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Abstract area networks (SAN) that utilize protocols such as Fibre

This paper describes an efficient and elegant architecghannel or Gigabit Ethernet. In the future we may even

. . . . —see IP networks within the SAN. The IETF IP Storage
ture for unifying the meta-data protection of journaling working aroun is desianing a protocol for transportin
file systems with the data integrity protection of colli- 9 group gning a p P g

: . . i : block-level storage commands over IP networks [8].
sion-resistant cryptographic hashes. Traditional file sys-_, . . . .
: . : This shift from protected busses to networking fabrics
tem journaling protects the ordering of meta-data. : : o . ;
X L ; : introduces an increased risk of malicious intrusion. Stor-
operations to maintain consistency in the presence o

crashes. However, journaling does not protect impor'tan%lge Service Providers (SSPs) offer storage outsourcing

system meta-data and application data from modiﬁca_serwces, connecting a clients’ application server to their

. . X - storage system, which can be partitioned across several
tion or misrepresentation by faulty or malicious storage

. . : ; lients. In th ron r ion ran
devices. With the introduction of both storage-area neto < ts : these cases, strong protection guarantees
. : . . become important because the network between the
working and increasingly complex storage systems into .
. : server operating system and the storage system now
server architectures, these threats become an importan ; .
spans commercial boundaries. The server and the stor-
concern. . - .
age are no longer under a single administrative control.

. ' The client will undoubtedly have a data integrity con-
This paper presents the protected file system (PFS), ract with the SSP, but an glarm should be rai%ec)i/imme—

f|Ie. system that. unifies the meFa data update pmtec“opjlately if the SSP, either intentionally or unintentionally,
of journaling with strong data integrity. PFS computes | .

elivers bad data.
hashes from data blocks and uses these hashes to veri

the correctness of data. Hashes are stored within a Syss'econd, the complexity of storage is increasing. Storage

tem log, apart from the blocks they describe, but poten- ystems have evolved from direct attached hard disks to

tlally on the same storage system. The write-ahea arge network-attached disk arrays with internal RAID.
logging (WAL) protocol and the file system buffer cache . ,
These systems have complicated firmware, and many

are used to aggregate hash writes and allow hash com- - . ) X
) ) . run non-trivial operating systems. This new complexity
putations and writes to proceed in the background. . . )
introduces software failure modes that are not described

PES does not require the sharing of secrets between thbé/ the traditional fail-stop model of hardware failure.

operating system and the storage system nor the deplo
ment of any special cryptographic firmware or hard-
ware. PFS is an end-to-end solution and will work with
any block-oriented device, from a disk drive to a mono-
lithic RAID system, without modification.

X?Iany problematic scenarios can arise in this new envi-
ronment. For example, malicious intruders spoof blocks
to the server, or a software bug on the storage corrupts
data, or the storage receives or transmits a different
block than the one requested. The server operating sys-
tem must protect itself against all such failures. Blocks
containing file system meta-data are particularly impor-
For a variety of economic and management reasongant because they contain operating system state and
server operating systems are moving towards a loosewill crash the server operating system, and consequently
coupling with their storage subsystems [4]. There areall applications, if they are corrupted.

two important components to this change. First, the

technology connecting the server operating system td@his paper introduces the Protected File System (PFS).
the underlying storage system is changing. Busses areFS is intended for server operating systems and pro-
being replaced by networking fabrics known as storagevides strong integrity at the level of file system blocks.

1 Introduction



Block hashes are computed with a collision-resistant  which tend to default to a power of two smaller than
hash function and are subsequently used to verify block  traditional file system blocks.
reads from the storage. PFS does not change the file sys- Straightforvard to implement in both and
tem interface. Applications are free to open, close, read modern file systems. The on-disk structure of the
and write files as they always have. PFS also makes no file system must be maintained. The architecture
changes to the on-disk layout of data and meta-data. must interact well with the operating system buffer
This allows for backward compatability with existing cache. The popular file system interface must
data and the freedom to use existing utilities. PFS uni-  remain unchanged.
fies block verification with the existing file system pro- «  Minimal requiremenfor localnon-wlatile storage.
tection mechanism, the file system journal. This Centralizing non-volatile state on the storage has
unification is achieved using a generic system service the added benefit that a failed server can be quickly
known as the write-ahead file system (WAFS). The replaced by another trusted server.
WAFS stores records and provides its clients with loge  High performance. Sacrifice as little performance
sequence numbers (LSNSs) for their record writes. PFS  as possible.
uses the WAFS for both journaling and hash logging.
This centralizes recovery in a single component, consol-
idates potentially disparate 1/0 streams into a singleA first potential solution would be to compute the hash
sequential stream, and avoids code duplication. for the block and store it along with the block, either
appended or in a special header. When the data is faulted
PFS uses collision-resistant hashes to protect data integn, the operating system computes the hash and com-
rity. Collision-resistant hashes have the property that ifpares it with the hash value stored alongside the block.
is computationally infeasible to find two different data There are several problems with this solution. First, the
blocks with the same hash value. SHA-1 is one populastorage system block size must be larger than the file
such hash, mapping a data block of any size to a 20-byteystem block size by the size of the hash, which is 20
hash value. MD-5 is another, mapping to a 16-bytebytes under SHA-1 and 16 bytes for MD-5. This may
value. rule out a large class of storage devices that lack flexible
block sizes. Second, malicious intruders with knowl-
Section 2 outlines the properties that we sought in adge of the hash function can spoof data and generate a
solution and discusses some candidate architecturelash, which will be verified successfully, but incorrectly.
The goal is to give readers an understanding of the proThird, a class of storage failures are not protected
cess we followed in order to arrive at the PFS architec-against. For example, the operating system requests a
ture. Section 3 discusses related work. Section 4lock X and the storage system returns block Y along
provides an overview of the PFS architecture, and Secwith the hash appended to Y, the operating system will
tion 5 discusses some of the more important issues icompute the hash from the value of Y and compare with
detail. Section 6 presents our performance results, anthe appended one. The two, assuming no other failure,

Section 7 concludes. will be the same, and the operating system will incor-

rectly conclude that the block is correct. Simple self-cer-
2 Desired Properties and Potential Solu- tifying blocks can solve the third of these concerns. A
tions self-certifying block combines both the hash of the data

and the block number, so if a block other than the one
requested is delivered, that fact will be detected. Signed
self-certifying blocks can solve the second and third of
these concerns, using a private key to generate a signa-
ture so that malicious intruders cannot spoof blocks with
correct hashes.

At the beginning of this project, we set out the following
requirements for our architecture.

» Detect all bad blocks. With a very high degree of
certainty, any unauthorized block modification must
be detected by the file system. This includes both
data and meta-data blocks. With the same degree o
certainty, the file system must detect that the stor-
age returns a block other than the one requested.

* No changes to storage systems. No special crypto-
graphic logic, either hardware or software, should
be necessary. File system block sizes must remain
power of two so that they can be expressed effi-
ciently in terms of storage blocks (e.g. sectors),

IA second potential solution stores the hashes with the
file system pointers. For example, the UFS inode, the
on-disk structure representing a file, contains an array of
pointers to data blocks and, for larger files, pointers to
blocks containing pointers. Data block hashes are stored
%Iongside the pointers, within the meta-data. This solu-
tion separates the storage of hashes from their data
blocks, overcoming the need to increase the storage sys-




tem block size. Unfortunately, this solution has severaluntrusted server, where it cannot be modified. In con-
problems of its own. First, new dependencies are introtrast, PFS allows for modification directly on the
duced between file data and meta-data. Hashes must lmtrusted storage server. SFSRO and PFS also protect at
stable before their corresponding data block, necessitatlifferent levels of abstraction. PFS protects data and
ing a synchronous write of the inode before the datameta-data at the level of blocks, which include all the
block, even if the block is already allocated to the file. blocks required to implement a file system on storage:
The cost of such synchronous writes can be substantiahllocation bitmaps, index nodes, superblocks.
In addition, this potential solution presents another
problem that is more serious. Many pieces of meta-datdhe Trusted Database (TDB) implements a database
are indexed directly and not referenced via pointersbuffer cache on an untrusted store [11]. TDB shares sev-
These include the blocks containing inodes, cylindereral characteristics in common with PFS and SFSRO.
groups, and superblocks. User data, if corrupted, willAll three use collision-resistant hashes to verify blocks.
not crash the system because it is opaque and pass@®B uses a log-structured store for both block and hash
through to applications. Meta-data, on the other hand, isvrites. PFS and TDB have different philosophies, how-
interpreted by the operating system and its corruptiorever. TDB is a monolithic database system that presents
can crash the system. The protection of such meta-data new interface and a new on-disk storage format. In
is critical, because these are the blocks whose correctontrast, PFS is an existing file system modified inter-
ness is most important for system stability. If the inodesnally to do hash data protection. The logic fits within the
are not protected from modification, then a maliciousprior file system architecture — the most interesting
entity could change the hash value associated with a&haracteristic being the unification of hash and meta-
block pointer to match that of a spoofed block. Again, adata logging within the file system journal. The popular
signature scheme could be used to sign meta-data. Thesad well-documented file system interface remains
techniques could be feasible under read-only workloadsunchanged so that applications can benefit from PFS
but become problematic under workloads with fre- protection transparently. Also, the on-disk format of the
guently changing meta-data, due to the introduction offile system remains unchanged, so that large file system
update dependencies and the need to sign meta-data. partitions run under PFS immediately without copy-
overs and utilities that access the raw disk interface con-
The best features of the above-mentioned two solutinue to work (eg. dump, restore, fsck).
tions—hash protection of all blocks, both data and meta-
data, and the separation of hashes from their correThe Tripwire tool computes hashes on a per-file basis
sponding blocks—are both achieved through a techand stores these in a protected database [10]. To verify,
nigue that we have developed callédsh logging tripwire computes the hashes of specified files and com-
Hashes, along with a block identifier, are written aspares these against the database, raising a flag for the
records into a log, a separate append-only system filesystem administrator if the two differ.
The hashes of all blocks, both data and meta-data, are
stored within this log and are thereby separated from th&he idea of shared logging was investigated within the
blocks they describe. Log records are keyed by monoQuicksilver operating system project [7]. Quicksilver
tonically increasing LSNs. When record writes reach thewas a distributed microkernel operating system built at
end of the log, they start anew at the beginning (thisIBM research in the mid 1980s for System/6000 work-
necessitates a log space reclamation mechanism whidtations. The salient feature of Quicksilver was its use of

will be described in section 5). transactions for recovery, failure notification, and
resource reclamation. As a microkernel, Quicksilver
3 Related Work typically implemented system services in user-level

servers. The log manager server was used primarily by

Fu et al. describe the read-only secure file systen%he transaction manager, but was theoretically available
(SFSRO) [3]. SFSRO is most like the second potential ger, y

solution described above. File system blocks are nameﬁ;’ other subsystems. Later work explored sharing the

and requested by their hash value. The traditional disk g service across muIUpIe_resources [2]. Th? WAF.S
. . L . used by PFS is also a service for shared logging, built

address pointers contained in file system index nodes o :
; into a monolithic kernel architecture. Other work has

are replaced by hash values. This scheme depends on . !
. i : explored sharing the WAFS service between the kernel

the collision-resistant property of cryptographic hashes,and user applications [16]
SFSRO does not handle frequent updates well. If the PP '

contents of the file system change, a database must be
reconstructed on a trusted server and shipped to the



it finally decides to write a buffer, it must ensure that the

4 PFS Architecture Overview :
When buffered file system blocks are modified, either_correspondmg hash record has reached stable storage. If

. ; . it were written otherwise and the system crashed, a sub-
through direct user write system calls or internally gen- ! .
. sequent comparison of the old hash against the new data
erated meta-data updates, PFS flags the buffers to indj-
. ould erroneously conclude that the data was bad.
cate that their hashes must be computed and logg

. herefore, hashes must reach stable storage before their
before they may be written to the storage system. A . .
.~ " corresponding blocks. LSNs are used to enforce this
background system thread knowntesshdwakes peri- dependenc
odically and cycles through the dirty buffers, identifying P Y-

those buffers for which a hash must be computed. Orm%efore a block is written to disk, the LSN stored within

such a buffer is identified, hashd applies the hash func: . !
tion to the buffer's data block, yielding a hash value thatIts buffer header is compared with the stable LSN of the

is packed into a record along with the block identifier log. Ifitis less than the stable LSN, then in order for this

and written to the log. The log write returns an LSN. \tl)vljlftfzrt IF_)gOI\(I: e(Taﬁi,st?seslﬁgWr:L:it;lirsljrk;ezﬂushed up to the
This LSN is stored in the block’s buffer. These steps are ‘ 9 ‘

shown in Figure 1. Steps 1 and 2 of that figure occurUsm an asvnchronous thread to compute and log the
synchronously with the system call. Steps 3 through 9 y P 9

take place in the background in the context of hashd, ashes has several |mportz_ant advantages. First, it
. L . removes the hash computation from the system-call
None of these steps require communication with the . Lo
path, reducing the likelihood of needless hash recompu-

storage system.

tations. Second, it increases the likelihood that a hash

To ensure the integrity of the data, PES uses the We”ywll be stable by the time its corresponding dirty block

known write-ahead logging protocol (WAL) [5]. Before reaches the device driver. If the hash were not stable by
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Figure 1: Block Write Example. (1) Data is written

by an application. This step will not occur if the data is
an internally generated meta-data update. (2) PFS
writes data into block buffer B3 currently resident in
the buffer cache. A buffer flag is set to indicate that the
hash must be computed. At this point, the system is
free to return. Steps 3-6 happen asynchronously in the
system background within the context of hashd. (3)
PFS applies a hash function to the data contents of B3.
This hash and B3's block number are encapsulated
within a record and written to the WAFS via the vnode
interface. (4) The WAFS takes the record and does a
buffered write to the head of its log in B6. It returns the
LSN. (6) PFS stores the LSN in B3’s buffer header.
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Figure 2: Dirty Block Flush Example. (1) This is the
write-ahead comparison. The LSN stored in buffer B3
is compared to the WAFS highest stable LSN. If the
buffer's LSN is less than or equal to the highest stable
LSN, then the log record describing B3 must be stable.
It is safe to write B3 without forcing the log (go to Step
3). (2) The hash record describing B3 needs to be
committed. Flush the log up to the LSN stored in B3's
buffer. The record happens to be stored within B6, so
B6 is written. (3) Write block B3. Mission
accomplished.



this time, two I/Os would be necessary. A synchronoughe hash and compares this value with the value in the
write of the block’s hash to the log followed by the data block map. If the block fails this verification step, it is
block write. Third, using an asynchronous thread allowsexpelled and the associated system call fails.
hash records to be batched together. As long as WAL is
followed, integrity will be protected and the hash record The WAFS is not confined to trusted local storage.
need not be written synchronously. Therefore, it must be protected from the same classes of
faults and attacks as PFS. If an adversary were able to
File systems that do not employ techniques such as jourspoof WAFS blocks, then PFS would no longer be able
naling or soft updates do not perform well under meta-to protect its own blocks. During a server crash, an
data intensive workloads [15]. This is because they musadversary could read the log records, which are stored in
perform synchronous writes to order meta-data updateghe clear on the storage, find the most recent record
Journaling solves this problem by allowing the file sys-describing a PFS block, modify the corresponding PFS
tem to buffer meta-data updates, using a log and WAL tdlock, compute the new hash and insert it in the WAFS
enforce dependencies, much as hash logging does. Jowblock in place of the old value. From this example, it is
naling can be thought of as protecting the operating syselear that the protection of WAFS blocks is paramount
tem from itself or, at a finer level of detail, protecting the to the protection of PFS blocks.
file system from the buffer cache, which is responsible
for committing delayed writes, but has no knowledge of WAFS does not rely on an external mechanism for its
crucial file-system-specific update dependencies. Hasprotection, instead storing aauthentication tagn the
logging benefits from the delayed meta-data updates dfieader of every WAFS block. The authentication tag is
journaling. If Step 2 of Figure 1 were a synchronousgenerated by a message authentication code (MAC).
meta-data update, then all of the following steps withinUnlike hash functions, MACs are parameterized by a
Figure 1 and the two writes of Figure 2 would have to besecret key. Recent work has shown that MACs can be
performed synchronously. By allowing meta-dataconstructed from hash functions with a degree of secu-
updates to be cached delayed-write, journaling gives theity that is provably strong [1]. The benefit of this
system the freedom to perform hash computation in thepproach is performance, which is essentially that of the
background and to batch hash record writes. underlying hash function.

Rather than have two logs in the system, each serving iteinlike PFS, the WAFS is able to include the tag within

own LSNSs to enforce WAL, it makes sense to unify thethe file system block because its units of read/write
two logs into one single system WAL service. PFS usesaccess are variable length records. Any notion of file
the write-ahead file systerfWAFS) [15] for this pur-  system blocks is withheld from its clients, which read

pose, employing it for both meta-data and hash loggingand write records, not blocks. The WAFS header also
The WAFS resides on a separate partition from PFSincludes an LSN. This is protected by the authentication
This allows the WAFS to be located on a different stor-tag and used to verify that the correct block was
age system from PFS, potentially removing disk headreturned. Since the server is the only system that
contention. On systems with NVRAM, the WAFS could requires verification of WAFS blocks, public key tech-

be placed there. nology need not be used.

The block mapis the PFS data structure used to verify The authentication tag is computed when the WAFS
block reads. It contains the committed hash for everyblock is written to storage. Since WAFS blocks are nei-
block, indexed by file system block number. The blockther read nor rewritten during normal operation, the
map resides in kernel virtual memory and need not beauthentication tag will only need to be recomputed for
entirely resident in physical memory. The portion of the partial block writes that are forced to storage.

map present in memory is a function of file system

locality. Using paging to cache the recently accessedrigure 3 shows the journal and hash log multiplexed on
pages of the block map requires a trusted swap deviceghe WAFS.

The block map is a volatile data structure. When the sys-

tem crashes, it is reconstructed from the hash logg PFS Architecture Details

records contained within the WAFS.

5.1 Asynchronous I/Os

On a read, if PFS does not find a block in the buffer :
L After the server sends the write request to the storage
cache, it issues a read request to the storage system. . : . o
- ahd before it receives the 1/O completion notification,
Upon receiving the block from storage, PFS computes



the block may be either in the new or old state. If themegabytes of data would undoubtedly result in dropped
server crashes before receiving notification, then it musinterrupts. In addition, system call latencies would be
have both hashes stable for comparison in the next seseverely skewed and unpredictable. We solve this prob-
sion. If the write did not make it to the storage system,lem with partial checkpoints. The block map is broken
the block is still correct so the old hash must be avail-up into distinctchunksapproximately the size of the
able for comparison. The block map contains the com-data portion of WAFS file system blocks. Each chunk is
mitted hash of every block. Hashes are only entered inteheckpointed independently and the chunks are selected
the block map once the I/O completion interrupt hasin a round-robin fashion.

been received. Thasync maps a small hash table con-

taining all hashes describing block updates sent to storA chunk checkpoint is not complete until a small record
age, but for which PFS has not received I/O completionknown as theasync recordhas been committed to the
notification. Upon receiving this notification, the hash is log following the chunk. The async record contains the
removed from the async map and inserted into the bloclcontents of the async map for the file system blocks

map, overwriting the previous value. described by the chunk. These are the block 1/Os in
progress at the time of the checkpoint. Since there can
5.2 Checkpointing be only one outstanding 1/O on any particular block, the

current state of the block is either described by the hash
in the chunk or the hash in the async record. Once a
chunk checkpoint completes, the log is free to reclaim

earlier records for blocks described by the chunk.

For a 16GB partition with 8KB file system blocks, the
block map will have 2M entries. If the hashes are MD-5,
the block map will be 32MB. Clearly, it is infeasible to

checkpoint the entire block map at once. The block 1/O

interrupt code accesses both the block map and th

async map, so access to these data structures must Egr atr?Ner? bI;cI;, mkany ?a;f;srecorotls tTay ?‘i V\k/)ntter:j
exclusively locked during the checkpoint. Locking out &Mter the chunk checkpoint. must attempt o boun

block interrupts in order to checkpoint hundreds ofthe number of potentially valid hashes, candidate
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Figure 3: Multiplexing the WAFS. This figure shows two physical WAFS blocks containing four hash log
records (diagonal-striped blocks) and 3 journal records (grey blocks). PFS uses the WAFS for its hash
logging and journaling. The journaling and hash logging components write records during normal
operation. Each component sees a distinct logical log, but the records are physically interleaved. Records
are read only during recovery. WAFS does not export a block abstraction and hides the WAFS block header
from its clients. The header contains an LSN needed during recovery and an authentication tag to verify
WAFS block reads. The WAFS prepends a record header to every record write. This contains a client
identifier used by the cursor read routines to ensure that the block map recovery code does not retrieve
journal records and vice versa.



hashes for a given block. Having many candidate thebuffer-end The second is the LSN of the most recent
hashes to test would slow down recovery and adverselfpash describing a stable version of this buffer. This is
affect security. One way to bound the number of candi-known as theébuffer-begin.For a given buffer, all of the
date hashes per block would be to insert code in the I/Ghashes between buffer-begin and buffer-end have not
completion interrupt handler to write a special record tohad their corresponding data committed to disk. As
the hash log. This record would contain the hash valudhashd computes and logs hash records, buffers’ buffer-
and block number like other records, but its type fieldend LSNs will move forward. When the PFS block is
would identify it as an 1/O completion record. During written to disk, the 1/0O completion interrupt will copy
recovery, on a read of such a record, the recovery codbuffer-end into buffer-begin. At this point, the most
would deprecate all earlier hash values associated withecent hash in the log must be stable, due to the protec-
the block. This solution would place a fairly tight bound tion of the WAL protocol, and it must describe this par-
on the number of candidate hashes per block, dependetitular write because the buffer is locked during physical
on the flush rate of the buffer cache and the hash compu/O. This process is shown in Figure 4
tation rate of hashd. The bound would be inversely pro-
portional to the flush rate of the buffer cache andWhen hashd executes, it scans the buffer-begin values of
directly proportional to the buffer processing rate of all the PFS buffers, selecting the minimum from the
hashd. Unfortunately, there is a fundamental architechuffers for which buffer-begin differs from buffer-end.
tural problem. Locks (eg. WAFS vnode lock) would This LSNs is written to the log in a special record. This
have to be acquired during interrupt processing, whichLSN has the property that if there are no hash records
runs at a higher priority level than the top half of the ker- describing a particular block after this LSN, then the
nel. This would introduce the potential for deadlock. = most recent hash record preceeding the LSN describes
this block. In Section 5.3 we will describe how this

pufferend LSN-0200 LSN, known adogged is used in recovery.

Logical Hash Log

B3 B2 B3 B2 B3 B1 The WAFS is a finite circular log and is responsible for
9B78B03D | 9376E2EF | 3F49E472 | 2FC35057 | 79DCCI7B| F3C3D68A managing this space. When the WAFS reaches a mini-
81ABO87C | DID3643E | EB2155F3 | SAES49CF | 18009493 | CDIE6792 . .
46D40D41 | 74E07C64 | DBATO48F | 26027C33 | 3ES500C2 | EB61AT6C mum free space threshold, it synchronously checkpomts
0139A797 | FEB4AQQ7 | B77B26DB | CA9GEBAE | C52B0A7L | A3FBCB22 its clients. The journal follows the methodology

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - described in Seltzer et al. [15] and is beyond the scope
of this paper. WAFS checkpoints the hash log by calling
buffer-begin LSN=0x100

the PFS handler and providing a minumum acceptable
LSN. The handler compares this against the LSN of the
B3 1/O completion interrupt event oldest live checkpoint chunk. If it is less, then PFS sim-
bufer-begin LSN=0x100 buffer-begin LSN=01200 ply returns the LSN of the oldest checkpoint without
puferend LSN-0200 pufferend LSN0.200 any /0. Otherwise, PFS checkpoints enough chunks for
the oldest live LSN to move beyond the minimum
B3BLOCKDATA | B3 BLOCK DATA acceptable LSN. This illustrates the fact that the WAFS
PFS buffer containing B3 space reclamation checkpoint must occur with enough
free space to accomodate possible hash log checkpoints.
Journal checkpointing will also require free space. Inter-
estingly, the minimum free space is easier to bound for

copied into the buffer-begin LSN. These two LSNs are hash logging than for journaling. Heuristic bounds for

used by hashd to compute the global logged LSN. If the journe_lling use the ma_ximum number _Of open fi_Ie
buffer-begin and buffer-end LSNs are equal, the block descriptors and the maximum number of journal entries

contained within the buffer does not have any logged P€r system _Ca”- The upper bound for hash logging is
hashes that must be tested and resolved during recovery.  Simply the size of the block map plus a small amount of
space for an async record.

buffer-begin LSN=0x200

Figure 4: Updating the buffer-begin LSN. On reception
of a block 1/0 completion interrupt, the buffer-end LSN is

Our solution places the bounding responsibility within
hashd. In order to bound the number of candidates'3 Recoyery

hashes, every PFS buffer contains two LSNs. The firstid "€ WAFS itself must be recovered before any PFS
the LSN of the buffer's most recently written log record. Fécovery can begin. The most recent checkpoint is
The hash stored in the record at this LSN may notfound, and the log is then read sequentially until locat-
describe a committed PFS block. This LSN is known asnd the end of the log. The LSNs stored in the WAFS



block headers are monotonically increasing, allowingrecovery fails. Otherwise, the matching hash is inserted

the recovery code to find the most recent block. Theinto the block map and all the others discarded. This

authentication tag protects against incomplete writes. illustrates the importance of bounding the number of
candidate hashes per block as described in Section 5.2.

PFS recovery has two phases: hash recovery and journal

recovery. The hash recovery restores the block map to 8 Performance Analysis

consistent state. The journal recovery follows andPFS and WAFS have been implemented in the

restores.the meta_\-'data integrity. .T_he jp urnal reCOVenY  ceBSD-4.1 operating system. PFS is a set of changes
process is unmodified from the original |mplementat|on,[O the Logging Fast File System (LFFS) [15], a journal-

described by Seltzer et al [15]. ing version of FFS [12]. PFS maintains the on-disk

%Iructure of FFS, and it uses the WAFS for both its jour-
The hash recovery code reconstructs the block map and_ . . . L
naling and hash logging as described in this paper.

verifies the contents of any blocks for which multiple

hash values are potentially valid. The hash recover . hash ing th
code receives a log cursor handle from the WAFS thay{\:/lOr these e_xperlments, PFS compute; ashes using the
D-5 algorithm and WAFS computes its block authen-

allows it to iterate through the log without receiving the . . . .
journal records. The hash recovery code finds the oldes:[{Catlon tags using the IETF RFC 2104 implementation

valid chunk checkpoint and rolls forward searching forOf HMAC using MD-5. The HMAC private key is stored

the most recent record containing a logged LSN (seéN'thm the kernel binary. Key modification could be

section 5.2 for a description of this special LSN). Oncemade more convenient by using dynamlcalily loadable
g kernel module or more advanced technologies such as
this is found, hash recovery returns to the start of the lo

for a second pass. Block map recovery requires little I/é’smart cards.

up o the Iogged LSN. Thls 'S becausg every hash Valu(?.)ur test system consists of a single 500Mhz Xeon Pen-
either describes a committed block or is deprecated by g

lum [l CPU with 512MB RAM and three 9GB 10,000
later record that does. Therefore, the hash values can ngpM Seagate Cheetahs (ST39102LW) disks. The disks
inserted directly into the block map with no test I/O. 9 . . .

are connected to the host operating system via a single
Once recovery passes the logged LSN, every hash Valusehared Adaptec AHA-2940UW Ultra SCSI card. The
must be checked for validity. The recovery code main- ‘

first disk contains the operating system and swap space,

tains a linked list of hashes for every block. On reachingthe second contains a 256MB WAES partition. and the
the log end, the hashes are resolved. Every block Wiﬂ%hird contains an 8.5GB test partition P '

multiple valid hashes is read in, the hash function is
computed, and the resulting value is compared against
all the potentially valid hashes. If it does not match any,
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Figures 5-8 (7 and 8 on following page): Cold cache microbenchmarkd-igures 5 through 7 show

the throughput of both PFS and LFFS expressed in MB per second. Figure 8 shows delete throughput
expressed in thousands of files per second. The create and delete benchmarks are meta-data intensive.
Note that the scale of the y-axis varies. Each test was run 5 times and standard deviations were small.
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We ran two macrobenchmarks and a microbenchmarlsystems is predicated on a large cache with a high hit
suite. We compare PFS against LFFS. In our experirate.

ments, both PFS and LFFS do asynchronous journaling.

This means that journal records are not committed toThe hierarchy contains either 128MB of data or 512
disk before the system call returns. WAL still maintains files, whichever results in more files. No more than 50
the ordering of updates so that the file system will befiles are allocated per directory to limit pathname
recoverable to a consistent state. However, it is possibléookup times.

that a create will return, the system will crash, and the

file will not exist after recovery, violating the durability The results of the microbenchmarks are shown in Fig-
semantics that FFS has traditionally offered. We believaures 5 through 8. The performance of PFS and LFFS are
that these semantics grew out of convenience, rathesimilar on the create and delete tests. This shows how
than application demand. Originally, FFS used synchrohash logging benefits from journaling. Journaling allows
nous updates to order meta-data operations and ensumgeta-data updates to be cached and updates combined.
recoverability and consistency. Since the updates had tdhe performance of hash logging depends on the ability
happen anyways, the semantics of durability came at nof the operating system to cache writes. This gives
additional cost. Soft updates [6][13] and asynchronousashd time to generate hash log records and group these
journaling abondon these semantics. The differenceecords together into full block writes, amortizing the
between the performance of synchronous journaling andost of block writes.

either asynchronous journaling or soft updates, which-

ever is better, is the cost of FFS system call durability.On the read and write tests, LFFS outperforms PFS
Seltzer et al. determined that the cost of durability farbecause PFS must compute hashes when blocks are
exceeds the cost of integrity [15]. The goal of our written to and read from disk.

benchmarking experiments is to quantify the cost of the

block-level integrity protection of PFS. The largest disparity is on the read benchmark. This test
has no data locality. There will be some meta-data local-
6.1 Microbenchmarks ity due to the repeated lookup of directory components.

The microbenchmarks are similar to those used in recerﬁOr midium_—sized Ifileds b(;weﬁn SiﬁignigggEBLFES
file system performance studies [14][15]. For file sizestroughput is nearly double that o AL ; the

ranging from 16KB to 1MB they create, write, read, read throughput collapses as the two systems must read

then delete a directory hierarchy of files. The file systemthe. indiregt block. For larger files.these Iayoyt issues,
ich are independent of the hashing mechanism, play a

is unmounted between each operation phase, to ensu

that each phase begins with a cold cache. This is usefd['°"® significant role and PFS performa}nc_e IMproves
for isolating the cost of individual operations, but is relative to LFFS. The performance disparity is narrower
somewhat artificial. Much of the design of moéern file ON the write test. Here, the buffer cache is able to absorb

writes.
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6.2 Macrobenchmarks 6.2.2 SSH-BUILD Benchmark

The microbenchmarks are useful for isolating the operaThe SSH-Build benchmark unpacks, configures, and
tions for which PFS and LFFS performance differs. builds the secure shell (SSH) program, a medium sized
However, it is difficult to use their results to predict software package [17]. It consists of three phases. The
application performance. The goal of our macrobenchfirst, unpack decompresses a tar archive and pulls the
mark experiments is to quantify the cost of block-level source files out of the archive. This phase is relatively
protection for realistic workloads. short and characterized by meta-data operations. The
secondgconfig runs small scripts and programs and gen-
FFS mounted asynchronously (FFS-async) does natrates small files. The thirdbuild, compiles the source
make any attempt to ensure file system recoverability otree, reading and parsing the source files and generating
protection. It is useful as an upper bound on perfor-object files, that are subsequently linked into the execut-
mance because it shares layout format and algorithmable. Figure 10 shows the performance of the three sys-

with PFS and LFFS. tems across the three stages. The performance of the
three systems on the first two phases is not statistically
6.2.1 POSTMARK Benchmark distinguishable. PFS takes 3.5% longer to complete the

The PostMark benchmark was designed to model _uild phase. Being Ie.ss meta-data.intensivt—:f with_Iarger
combination of electronic mail, netnews, and e-com- iles than_ the two earlier phases, this reconciles with our
merce transactions, the type of load typically seen b>pbservat|ons from the microbenchmarks.
Internet Service Providers (ISP) [9]. PostMark is meta- .
data intensive with many small files and high memory7 Conclusions
pressure. File sizes vary uniformly from 512 bytes towe have presented an evolutionary file system architec-
16KB. Figure 9 shows the performance of the three systure for strong block-level integrity. Our architecture
tems. The throughput of PFS is 7.9% lower than LFFSchanges neither the file system interface nor its on-disk
and 9.1% slower than FFS-async. Although PFS periayout and requires no special support from storage sys-
forms well on meta-data operations, due to the fact thatems. This has been accomplished by modifying the file
it is journaled and meta-data updates are cached, it dogystem to log collision-resistant hashes to a general
not perform comparatively well on small reads andoperating system logging service. This service is shared
writes. with the file system journal. For efficiency, a back-
ground thread computes and logs hashes, removing the
hash computation from the system call path and the log
commit from the data 1/O path.



We measured the performance of PFS using micro and
macrobenchmarks. PFS performance is similar to that of
the LFFS journaling file system under the meta-data
intensive create and delete tests. Under the read and
write tests, PFS incurs hashing costs as data is transmit-
ted to and from storage. On the macrobenchmarks, the
overhead of block-level integrity is only 3.5% on SSH-
Build and 7.9% on PostMark. We believe this is a small
price to pay for strong protection.
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