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Abstract
This paper describes an efficient and elegant architec-
ture for unifying the meta-data protection of journaling
file systems with the data integrity protection of colli-
sion-resistant cryptographic hashes. Traditional file sys-
tem journaling protects the ordering of meta-data
operations to maintain consistency in the presence of
crashes. However, journaling does not protect important
system meta-data and application data from modifica-
tion or misrepresentation by faulty or malicious storage
devices. With the introduction of both storage-area net-
working and increasingly complex storage systems into
server architectures, these threats become an important
concern.

This paper presents the protected file system (PFS), a
file system that unifies the meta-data update protection
of journaling with strong data integrity. PFS computes
hashes from data blocks and uses these hashes to verify
the correctness of data. Hashes are stored within a sys-
tem log, apart from the blocks they describe, but poten-
tially on the same storage system. The write-ahead
logging (WAL) protocol and the file system buffer cache
are used to aggregate hash writes and allow hash com-
putations and writes to proceed in the background.

PFS does not require the sharing of secrets between the
operating system and the storage system nor the deploy-
ment of any special cryptographic firmware or hard-
ware. PFS is an end-to-end solution and will work with
any block-oriented device, from a disk drive to a mono-
lithic RAID system, without modification.

1  Introduction
For a variety of economic and management reasons,
server operating systems are moving towards a looser
coupling with their storage subsystems [4]. There are
two important components to this change. First, the
technology connecting the server operating system to
the underlying storage system is changing. Busses are
being replaced by networking fabrics known as storage

area networks (SAN) that utilize protocols such as Fib
Channel or Gigabit Ethernet. In the future we may eve
see IP networks within the SAN. The IETF IP Storag
working group is designing a protocol for transportin
block-level storage commands over IP networks [8
This shift from protected busses to networking fabric
introduces an increased risk of malicious intrusion. Sto
age Service Providers (SSPs) offer storage outsourc
services, connecting a clients’ application server to the
storage system, which can be partitioned across seve
clients. In these cases, strong protection guarant
become important because the network between
server operating system and the storage system n
spans commercial boundaries. The server and the s
age are no longer under a single administrative contr
The client will undoubtedly have a data integrity con
tract with the SSP, but an alarm should be raised imm
diately if the SSP, either intentionally or unintentionally
delivers bad data.

Second, the complexity of storage is increasing. Stora
systems have evolved from direct attached hard disks
large network-attached disk arrays with internal RAID
These systems have complicated firmware, and ma
run non-trivial operating systems. This new complexit
introduces software failure modes that are not describ
by the traditional fail-stop model of hardware failure.

Many problematic scenarios can arise in this new en
ronment. For example, malicious intruders spoof bloc
to the server, or a software bug on the storage corru
data, or the storage receives or transmits a differe
block than the one requested. The server operating s
tem must protect itself against all such failures. Block
containing file system meta-data are particularly impo
tant because they contain operating system state
will crash the server operating system, and consequen
all applications, if they are corrupted.

This paper introduces the Protected File System (PF
PFS is intended for server operating systems and p
vides strong integrity at the level of file system blocks
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Block hashes are computed with a collision-resistant
hash function and are subsequently used to verify block
reads from the storage. PFS does not change the file sys-
tem interface. Applications are free to open, close, read
and write files as they always have. PFS also makes no
changes to the on-disk layout of data and meta-data.
This allows for backward compatability with existing
data and the freedom to use existing utilities. PFS uni-
fies block verification with the existing file system pro-
tection mechanism, the file system journal. This
unification is achieved using a generic system service
known as the write-ahead file system (WAFS). The
WAFS stores records and provides its clients with log
sequence numbers (LSNs) for their record writes. PFS
uses the WAFS for both journaling and hash logging.
This centralizes recovery in a single component, consol-
idates potentially disparate I/O streams into a single
sequential stream, and avoids code duplication.

PFS uses collision-resistant hashes to protect data integ-
rity. Collision-resistant hashes have the property that it
is computationally infeasible to find two different data
blocks with the same hash value. SHA-1 is one popular
such hash, mapping a data block of any size to a 20-byte
hash value. MD-5 is another, mapping to a 16-byte
value.

Section 2 outlines the properties that we sought in a
solution and discusses some candidate architectures.
The goal is to give readers an understanding of the pro-
cess we followed in order to arrive at the PFS architec-
ture. Section 3 discusses related work. Section 4
provides an overview of the PFS architecture, and Sec-
tion 5 discusses some of the more important issues in
detail. Section 6 presents our performance results, and
Section 7 concludes.

2  Desired Properties and Potential Solu-
tions
At the beginning of this project, we set out the following
requirements for our architecture.

• Detect all bad blocks. With a very high degree of
certainty, any unauthorized block modification must
be detected by the file system. This includes both
data and meta-data blocks. With the same degree of
certainty, the file system must detect that the stor-
age returns a block other than the one requested.

• No changes to storage systems. No special crypto-
graphic logic, either hardware or software, should
be necessary. File system block sizes must remain a
power of two so that they can be expressed effi-
ciently in terms of storage blocks (e.g. sectors),

which tend to default to a power of two smaller than
traditional file system blocks.

• Straightforward to implement in both legacy and
modern file systems. The on-disk structure of the
file system must be maintained. The architecture
must interact well with the operating system buffe
cache. The popular file system interface must
remain unchanged.

• Minimal requirementfor localnon-volatilestorage.
Centralizing non-volatile state on the storage has
the added benefit that a failed server can be quick
replaced by another trusted server.

• High performance. Sacrifice as little performance
as possible.

A first potential solution would be to compute the has
for the block and store it along with the block, eithe
appended or in a special header. When the data is fau
in, the operating system computes the hash and co
pares it with the hash value stored alongside the bloc
There are several problems with this solution. First, th
storage system block size must be larger than the
system block size by the size of the hash, which is 2
bytes under SHA-1 and 16 bytes for MD-5. This ma
rule out a large class of storage devices that lack flexib
block sizes. Second, malicious intruders with know
edge of the hash function can spoof data and genera
hash, which will be verified successfully, but incorrectly
Third, a class of storage failures are not protecte
against. For example, the operating system request
block X and the storage system returns block Y alon
with the hash appended to Y, the operating system w
compute the hash from the value of Y and compare w
the appended one. The two, assuming no other failu
will be the same, and the operating system will inco
rectly conclude that the block is correct. Simple self-ce
tifying blocks can solve the third of these concerns.
self-certifying block combines both the hash of the da
and the block number, so if a block other than the on
requested is delivered, that fact will be detected. Sign
self-certifying blocks can solve the second and third
these concerns, using a private key to generate a sig
ture so that malicious intruders cannot spoof blocks wi
correct hashes.

A second potential solution stores the hashes with t
file system pointers. For example, the UFS inode, t
on-disk structure representing a file, contains an array
pointers to data blocks and, for larger files, pointers
blocks containing pointers. Data block hashes are sto
alongside the pointers, within the meta-data. This so
tion separates the storage of hashes from their d
blocks, overcoming the need to increase the storage s
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tem block size. Unfortunately, this solution has several
problems of its own. First, new dependencies are intro-
duced between file data and meta-data. Hashes must be
stable before their corresponding data block, necessitat-
ing a synchronous write of the inode before the data
block, even if the block is already allocated to the file.
The cost of such synchronous writes can be substantial.
In addition, this potential solution presents another
problem that is more serious. Many pieces of meta-data
are indexed directly and not referenced via pointers.
These include the blocks containing inodes, cylinder
groups, and superblocks. User data, if corrupted, will
not crash the system because it is opaque and passed
through to applications. Meta-data, on the other hand, is
interpreted by the operating system and its corruption
can crash the system. The protection of such meta-data
is critical, because these are the blocks whose correct-
ness is most important for system stability. If the inodes
are not protected from modification, then a malicious
entity could change the hash value associated with a
block pointer to match that of a spoofed block. Again, a
signature scheme could be used to sign meta-data. These
techniques could be feasible under read-only workloads,
but become problematic under workloads with fre-
quently changing meta-data, due to the introduction of
update dependencies and the need to sign meta-data.

The best features of the above-mentioned two solu-
tions—hash protection of all blocks, both data and meta-
data, and the separation of hashes from their corre-
sponding blocks—are both achieved through a tech-
nique that we have developed calledhash logging.
Hashes, along with a block identifier, are written as
records into a log, a separate append-only system file.
The hashes of all blocks, both data and meta-data, are
stored within this log and are thereby separated from the
blocks they describe. Log records are keyed by mono-
tonically increasing LSNs. When record writes reach the
end of the log, they start anew at the beginning (this
necessitates a log space reclamation mechanism which
will be described in section 5).

3  Related Work
Fu et al. describe the read-only secure file system
(SFSRO) [3]. SFSRO is most like the second potential
solution described above. File system blocks are named
and requested by their hash value. The traditional disk
address pointers contained in file system index nodes
are replaced by hash values. This scheme depends on
the collision-resistant property of cryptographic hashes.
SFSRO does not handle frequent updates well. If the
contents of the file system change, a database must be
reconstructed on a trusted server and shipped to the

untrusted server, where it cannot be modified. In co
trast, PFS allows for modification directly on the
untrusted storage server. SFSRO and PFS also protec
different levels of abstraction. PFS protects data a
meta-data at the level of blocks, which include all th
blocks required to implement a file system on storag
allocation bitmaps, index nodes, superblocks.

The Trusted Database (TDB) implements a databa
buffer cache on an untrusted store [11]. TDB shares s
eral characteristics in common with PFS and SFSR
All three use collision-resistant hashes to verify block
TDB uses a log-structured store for both block and ha
writes. PFS and TDB have different philosophies, how
ever. TDB is a monolithic database system that prese
a new interface and a new on-disk storage format.
contrast, PFS is an existing file system modified inte
nally to do hash data protection. The logic fits within th
prior file system architecture — the most interestin
characteristic being the unification of hash and met
data logging within the file system journal. The popula
and well-documented file system interface remai
unchanged so that applications can benefit from P
protection transparently. Also, the on-disk format of th
file system remains unchanged, so that large file syst
partitions run under PFS immediately without copy
overs and utilities that access the raw disk interface co
tinue to work (eg. dump, restore, fsck).

The Tripwire tool computes hashes on a per-file bas
and stores these in a protected database [10]. To ver
tripwire computes the hashes of specified files and co
pares these against the database, raising a flag for
system administrator if the two differ.

The idea of shared logging was investigated within th
Quicksilver operating system project [7]. Quicksilve
was a distributed microkernel operating system built
IBM research in the mid 1980s for System/6000 work
stations. The salient feature of Quicksilver was its use
transactions for recovery, failure notification, an
resource reclamation. As a microkernel, Quicksilve
typically implemented system services in user-lev
servers. The log manager server was used primarily
the transaction manager, but was theoretically availab
to other subsystems. Later work explored sharing t
log service across multiple resources [2]. The WAF
used by PFS is also a service for shared logging, bu
into a monolithic kernel architecture. Other work ha
explored sharing the WAFS service between the kern
and user applications [16].
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4  PFS Architecture Overview
When buffered file system blocks are modified, either
through direct user write system calls or internally gen-
erated meta-data updates, PFS flags the buffers to indi-
cate that their hashes must be computed and logged
before they may be written to the storage system. A
background system thread known ashashdwakes peri-
odically and cycles through the dirty buffers, identifying
those buffers for which a hash must be computed. Once
such a buffer is identified, hashd applies the hash func-
tion to the buffer’s data block, yielding a hash value that
is packed into a record along with the block identifier
and written to the log. The log write returns an LSN.
This LSN is stored in the block’s buffer. These steps are
shown in Figure 1. Steps 1 and 2 of that figure occur
synchronously with the system call. Steps 3 through 6
take place in the background in the context of hashd.
None of these steps require communication with the
storage system.

To ensure the integrity of the data, PFS uses the well-
known write-ahead logging protocol (WAL) [5]. Before

it finally decides to write a buffer, it must ensure that th
corresponding hash record has reached stable storag
it were written otherwise and the system crashed, a su
sequent comparison of the old hash against the new d
would erroneously conclude that the data was ba
Therefore, hashes must reach stable storage before t
corresponding blocks. LSNs are used to enforce th
dependency.

Before a block is written to disk, the LSN stored within
its buffer header is compared with the stable LSN of th
log. If it is less than the stable LSN, then in order for th
write to proceed, the log must first be flushed up to th
buffer’s LSN. This is shown in Figure 2.

Using an asynchronous thread to compute and log
hashes has several important advantages. First,
removes the hash computation from the system-c
path, reducing the likelihood of needless hash recomp
tations. Second, it increases the likelihood that a ha
will be stable by the time its corresponding dirty bloc
reaches the device driver. If the hash were not stable
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WAFS Storage
PFS Storage
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Block write Dirty block flush

Shared System Buffer Cache

1

Figure 1: Block Write Example. (1) Data is written
by an application. This step will not occur if the data is
an internally generated meta-data update. (2) PFS
writes data into block buffer B3 currently resident in
the buffer cache. A buffer flag is set to indicate that the
hash must be computed. At this point, the system is
free to return. Steps 3-6 happen asynchronously in the
system background within the context of hashd. (3)
PFS applies a hash function to the data contents of B3.
This hash and B3’s block number are encapsulated
within a record and written to the WAFS via the vnode
interface. (4) The WAFS takes the record and does a
buffered write to the head of its log in B6. It returns the
LSN. (6) PFS stores the LSN in B3’s buffer header.

Figure 2: Dirty Block Flush Example. (1) This is the
write-ahead comparison. The LSN stored in buffer B3
is compared to the WAFS highest stable LSN. If the
buffer’s LSN is less than or equal to the highest stable
LSN, then the log record describing B3 must be stable.
It is safe to write B3 without forcing the log (go to Step
3). (2) The hash record describing B3 needs to be
committed. Flush the log up to the LSN stored in B3’s
buffer. The record happens to be stored within B6, so
B6 is written. (3) Write block B3. Mission
accomplished.
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this time, two I/Os would be necessary. A synchronous
write of the block’s hash to the log followed by the data
block write. Third, using an asynchronous thread allows
hash records to be batched together. As long as WAL is
followed, integrity will be protected and the hash record
need not be written synchronously.

File systems that do not employ techniques such as jour-
naling or soft updates do not perform well under meta-
data intensive workloads [15]. This is because they must
perform synchronous writes to order meta-data updates.
Journaling solves this problem by allowing the file sys-
tem to buffer meta-data updates, using a log and WAL to
enforce dependencies, much as hash logging does. Jour-
naling can be thought of as protecting the operating sys-
tem from itself or, at a finer level of detail, protecting the
file system from the buffer cache, which is responsible
for committing delayed writes, but has no knowledge of
crucial file-system-specific update dependencies. Hash
logging benefits from the delayed meta-data updates of
journaling. If Step 2 of Figure 1 were a synchronous
meta-data update, then all of the following steps within
Figure 1 and the two writes of Figure 2 would have to be
performed synchronously. By allowing meta-data
updates to be cached delayed-write, journaling gives the
system the freedom to perform hash computation in the
background and to batch hash record writes.

Rather than have two logs in the system, each serving its
own LSNs to enforce WAL, it makes sense to unify the
two logs into one single system WAL service. PFS uses
the write-ahead file system(WAFS) [15] for this pur-
pose, employing it for both meta-data and hash logging.
The WAFS resides on a separate partition from PFS.
This allows the WAFS to be located on a different stor-
age system from PFS, potentially removing disk head
contention. On systems with NVRAM, the WAFS could
be placed there.

The block mapis the PFS data structure used to verify
block reads. It contains the committed hash for every
block, indexed by file system block number. The block
map resides in kernel virtual memory and need not be
entirely resident in physical memory. The portion of the
map present in memory is a function of file system
locality. Using paging to cache the recently accessed
pages of the block map requires a trusted swap device.
The block map is a volatile data structure. When the sys-
tem crashes, it is reconstructed from the hash log
records contained within the WAFS.

On a read, if PFS does not find a block in the buffer
cache, it issues a read request to the storage system.
Upon receiving the block from storage, PFS computes

the hash and compares this value with the value in t
block map. If the block fails this verification step, it is
expelled and the associated system call fails.

The WAFS is not confined to trusted local storag
Therefore, it must be protected from the same classes
faults and attacks as PFS. If an adversary were able
spoof WAFS blocks, then PFS would no longer be ab
to protect its own blocks. During a server crash, a
adversary could read the log records, which are stored
the clear on the storage, find the most recent reco
describing a PFS block, modify the corresponding PF
block, compute the new hash and insert it in the WAF
block in place of the old value. From this example, it i
clear that the protection of WAFS blocks is paramou
to the protection of PFS blocks.

WAFS does not rely on an external mechanism for i
protection, instead storing anauthentication tagin the
header of every WAFS block. The authentication tag
generated by a message authentication code (MA
Unlike hash functions, MACs are parameterized by
secret key. Recent work has shown that MACs can
constructed from hash functions with a degree of sec
rity that is provably strong [1]. The benefit of this
approach is performance, which is essentially that of t
underlying hash function.

Unlike PFS, the WAFS is able to include the tag withi
the file system block because its units of read/wri
access are variable length records. Any notion of fi
system blocks is withheld from its clients, which rea
and write records, not blocks. The WAFS header al
includes an LSN. This is protected by the authenticatio
tag and used to verify that the correct block wa
returned. Since the server is the only system th
requires verification of WAFS blocks, public key tech
nology need not be used.

The authentication tag is computed when the WAF
block is written to storage. Since WAFS blocks are ne
ther read nor rewritten during normal operation, th
authentication tag will only need to be recomputed fo
partial block writes that are forced to storage.

Figure 3 shows the journal and hash log multiplexed o
the WAFS.

5  PFS Architecture Details

5.1  Asynchronous I/Os
After the server sends the write request to the stora
and before it receives the I/O completion notification
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the block may be either in the new or old state. If the
server crashes before receiving notification, then it must
have both hashes stable for comparison in the next ses-
sion. If the write did not make it to the storage system,
the block is still correct so the old hash must be avail-
able for comparison. The block map contains the com-
mitted hash of every block. Hashes are only entered into
the block map once the I/O completion interrupt has
been received. Theasync mapis a small hash table con-
taining all hashes describing block updates sent to stor-
age, but for which PFS has not received I/O completion
notification. Upon receiving this notification, the hash is
removed from the async map and inserted into the block
map, overwriting the previous value.

5.2  Checkpointing
For a 16GB partition with 8KB file system blocks, the
block map will have 2M entries. If the hashes are MD-5,
the block map will be 32MB. Clearly, it is infeasible to
checkpoint the entire block map at once. The block I/O
interrupt code accesses both the block map and the
async map, so access to these data structures must be
exclusively locked during the checkpoint. Locking out
block interrupts in order to checkpoint hundreds of

megabytes of data would undoubtedly result in dropp
interrupts. In addition, system call latencies would b
severely skewed and unpredictable. We solve this pro
lem with partial checkpoints. The block map is broke
up into distinctchunksapproximately the size of the
data portion of WAFS file system blocks. Each chunk
checkpointed independently and the chunks are selec
in a round-robin fashion.

A chunk checkpoint is not complete until a small recor
known as theasync recordhas been committed to the
log following the chunk. The async record contains th
contents of the async map for the file system bloc
described by the chunk. These are the block I/Os
progress at the time of the checkpoint. Since there c
be only one outstanding I/O on any particular block, th
current state of the block is either described by the ha
in the chunk or the hash in the async record. Once
chunk checkpoint completes, the log is free to reclai
earlier records for blocks described by the chunk.

For a given block, many hash records may be writte
after the chunk checkpoint. PFS must attempt to bou
the number of potentially valid hashes, orcandidate
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WAFS record headers

WAFS Log

Journal

Hash Log

WAFS block headers

Figure 3: Multiplexing the WAFS. This figure shows two physical WAFS blocks containing four hash log
records (diagonal-striped blocks) and 3 journal records (grey blocks). PFS uses the WAFS for its hash
logging and journaling. The journaling and hash logging components write records during normal
operation. Each component sees a distinct logical log, but the records are physically interleaved. Records
are read only during recovery. WAFS does not export a block abstraction and hides the WAFS block header
from its clients. The header contains an LSN needed during recovery and an authentication tag to verify
WAFS block reads. The WAFS prepends a record header to every record write. This contains a client
identifier used by the cursor read routines to ensure that the block map recovery code does not retrieve
journal records and vice versa.



t
is

not
s
er-
s

t
ec-
-
al

of
e
.
s
ds
e
bes

r
ni-
ts

pe
g
le

he
-
t
for

S
gh
nts.
r-
or
r
e
es
is
of

S
is
t-
S

hashes, for a given block. Having many candidate
hashes to test would slow down recovery and adversely
affect security. One way to bound the number of candi-
date hashes per block would be to insert code in the I/O
completion interrupt handler to write a special record to
the hash log. This record would contain the hash value
and block number like other records, but its type field
would identify it as an I/O completion record. During
recovery, on a read of such a record, the recovery code
would deprecate all earlier hash values associated with
the block. This solution would place a fairly tight bound
on the number of candidate hashes per block, dependent
on the flush rate of the buffer cache and the hash compu-
tation rate of hashd. The bound would be inversely pro-
portional to the flush rate of the buffer cache and
directly proportional to the buffer processing rate of
hashd. Unfortunately, there is a fundamental architec-
tural problem. Locks (eg. WAFS vnode lock) would
have to be acquired during interrupt processing, which
runs at a higher priority level than the top half of the ker-
nel. This would introduce the potential for deadlock.

Our solution places the bounding responsibility within
hashd. In order to bound the number of candidate
hashes, every PFS buffer contains two LSNs. The first is
the LSN of the buffer’s most recently written log record.
The hash stored in the record at this LSN may not
describe a committed PFS block. This LSN is known as

thebuffer-end. The second is the LSN of the most recen
hash describing a stable version of this buffer. This
known as thebuffer-begin.For a given buffer, all of the
hashes between buffer-begin and buffer-end have
had their corresponding data committed to disk. A
hashd computes and logs hash records, buffers’ buff
end LSNs will move forward. When the PFS block i
written to disk, the I/O completion interrupt will copy
buffer-end into buffer-begin. At this point, the mos
recent hash in the log must be stable, due to the prot
tion of the WAL protocol, and it must describe this par
ticular write because the buffer is locked during physic
I/O. This process is shown in Figure 4

When hashd executes, it scans the buffer-begin values
all the PFS buffers, selecting the minimum from th
buffers for which buffer-begin differs from buffer-end
This LSNs is written to the log in a special record. Thi
LSN has the property that if there are no hash recor
describing a particular block after this LSN, then th
most recent hash record preceeding the LSN descri
this block. In Section 5.3 we will describe how this
LSN, known aslogged, is used in recovery.

The WAFS is a finite circular log and is responsible fo
managing this space. When the WAFS reaches a mi
mum free space threshold, it synchronously checkpoin
its clients. The journal follows the methodology
described in Seltzer et al. [15] and is beyond the sco
of this paper. WAFS checkpoints the hash log by callin
the PFS handler and providing a minumum acceptab
LSN. The handler compares this against the LSN of t
oldest live checkpoint chunk. If it is less, then PFS sim
ply returns the LSN of the oldest checkpoint withou
any I/O. Otherwise, PFS checkpoints enough chunks
the oldest live LSN to move beyond the minimum
acceptable LSN. This illustrates the fact that the WAF
space reclamation checkpoint must occur with enou
free space to accomodate possible hash log checkpoi
Journal checkpointing will also require free space. Inte
estingly, the minimum free space is easier to bound f
hash logging than for journaling. Heuristic bounds fo
journaling use the maximum number of open fil
descriptors and the maximum number of journal entri
per system call. The upper bound for hash logging
simply the size of the block map plus a small amount
space for an async record.

5.3  Recovery
The WAFS itself must be recovered before any PF
recovery can begin. The most recent checkpoint
found, and the log is then read sequentially until loca
ing the end of the log. The LSNs stored in the WAF

Figure 4: Updating the buffer-begin LSN. On reception
of a block I/O completion interrupt, the buffer-end LSN is
copied into the buffer-begin LSN. These two LSNs are
used by hashd to compute the global logged LSN. If the
buffer-begin and buffer-end LSNs are equal, the block
contained within the buffer does not have any logged
hashes that must be tested and resolved during recovery.

buffer-begin LSN=0x100

B3 B2 B3 B1B2B3

B3 BLOCK DATA

buffer-begin LSN=0x200

B3 I/O completion interrupt event

2FC35057
5AE549CF
26027C33
C496E8AE

18009493
3E5500C2
C52B0A71

F3C3D68A
CD1E6792
EB61A76C
A3FBCB22

buffer-begin LSN=0x200
buffer-end LSN=0x200

buffer-begin LSN=0x100
buffer-end LSN=0x200

79DCC97B3F49E472
EB2155F3
DBA7048F
B77B26DBFEB4A997

74E07C64
D9D3643E
9376E2EF

0139A797
46D40D41
81AB987C
9B78B03D

PFS buffer containing B3

buffer-end LSN=0x200

Logical Hash Log

B3 BLOCK DATA
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block headers are monotonically increasing, allowing
the recovery code to find the most recent block. The
authentication tag protects against incomplete writes.

PFS recovery has two phases: hash recovery and journal
recovery. The hash recovery restores the block map to a
consistent state. The journal recovery follows and
restores the meta-data integrity. The journal recovery
process is unmodified from the original implementation
described by Seltzer et al [15].

The hash recovery code reconstructs the block map and
verifies the contents of any blocks for which multiple
hash values are potentially valid. The hash recovery
code receives a log cursor handle from the WAFS that
allows it to iterate through the log without receiving the
journal records. The hash recovery code finds the oldest
valid chunk checkpoint and rolls forward searching for
the most recent record containing a logged LSN (see
section 5.2 for a description of this special LSN). Once
this is found, hash recovery returns to the start of the log
for a second pass. Block map recovery requires little I/O
up to the logged LSN. This is because every hash value
either describes a committed block or is deprecated by a
later record that does. Therefore, the hash values can be
inserted directly into the block map with no test I/O.
Once recovery passes the logged LSN, every hash value
must be checked for validity. The recovery code main-
tains a linked list of hashes for every block. On reaching
the log end, the hashes are resolved. Every block with
multiple valid hashes is read in, the hash function is
computed, and the resulting value is compared against
all the potentially valid hashes. If it does not match any,

recovery fails. Otherwise, the matching hash is insert
into the block map and all the others discarded. Th
illustrates the importance of bounding the number
candidate hashes per block as described in Section

6  Performance Analysis
PFS and WAFS have been implemented in th
FreeBSD-4.1 operating system. PFS is a set of chan
to the Logging Fast File System (LFFS) [15], a journa
ing version of FFS [12]. PFS maintains the on-dis
structure of FFS, and it uses the WAFS for both its jou
naling and hash logging as described in this paper.

For these experiments, PFS computes hashes using
MD-5 algorithm and WAFS computes its block authen
tication tags using the IETF RFC 2104 implementatio
of HMAC using MD-5. The HMAC private key is stored
within the kernel binary. Key modification could be
made more convenient by using a dynamically loadab
kernel module or more advanced technologies such
smart cards.

Our test system consists of a single 500Mhz Xeon Pe
tium III CPU with 512MB RAM and three 9GB 10,000
RPM Seagate Cheetahs (ST39102LW) disks. The dis
are connected to the host operating system via a sin
shared Adaptec AHA-2940UW Ultra SCSI card. Th
first disk contains the operating system and swap spa
the second contains a 256MB WAFS partition, and th
third contains an 8.5GB test partition.
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Figure 5: Creates Figure 6: Writes

Figures 5-8 (7 and 8 on following page): Cold cache microbenchmarks.Figures 5 through 7 show
the throughput of both PFS and LFFS expressed in MB per second. Figure 8 shows delete throughput
expressed in thousands of files per second. The create and delete benchmarks are meta-data intensive.
Note that the scale of the y-axis varies. Each test was run 5 times and standard deviations were small.
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We ran two macrobenchmarks and a microbenchmark
suite. We compare PFS against LFFS. In our experi-
ments, both PFS and LFFS do asynchronous journaling.
This means that journal records are not committed to
disk before the system call returns. WAL still maintains
the ordering of updates so that the file system will be
recoverable to a consistent state. However, it is possible
that a create will return, the system will crash, and the
file will not exist after recovery, violating the durability
semantics that FFS has traditionally offered. We believe
that these semantics grew out of convenience, rather
than application demand. Originally, FFS used synchro-
nous updates to order meta-data operations and ensure
recoverability and consistency. Since the updates had to
happen anyways, the semantics of durability came at no
additional cost. Soft updates [6][13] and asynchronous
journaling abondon these semantics. The difference
between the performance of synchronous journaling and
either asynchronous journaling or soft updates, which-
ever is better, is the cost of FFS system call durability.
Seltzer et al. determined that the cost of durability far
exceeds the cost of integrity [15]. The goal of our
benchmarking experiments is to quantify the cost of the
block-level integrity protection of PFS.

6.1  Microbenchmarks
The microbenchmarks are similar to those used in recent
file system performance studies [14][15]. For file sizes
ranging from 16KB to 1MB they create, write, read,
then delete a directory hierarchy of files. The file system
is unmounted between each operation phase, to ensure
that each phase begins with a cold cache. This is useful
for isolating the cost of individual operations, but is
somewhat artificial. Much of the design of modern file

systems is predicated on a large cache with a high
rate.

The hierarchy contains either 128MB of data or 51
files, whichever results in more files. No more than 5
files are allocated per directory to limit pathnam
lookup times.

The results of the microbenchmarks are shown in Fi
ures 5 through 8. The performance of PFS and LFFS a
similar on the create and delete tests. This shows h
hash logging benefits from journaling. Journaling allow
meta-data updates to be cached and updates combi
The performance of hash logging depends on the abil
of the operating system to cache writes. This give
hashd time to generate hash log records and group th
records together into full block writes, amortizing th
cost of block writes.

On the read and write tests, LFFS outperforms PF
because PFS must compute hashes when blocks
written to and read from disk.

The largest disparity is on the read benchmark. This te
has no data locality. There will be some meta-data loc
ity due to the repeated lookup of directory componen
For medium-sized files between 32KB and 96KB LFF
throughput is nearly double that of PFS. At 96KB, th
read throughput collapses as the two systems must r
the indirect block. For larger files these layout issue
which are independent of the hashing mechanism, pla
more significant role and PFS performance improv
relative to LFFS. The performance disparity is narrow
on the write test. Here, the buffer cache is able to abso
writes.
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Figure 9: PostMark Figure 10: SSH-Build
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6.2  Macrobenchmarks
The microbenchmarks are useful for isolating the opera-
tions for which PFS and LFFS performance differs.
However, it is difficult to use their results to predict
application performance. The goal of our macrobench-
mark experiments is to quantify the cost of block-level
protection for realistic workloads.

FFS mounted asynchronously (FFS-async) does not
make any attempt to ensure file system recoverability or
protection. It is useful as an upper bound on perfor-
mance because it shares layout format and algorithms
with PFS and LFFS.

6.2.1  POSTMARK Benchmark
The PostMark benchmark was designed to model a
combination of electronic mail, netnews, and e-com-
merce transactions, the type of load typically seen by
Internet Service Providers (ISP) [9]. PostMark is meta-
data intensive with many small files and high memory
pressure. File sizes vary uniformly from 512 bytes to
16KB. Figure 9 shows the performance of the three sys-
tems. The throughput of PFS is 7.9% lower than LFFS
and 9.1% slower than FFS-async. Although PFS per-
forms well on meta-data operations, due to the fact that
it is journaled and meta-data updates are cached, it does
not perform comparatively well on small reads and
writes.

6.2.2  SSH-BUILD Benchmark
The SSH-Build benchmark unpacks, configures, a
builds the secure shell (SSH) program, a medium siz
software package [17]. It consists of three phases. T
first, unpack, decompresses a tar archive and pulls th
source files out of the archive. This phase is relative
short and characterized by meta-data operations. T
second,config, runs small scripts and programs and ge
erates small files. The third,build, compiles the source
tree, reading and parsing the source files and genera
object files, that are subsequently linked into the exec
able. Figure 10 shows the performance of the three s
tems across the three stages. The performance of
three systems on the first two phases is not statistica
distinguishable. PFS takes 3.5% longer to complete t
build phase. Being less meta-data intensive with larg
files than the two earlier phases, this reconciles with o
observations from the microbenchmarks.

7  Conclusions
We have presented an evolutionary file system archite
ture for strong block-level integrity. Our architecture
changes neither the file system interface nor its on-d
layout and requires no special support from storage s
tems. This has been accomplished by modifying the fi
system to log collision-resistant hashes to a gene
operating system logging service. This service is shar
with the file system journal. For efficiency, a back
ground thread computes and logs hashes, removing
hash computation from the system call path and the l
commit from the data I/O path.
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We measured the performance of PFS using micro and
macrobenchmarks. PFS performance is similar to that of
the LFFS journaling file system under the meta-data
intensive create and delete tests. Under the read and
write tests, PFS incurs hashing costs as data is transmit-
ted to and from storage. On the macrobenchmarks, the
overhead of block-level integrity is only 3.5% on SSH-
Build and 7.9% on PostMark. We believe this is a small
price to pay for strong protection.
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