time, we
observe that Ω(u, r) ≈ Ω(v, r) for any given view r and arbitrary nodes u and v. That is, given a view r, the maximum
variance of Ω(u, r) for different nodes u is 0.02, 0.05, and 0.02 in PD, ADHD, and ASD datasets, respectively. Therefore,
since in a multiplex brain network we might have a large number of views (e.g., a large number of subjects, a large number
of image modalities, or a large number of frequency bands), we design a more efficient and scalable attention mechanism
that learns the importance of each view for other views (independent of nodes). One can interpret this attention mechanism
as a model that learns the correlation between each pair of views.

F. Experimental Setting Details
We tune hyper-parameters by cross-validation, and search the hyper-parameters over 1 µ ∈ {0.5, 1, 2, 4} × 10−5, 2
Inter-view sampling number M ∈ {32, 64, 128, 256}, 3 Intra-view sampling number per view M ′ ∈ {8, 16, 32, 64}, 4
Walk length m ∈ {2, 4, 8, 12}. Also, in the training, we use a learning rate of 0.0001, hidden dimension 100 in MLP-Mixer,
and batch size of 600.

To visualize the average distribution of anomalous connections, we use BrainPainter (Marinescu et al., 2019) with the
Desikan-Killiany atlas.

G. Datasets
We evaluate ADMIREusing three real-world datasets, PD (Day et al., 2019), ADHD (Brown et al., 2012), and ASD (Craddock
et al., 2013), as well as three synthetic datasets. Each of the datasets represents one type of multiplex brain network modeling
proposed in §3.1.

PD Dataset. Attention dysfunction is a common symptom of Parkinson’s disease (PD) and has a significant impact on
quality of life. This dataset (Day et al., 2019) uses the Attention Network Test (ANT) (Fan et al., 2005) and is designed to
study three aspects of attention: alerting (maintaining an alert state), executive control (resolving conflict), and orienting.
It consists of structural and functional MRI images of participants with and without PD, with six repetitions of the ANT
task (Fan et al., 2005). It contains data for 25 subjects (7 female, age = 66.1±10.0 yrs, years since disease onset = 8.4±4.8)
in the PD group and 21 subjects (12 female, age = 62.1± 9.9 yrs) in the healthy control group. We model the data using
a temporal multiplex brain network with two views, 114 ROIs, and six timestamps (fMRI during each task). The first
view represents the brain network obtained from fMRI, while the second view represents that generated from T1-weighted
structural MRI.

ADHD Dataset. This dataset consists of resting fMRI data taken from USC Multimodal Connectivity Database
(USCD) (Brown et al., 2012). The dataset contains data for 50 subjects (27 female, age = 9.84 ± 3.57 yrs) in the
ADHD group and 50 subjects (25 female, age = 12.74 ± 4.1 yrs) in the typically developed (TD) control group. This
dataset is preprocessed 1. We model this data using a temporal multiplex brain network with 50 views, 190 ROIs, and 10
timestamps; each view represents the brain network of an individual.

ASD Dataset. This dataset consists of resting fMRI data taken from the Autism Brain Imaging Data Exchange
(ABIDE) (Craddock et al., 2013); it contains data for 45 subjects (23 female, age = 23.1 ± 8.1 yrs) in the ASD group

1https://ccraddock.github.io/cluster_roi/atlases.html
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Figure 6. The distribution of anomalous edges in PD group.

and 45 subjects (22 female, age = 25.4 ± 8.9 yrs) in the typically developed control group. We have followed the five
pre-processing strategies denoted as DPARSF, followed by Band-Pass Filtering with different filters in a range between 0.01
and 0.25 Hz, in steps of 0.02 Hz. This range and steps are previously motivated by (De Domenico et al., 2016). We model
this data using a temporal multiplex brain network with 12 views, 116 ROIs, and 10 timestamps; the i-th view represents the
brain network obtained by filtering the fMRI values in the range [0.01 + (i− 1)× 0.02, 0.01 + i× 0.02] Hz.

Synthetic Datasets. We use synthetic datasets to show 1 the effectiveness of ADMIRE in detecting anomalous connections
compare to baselines, 2 the importance of each element in our framework (ablation study), and 3 the advantage of
modeling brain images as multiplex networks compared to modeling them as monoplex networks. Since the ground truth
label for anomaly detection (specifically in brain networks) is difficult to obtain (Akoglu et al., 2015) (ground truth is
unknown in many real neuroimaging data), we follow the methodology used in existing studies (Akoglu et al., 2015; Zheng
et al., 2019; Yu et al., 2018b; Behrouz & Seltzer, 2022) and synthetically inject anomalous edges into our brain networks of
people in the control group (healthy or TD) from our datasets. Accordingly, the nature of our synthetic datasets is real brain
networks; however, synthetically anomalous connections are added to mitigate the lack of labeled data.

Pre-pocessing. Unless stated otherwise, for preprocessing and constructing brain networks from original fMRI and DTI
data, we use the FSL toolbox and BrainGB (Cui et al., 2022a). Each edge in the fMRI brain networks shows that the
statistical correlation between its endpoint is more than 80-th percentile of the distribution of correlation values.

H. Baselines
Since ANOMULY (Behrouz & Seltzer, 2022) is the only competitor method on edge anomaly detection in multiplex
networks, we also compare ADMIRE with single-layer edge anomaly detection methods: GOutlier (Aggarwal et al., 2011)
builds a generative model for edges in a node cluster. NetWalk (Yu et al., 2018b) uses a random walk to learn a unified
embedding for each node and then dynamically clusters the nodes’ embeddings. AddGraph (Zheng et al., 2019) is an
end-to-end approach that uses an extended GCN in temporal networks. Finally, we compare with two multiplex network
embedding baselines, ML-GCN (Behrouz & Hashemi, 2022) and MNE (Zhang et al., 2018b). We apply K-means clustering
on their obtained node embeddings for anomaly detection (Yu et al., 2018b).

In the inductive setting, since there is no inductive learning (or anomaly detection) method on multiplex networks that we
are aware of, we compare ADMIRE with inductive learning methods on monoplex networks. CAW-N (Wang et al., 2021)
is an inductive method that uses causal anonymous walks to extract network motifs and a novel set-based anonymization
process that keep model inductive by hiding the identity of nodes during the training phase. EvolveGCN (Pareja et al., 2020)
uses a RNN to estimate the GCN parameters for the future snapshots. TGAT (da Xu et al., 2020) uses GAT (Veličković et al.,
2018) to extract node representations where the nodes’ neighbors are sampled from the history and then encodes temporal
information via random Fourier features.

I. Additional Results on Real-world Datasets
In this section, we present additional visualization of results provided in § 4.1. Figure 6, Figure 7, and Figure 8 present the
average distribution of anomalous edges in PD, ADHD, and ASD groups.
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Figure 7. The distribution of anomalous edges in ADHD group.

Figure 8. The distribution of anomalous edges in ASD group.
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