
Integrated Reproducibility with Self-describing Machine
Learning Models

Joseph Wonsil

The University of British Columbia

Vancouver, British Columbia, Canada

jwonsil@student.ubc.ca

Jack Sullivan

Oracle Labs

Burlington, Massachusetts, USA

jack.t.sullivan@oracle.com

Margo Seltzer

The University of British Columbia

Vancouver, British Columbia, Canada

mseltzer@cs.ubc.ca

Adam Pocock

Oracle Labs

Burlington, Massachusetts, USA

adam.pocock@oracle.com

ABSTRACT
Researchers and data scientists frequently want to collaborate on

machine learning models. However, in the presence of sharing and

simultaneous experimentation, it is challenging both to determine

if two models were trained identically and to reproduce precisely

someone else’s training process. We demonstrate how provenance

collection that is tightly integrated into a machine learning library

facilitates reproducibility. We present MERIT, a reproducibility

system that leverages a robust configuration system and extensive

provenance collection to exactly reproduce models, given only a

model object. We integrate MERIT with Tribuo, an open-source

Java-based machine learning library. Key features of this integrated

reproducibility framework include controlling for sources of non-

determinism in a multi-threaded environment and exposing the

training differences between two models in a human-readable form.

Our system allows simple reproduction of deployed Tribuo models

without any additional information, ensuring data science research

is reproducible. Our framework is open-source and available under

an Apache 2.0 license.

CCS CONCEPTS
• Information systems → Data provenance; • Computing
methodologies→Machine learning.

KEYWORDS
Machine Learning, provenance, reproducibility

ACM Reference Format:
Joseph Wonsil, Jack Sullivan, Margo Seltzer, and Adam Pocock. 2023. Inte-

grated Reproducibility with Self-describing Machine Learning Models. In

2023 ACM Conference on Reproducibility and Replicability (ACM REP ’23),
June 27–29, 2023, Santa Cruz, CA, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3589806.3600039

This work is licensed under a Creative Commons

Attribution-NonCommercial-NoDerivs International 4.0 License.

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0176-4/23/06.

https://doi.org/10.1145/3589806.3600039

1 INTRODUCTION
Reproducibility is the cornerstone of the scientific method. In recent

years however, multiple disciplines, including machine learning and

data science, have recognized a reproducibility crisis [3, 14, 33]. In

ML, reliably reproducing trained models is a vital step in addressing

the reproducibility crisis. We claim that data provenance is critical
to reliable reproducibility. Data provenance is a formal record of

the history of some digital object that documents how it came to be

in its present form. The provenance for a machine learning model

contains information about the training data, preprocessing, the

training parameters, and the compute environment. Unfortunately,

many existing systems add provenance collection post-hoc on top

of an existing library. Such frameworks lack access to the inter-

nals of the system they track, preventing them from controlling

potential sources of non-determinism that affect reproducibility.

This approach requires proactive user effort, both when building

and releasing models. As an alternative, we present Models Easily

Reproduce In Tribuo (MERIT), which leverages provenance from

the Tribuo ML library [28] to make it possible to exactly reproduce

a model, given only the model object. The key enabler to MERIT is

integrated provenance collection; the Tribuo library captures prove-

nance internally with no user effort. Integrated provenance enables

a reproducibility system to have direct access to library state, such

as random number generators, which is critical for reproduction.

When discussing the reproducibility of ML systems, there are

three general classes of “reproducibility” that we call: bit-wise exact,
execution-exact, and same recipe. Bit-wise exact is the simplest to

define, the original and reproduced models contain exactly the same

floating point numbers, in the same order, down to their bitwise

representation. Execution-exact means the same operations are

executed according to the high level program, but two executions of

that program might produce different results due to circumstances

beyond the program’s control (e.g., non-deterministic threading or

different floating point order of operations). Same recipe is similar

to execution-exact, except that the overall program flow may be

slightly different (e.g., different approximations to the GeLU non-

linearity, using TensorFlow instead of PyTorch). All three can be

considered techniques to “reproduce” an ML model; we present a

system that produces bit-wise exact reproducibility, with a fallback

to execution-exact reproducibility in some cases (see Section 7 for

details).

1

https://doi.org/10.1145/3589806.3600039
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3589806.3600039
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589806.3600039&domain=pdf&date_stamp=2023-06-28

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Joseph Wonsil, Jack Sullivan, Margo Seltzer, and Adam Pocock

Our completely automatic reproducibility framework, MERIT,

is embedded in Tribuo. This framework automatically re-trains

a Tribuo model, given only its provenance or the model itself.

It addresses and controls common issues that arise from non-

determinism, particularly random number generator states and

multi-threaded execution. Since Tribuo collects provenance au-

tomatically, users can share reproducible Tribuo models without

advance planning or extra effort. They can also use the framework

to re-train the model with a modified configuration and then gen-

erate a diff between the original and reproduced provenance to

expose differences. These features provide a mechanism to audit

the provenance of a model for regulatory compliance. Auditors can

use MERIT to reproduce a model and check the reproduced prove-

nance, weights, and evaluation to automatically verify whether the

original provenance correctly described the lineage of the original

model.

While developing MERIT we also identified gaps in the design

of the Tribuo provenance system. Our investigation revealed prove-

nance collection bugs that impeded the reproducibility of certain

models and identified the need for new features, such as a method

to directly modify RNG state after initialization. Additionally, our

research uncovered reproducibility bugs in other libraries, such as

hidden RNG state in Java ML libraries. By addressing these gaps,

we not only added a reproducibility feature to Tribuo, but also im-

proved the robustness of the entire framework and identified new

areas of caution.

We make three main contributions. We present MERIT, a system

that is integrated into an ML library that provides reproducibil-

ity without any a priori effort. We demonstrate how provenance

integrated with the ML library is critical for enabling bit-wise ex-

act reproducibility. We also provide guidance on how other ML

libraries can be extended to facilitate such reproduction.

2 RELATEDWORK
Reproducibility inmachine learning (ML)model creation is a special

case of the more general problem of computational reproducibility.

The literature on general-purpose computational reproducibility is

wide and varied [8, 23, 29, 30, 34, 35].

Despite these broad efforts in general computational repro-

ducibility, ML reproducibility comes with its own unique set of

challenges. A desired requirement for a reproducibility system is

both to be able to re-train a particular model and to modify parame-

ters of the model, tracking its evolution from execution to execution.

Reproducibility systems must therefore collect ML-specific prove-

nance such as hyperparameters, data transformations, and training

data to achieve this goal.

The majority of related work is concerned primarily with how

and where to collect this provenance. We note there are currently

two primary approaches to ML provenance collection, differenti-

ated by where they occur in the software stack. The most common

is a ‘wrapper’ library that exists on top of existing ML libraries and

records the state of the environment at each execution. Less com-

mon is a more general-purpose, fine-grain provenance collection at

the level of individual operations occurring within a script. In the

following sections, we describe the relevant work in each of these

categories.

2.1 Wrapper Libraries
These frameworks provide wrappers around existing ML systems;

each time a user trains a model, they snapshot the state of the

experiment that uses the ML system. The data included in the snap-

shot state can differ depending on the framework and user input.

However given that these libraries are ML-specific they usually

collect information such as hyperparameters, RNG seeds, and code

versions. Provenance collection systems that follow this approach

include DeepDIVA [2], dagger [24], dtoolAI [16], and Schelter et al.’s

automated metadata collection system [31]. While some of these

systems are tailored to a specific library, others can wrap multiple.

In summary these systems collect provenance for libraries including

MXNet [7], SparkML [19], scikit-learn [26], and PyTorch [25].

The main method by which these systems support reproducibil-

ity is through reverting to saved checkpoints, Given that they op-

erate on a user’s environment, they also tend not to be portable.

With the exception of dtoolAI, the provenance exists only within

the training environment. Users wishing to reproduce each other’s

models will need to share environments in some way to make use

of their features. With dtoolAI, the provenance is packaged with the

PyTorch models it trains, but any other collaborator must be using

dtoolAI as well since PyTorch cannot interpret the provenance.

Wrapper libraries have limitations imposed by their position in

the software stack, particularly in regards to their lack of direct

access to the state of the RNG. While they may record the seed used

for a model, the use of multithreading or other changes in the order

of operations can impede reproducibility of a model. Furthermore,

these wrapper libraries must closely monitor each release of the

machine learning (ML) libraries they support to ensure they can

make necessary adjustments to capture provenance information

for any new features. In contrast, Tribuo’s provenance collection

system integrated directly into the library evolves alongside new

features, utilizing developer-defined APIs and compile-time checks

to facilitate the process.

2.2 Fine-grain Collection
Systems that collect fine-grain provenance on data science scripts

often have different or broader goals than reproducibility. For ex-

ample, NoWorkflow [22] and RDataTracker [18] collect fine-grain

provenance at the source code level for Python and R respectively, as

well as environmental information. Typically, this results in prove-

nance that is a superset of that captured by wrapper libraries, since

they are more general-purpose and not necessarily ML-specific.

On the other hand, LIMA [27] is an integrated provenance col-

lection for SystemDS [4] that records fine-grain provenance during

training to provide automatic memoization, similar to IncPy [15].

While its goal differs from that of Tribuo, its level of detail means

that its lineage logs can theoretically assist in debugging deployed

models and reproducing a model from scratch. Additionally, as an

integrated system, LIMA circumvents many of the problems found

in wrapper libraries.

Despite the benefits these libraries provide, they also have draw-

backs. In particular, RDataTracker and NoWorkflow impose perfor-

mance penalties due to the overhead of fine-grain collection. This

degradation can be limited by controlling the levels of provenance

collection; however, certain workloads can still be dramatically

2

Integrated Reproducibility with Self-describing Machine Learning Models ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

affected. LIMA improves performance, but it collects a high volume

of data at a level far deeper into the software stack than the abstrac-

tion of the machine learning pipeline. This volume and granularity

of data is ill-suited for bundling with a model for the purpose of

reproducibility.

Tribuo has integrated provenance such as LIMA; however, it is

tailored explicitly for tracking the creation of an ML model and

its evaluation. This granularity imposes minimal overhead while

still providing the necessary information for reproducibility and

auditing of an ML model.

3 TRIBUO OVERVIEW
Tribuo [28] is an open source Java Machine Learning library, re-

leased publicly in 2020 under an Apache 2.0 license. It is designed for

compile-time, type-safe ML computation, and the models, datasets

and evaluations produced via Tribuo are self-describing through the

incorporation of provenance. We first discuss Tribuo provenance

and the implications it has on reproducibility. For a more detailed

description of Tribuo, see Pocock [28].

Tribuo’s provenance system tracks the creation of each

Tribuo core object: DataSource, Dataset, Trainer, Model, and
Evaluation. Each of these objects contains a Provenance object

that records the computation that led to the construction of the host

object. Provenance objects contain the type and version of their

host object along with object-specific information. DataSource
provenance objects store the file path and file hash, and either a DB

query, the parameters of the data generator, or the feature extrac-

tion process to allow reconstruction of the DataSource. Dataset
provenance objects store a reference to the provenance of the data

source, along with provenance describing any transformations that

have been applied to the data. Trainer provenance objects store
the training hyperparameters along with sufficient information to

recover the RNG state if the training algorithm requires a source of

randomness. Model provenance objects store the training dataset
provenance and the trainer provenance, along with instance level

information such as the Tribuo version, OS, CPU architecture and

JVM version, along with optional user-supplied metadata about the

specific run that created the model. Appendix F contains a complete

provenance object of a Model. Finally, Evaluation provenance ob-

jects contain the model provenance for the model being evaluated

and the evaluation dataset or datasource provenance. Note that

multiple objects can contain references to the same provenance

object, and as the objects are immutable, this is equivalent to, but

more efficient than, copying the provenance into each object.

These provenance objects are what make Tribuo models and

evaluations self-describing. Each model knows how it was created,

its training parameters, training data pipeline, and metadata such as

numbers of features, samples, and output dimensions. Provenance

collection was designed to track models in production, removing

the possibility of any skew between the model metadata tracking

system and the model itself, because the model is the source of truth

for its own construction. Additionally the storage of the training

data pipeline allows models to be loaded from disk and have their

input pipeline reconstructed automatically, including information

such as which columns provide which features.

Tribuo runs on the JVM, which is an inherently concurrent and

parallel system, unlike the single-threaded reference implementa-

tion of Python used by most ML libraries. This means that objects

in Tribuo such as Trainer and Model can be accessed concurrently

by multiple threads, and any shared state such as a global RNG

can also be accessed concurrently. Therefore shared mutable state

such as a global RNG or the RNG inside a Trainer must be mon-

itored by the provenance system to ensure the state is properly

tracked. For this reason, Tribuo adopts Java’s SplittableRandom
RNG [32] as its default RNG and disallows any global RNGs. The

RNG state is tracked by counting how many times each RNG has

been invoked, where an invocation involves splitting a training-run-

specific RNG from the top level RNG inside a Trainer during each

call to Trainer.train. Each training run can take an unknown

number of draws from the RNG, which can be dataset size depen-

dent (e.g., shuffling the examples before an epoch of stochastic

gradient descent), model dependent (e.g., building a Random Forest,

where features are subsampled at each leaf in each tree) or both.

Using a local RNG split from the host one ensures that the state

of the host RNG is correctly tracked by the provenance counter,

while still providing an independent source of randomness for each

training computation. These RNGs are critical for capturing state

necessary for reproducibility that is otherwise lost in ML pipelines.

Finally, correct and complete provenance collection requires care-

ful control of the order of operations when working with floating

point numbers. Non-deterministic scheduling can cause a different

order of operations in reduction computations such as dot products,

leading to identical code producing different learned parameters.

Many of Tribuo’s training procedures are sequential so there is

no variation of the order of operations (as the floating point be-

havior is guaranteed by the Java Language Specification [13]). For

multi-threaded computations, Tribuo uses the Fork-Join framework,

which can guarantee a reproducible order of the reductions with

careful task construction.

Tribuo’s provenance collection has some limitations. It stops at

the language and class library border, recording the JVM version

and system architecture in its provenance. Optimizations within

the JVM (e.g., due to the JIT compiler) that change the output are

not tracked. The Tribuo design philosophy also limits flexibility by

retaining control of the training loop in exchange for provenance

collection with insignificant overhead. We discuss this more in

Section 7.

4 REPRODUCIBILITY CHALLENGES
We identify a set of challenges that a framework must address to

reproduce an ML model. Many of the tools described in Section 2

identify and address some of these issues, but to the best of our

knowledge, MERIT is the only system that automatically addresses

all of them through direct integration with an ML library.

C.1 Obtaining a complete record of a model’s provenance.

C.2 Re-instantiating correctly configured objects.

C.3 Addressing non-determinism due to RNGs and parallelism.

Challenge C.1 is particularly important since without a record of

the process one is trying to reproduce, reproduction is impossible.

Many algorithms, transformations, hyperparameters, and optimiza-

tions combine to produce anMLmodel. In most systems, users must

3

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Joseph Wonsil, Jack Sullivan, Margo Seltzer, and Adam Pocock

know they need provenance collection and take explicit action to

capture it, since most ML systems do not capture provenance au-

tomatically. Then, they must choose a framework to provide this

functionality, confirm that it is compatible, and integrate the frame-

work into their workflow.

The underlying question is, “At what layer can we record the

execution of a process (i.e., obtain its provenance)?” Previous work

[2, 16, 22, 24, 31] collected provenance in a layer on top of an existing

system during model training and hyperparameter optimization.

This approach creates a trade-off between instrumentation and

automation. Frameworks such as dagger [24] require significant

instrumentation but allow the user to specify precisely what is

collected. On the other hand, noWorkflow [22] requires zero in-

strumentation but introduces potentially significant performance

overhead and leaves the user responsible for parsing the resulting

provenance to extract the information needed. A framework with

provenance collection built-in from the start avoids these trade-offs,

as discussed in Section 3.

Once we have provenance, converting it into something useful to

an ML system is a second challenge, C.2. Provenance often appears

in language-independent formats such as JSON or XML. While

interoperable, portable, and readable, these formats may be lossy

compared to direct object serialization. Further, while provenance

is immutable, the code it describes changes over time. As software

evolves, reproducing models becomes more challenging as the un-

derlying behavior of the training system differs from version to

version. For example, APIs change and deprecate; in September

2021, scikit-learn [26] deprecated the use of np.matrix1. To repro-

duce a model created before this change, a user must roll back their

version of scikit-learn to an earlier one with the deprecated function.

Another problem can arise when hardware changes; floating-point

arithmetic can change, so a record of host architecture is often help-

ful. We discuss how Tribuo addresses these problems in Section 3

and how MERIT uses this information in Section 5.3.

Finally, provenance collection in conjunction with a reproducibil-

ity framework must identify and compensate for all sources of

non-determinism, Challenge C.3. The most obvious source of non-

determinism is the RNG(s). Collecting RNG seeds is necessary but

not sufficient. RNGs construct their initial state from a seed, but this

internal state changes with each method invocation. Since users

might train multiple models using the same RNG, that seed is only

sufficient for training the first model. Training a specific model

requires either re-training all models (likely a costly undertaking)

or recording the RNG seed and starting state for each model. No

provenance recording system of which we are aware, aside from

Tribuo, captures such information. Furthermore, even if the prove-

nance contained this RNG state, the ML library must provide a way

to adjust the RNG to the appropriate state, a functionality missing

in current systems. We discuss how we address this problem with

MERIT in Sections 5.4 & 5.5.

1
scikit-learn.org/dev/whats_new/v1.0.html

Figure 1: Overview of the reproducibility system.

5 INTEGRATED REPRODUCIBILITY DESIGN
MERIT builds on Tribuo’s self-describing models, fine-grain control

of random number generators (RNGs), and the Oracle Labs Con-

figuration and Utilities Toolkit (OLCUT) configuration system
2
to

provide integrated reproducibility. Using these components, along

with extensions we made to Tribuo, we address the challenges de-

scribed in Section 4. The result is a fully integrated reproducibility

system for any Tribuo-trained model and a tool to compute diffs

between two models’ provenance. We first provide an overview of

our work and then discuss the major components in the following

subsections.

5.1 Overview
ReproUtil is a new Java class that provides the API to MERIT. It

takes either a Tribuo model object or a model provenance object

as input (since every model object contains a provenance object)

and produces a new model, trained identically to the original, as an

output. Figure 1 illustrates this process.

Since the provenance is a superset of the configuration used

to train a model, MERIT extracts all configuration data from the

provenance (2) and imports it into an OLCUT configuration man-

ager. The configuration manager can parse the data to re-instantiate

any configurable object described in the provenance (3). This pro-
cess recreates many of the Tribuo objects necessary to reproduce a

model, MERIT instantiates the rest via reflection.

Next, we address the challenge of reproducible RNGs. Each

trainer object in Tribuo has an RNG that must be initialized cor-

rectly. Tribuo provenance stores RNG seeds, but the internal state

of the RNG changes each time it is used, so a Java program that

trains multiple models has only a single seed but different initial

states for each model. Tribuo trainers also record an invocation
count, the number of times they use an RNG, and we use this count

to set the RNG’s state correctly for a given model (4).
At this point, all objects Tribuo used to train the original model

are re-instantiated and set to their correct state. MERIT splits the

data into training and testing as necessary and then trains a new

model (5). Once a user has this new model, MERIT’s diff tool (6)
compares the provenance of the new and original models. If both

2
github.com/oracle/olcut

4

Integrated Reproducibility with Self-describing Machine Learning Models ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

models were trained on the same hardware without any external

(to Tribuo) form of non-determinism, the diff will show that only

the timestamps of the models differ.

We next present each component of MERIT. First, we describe

its usage in terms of inputs and outputs. Then, we discuss how

we use the provenance to re-instantiate Tribuo objects. Next, we

explain how we set the RNG using the seed and the invocation

count. Ensemble training further complicates the RNG state, so we

address that issue next. Finally, we discuss our diff tool and how

we use it to verify reproduction and identify bugs.

5.2 Usage
Given a provenance object, ReproUtil executes the reproducibility
pipeline. When the pipeline completes it can compare metadata that

appears in the original and reproduced models, e.g., the feature and

output domains. If these feature and output domains differ, then

either the data file changed but produced the same hash (a rare,

but possible event), feature names changed, or some other change,

unobservable by the provenance system, occurred (e.g., a system

library was updated). This check can both expose bugs within the

reproducibility framework and provenance system and confirm

that the developer provided the correct data. Finally, assuming the

ReproUtil instance threw no exceptions, it returns a new model.

This new model is the same type as the original, and MERIT trained

it under the same conditions.

5.3 Object Re-instantiation
Most Tribuo objects are configurable through the OLCUT configu-

ration system. OLCUT instantiates components from configuration

files on the fly using dependency injection, allowing specification

of objects in a readable format. The provenance collection system

is heavily integrated with OLCUT, as any provenance object in

Tribuo inherits its type from OLCUT, ensuring that the object’s

configuration is recorded in the provenance. This integration means

we can use the ProvenanceUtil from the OLCUT library to ex-

tract the configuration from provenance objects, which returns

a list of ConfigurationData objects that we add to an OLCUT

ConfigurationManager.
When a user invokes the reproducemethod on their ReproUtil

instance, it retrieves new instances of the objects from the new

ConfigurationManager. In this way, we quickly create correctly

configured Trainer and DataSource objects. The only objects we

cannot instantiate this way are the Dataset and, if the model used

one, a TrainTestSplitter. Datasets are not configurable, so in-

stead the ReproUtil object examines the provenance for the class

name of the Dataset and instantiates it using reflection. If the

model used a TrainTestSplitter, we search the provenance for

its split ratio and RNG seed, allowing us to instantiate a new iden-

tical instance. Together, these methods instantiate all the objects

necessary to reproduce a given model.

5.4 Setting RNG State
We must set the RNGs of Tribuo Trainers to the state they were

in when Tribuo originally trained the model. Each time a user calls

train, the corresponding Trainer splits its RNG and saves the

result as a localRNG used for all random number generation in that

train call. If a developer trained a sequence of models {𝑆0𝑆𝑛}
using the same Trainer, and they want to reproduce the 𝑆𝑡ℎ𝑛 model,

they need to set the RNG to its state after it trained the 𝑆𝑡ℎ
𝑛−1 model.

Given Tribuo’s usage of RNGs in the train method, the correct

RNG state can be reached by re-instantiating the RNG and splitting

it 𝑛 − 1 times.

As explained in Section 5.1, Tribuo’s provenance system provides

us with the necessary information to identify the RNG state: the

seed and the invocation count. Tribuo protects this count from mul-

tithreading problems using Java’s synchronized keyword. Each

Trainer ‘synchronizes’ on itself for a block of code, meaning that

out of all the threads that hold a reference to that Trainer, only
one can execute in the block at a time. When a user invokes a

Trainer’s train method, the Trainer enters the synchronized
block, records its provenance, splits the RNG, increments the invo-

cation count, and exits the synchronized block. This synchroniza-

tion guarantees that if two threads hold a reference to the same

Trainer object, and they both call train simultaneously, there is no

race condition where they receive different localRNGs but record

the same invocation count. This process also ensures that the 𝑆𝑡ℎ𝑛
model trained by a Trainer has an invocation count recorded in

its provenance equal to 𝑛 − 1.

Tribuo begins creating an RNG using the seed from the prove-

nance, which produces an RNG with an invocation count of zero.

Unfortunately, the only way to modify the internal RNG state is

through calling the train method. The RNG cannot be accessed

directly as it is a private field, and since its internal state is a func-

tion of its use, we cannot instantiate it to a specific state. Training

a model 𝑛 − 1 times just to change the RNG state adds significant

overhead, so we altered Tribuo’s Trainer interface. We added a

new method, setInvocationCount, that takes a positive integer 𝑖
as input, recreates the RNG, and then splits the RNG 𝑖 times.

This new method combined with the existing provenance allows

a ReproUtil object to set the RNG state of the Trainer that it will

use to reproduce a model. ReproUtil searches a model’s prove-

nance for any Trainer provenance objects, collects the recorded
invocation counts, identifies the corresponding re-instantiated

Trainer object, and sets the invocation count accordingly.

5.5 Ensemble Trainer Non-determinism
Ensemble trainers are not immediately compatible with our repro-

ducibility framework due to issues when tracking RNG state in

concurrent programs. As a running example, we discuss the Tribuo

BaggingTrainer and the issues created by multithreading non-

determinism.We then explain howwemodify the BaggingTrainer
to ensure that all the information necessary to reproduce it is in its

provenance, thus requiring no special-casing in the framework.

Consider Tribuo’s Random Forest algorithm, which extends

the BaggingTrainer. Users instantiate a RandomForestTrainer
and provide it with an innerTrainer that trains each decision

tree in the Random Forest. The user can retain a reference to the

innerTrainer and train another model in parallel while the Ran-

dom Forest algorithm executes. Each time a thread calls the train
method, the trainer will briefly synchronize on itself to split the

RNG and collect provenance as discussed in Section 5.4. This syn-

chronization ensures that it trains each model with a unique state of

5

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Joseph Wonsil, Jack Sullivan, Margo Seltzer, and Adam Pocock

Figure 2: Example problematic scenarios in which parallel
computations share the same trainer (CART). In one thread
the CART is an inner trainer to a RandomForestTrainer
(RFT), the other holds a direct reference. The synchroniza-
tion on the trainer is only for a brief period at the start of
training, not the entire train() invocation.

the RNG. However, since two algorithms might execute in parallel,

the distribution of RNG states between the two is non-deterministic.

This behavior is not a problem for two threads in the same Random

Forest but can cause reproducibility issues when some threads are

training a Random Forest and other threads are training a separate

decision tree with the same trainer.

For example, Figure 2 (1) shows how a Random Forest training

in one thread can result in non-contiguous RNG states, because

another thread uses the same trainer.When re-training this Random

Forest, if that extra call to train is not invoked or simulated, the

resulting model will differ from the original since it changes the

state of the RNG for subsequent invocations. In other words, you

cannot get the same set of models by splitting the RNG once per

invocation of the train method. All the information necessary

to reproduce this model resides within the provenance; however,

any attempt at automation requires that the framework be aware

that the trainer is a Random Forest, deconstruct the trainer, train

each decision tree with the correct RNG state, and reconstruct

everything into the correct model. This approach is likely how a

developer might manually reproduce amodel, but in our framework,

re-training in this manner can encounter the initial multithreaded

problem.

One of the potential benefits of the BaggingTrainer is precisely
its ability to train models in parallel. If we were to re-train this

model in parallel after carefully setting the invocation count of

the inner trainer, we would encounter a race condition where one

thread sets the invocation count of the inner trainer, but another

invokes train first, Figure 2 (2). We could sidestep this problem by

training each inner model sequentially rather than in parallel, but

we would then lose the performance benefit of parallelism. Instead,

we avoid special cases and losing parallelism. We modified the

BaggingTrainer’s algorithm and extended the Trainer interface
to allow our reproducibility framework control over the RNG each

time it invokes train.
We overloaded the train method to add a new parameter, an

invocation count. This change allows us to set the invocation count

within the synchronized block during training, eliminating any

race conditions with the RNG. Passing an invocation count to any

call to train guarantees that the resulting model used that state of

the RNG for its training, regardless of any threads referencing the

same object.

We use this new method to ensure that the invocation counts

used in the BaggingTrainer are contiguous. As a result, when

a BaggingTrainer begins to train, it instantiates an invocation

tracker that we initialize to the inner trainer’s current invocation

count. Each time it trains a single model, it passes the value of

the tracker to the train method and then increments the tracker.

This guarantees that if an inner trainer has an invocation count

of 𝑖 , and there are 𝑁 ensemble members, then regardless of the

order in which they were trained, the set of invocation counts from

the resulting models will be {𝑖, 𝑖 + 1, ..., 𝑖 + 𝑁 }. Even if another

thread holds a reference to the inner Trainer and calls train in

parallel to the BaggingTrainer, the inner models will have con-

tiguous invocation counts since the Trainer sets the RNG state

in a synchronized block. A consequence of this choice is that it is

possible for a thread using the same Trainer in parallel to train

a model using the same RNG state as one of the models in the

BaggingTrainer. However, since the randomness across models in

the BaggingTrainer is preserved, reproducible, and deterministic,

we believe this to be acceptable behavior.

These changes to the BaggingTrainer ensure that the only in-

formation necessary to reproduce its model is the RNG seed, the

BaggingTrainer invocation count, and the inner Trainer initial in-
vocation count, all of which are in the provenance. Whenever a user

invokes the reproduce method on a ReproUtil instance, it searches
the provenance for all Trainer provenance and sets all correspond-
ing Trainer’s invocation counts before re-training. Even though

we cannot access an inner Trainer through the BaggingTrainer
interface, by matching provenance objects to their corresponding

re-instantiated versions held by the configuration manager, we can

set all Trainer invocation counts correctly. While we used the

BaggingTrainer as an example here, we can apply this method-

ology to other ensemble models in Tribuo. It is worth noting that

concurrently using an inner Trainer with an ensemble Trainer
that contains it is not an idiomatic use of Tribuo. However, as

we need accurate provenance in all circumstances, and the JVM

is a concurrent & parallel platform, then this kind of defense is

necessary.

5.6 Provenance Diffs
The final feature of our reproducibility framework is a utility that

creates a diff between two models’ provenance. We chose to write

a diff tool rather than implement an ‘equals’ method because we

know that a reproduction’s provenance will not equal the original’s

6

Integrated Reproducibility with Self-describing Machine Learning Models ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

provenance. This is not a result of poor reproduction; it is due to
the fact that provenance represents a single execution. Some values

are guaranteed to be different from execution to execution, e.g.,

timestamps. Additionally, users may want to use the reproducibility

system as a basis for optimizing hyperparameters. In this scenario,

a diff is an invaluable tool for comparisons between models as it

highlights differences in optimizers, number of epochs, the RNG

state, and any other configuration options that might have changed.

The diff tool takes two models’ provenance objects and creates a

JSON string that contains the differences (a report). Each key in the

report is the name of a provenance object or a model designation.

The values in the report are more keys or the value of primitive
provenance. Primitive provenance is a provenance object that refer-

ences no other provenance objects, such as a String representing

the name of a Class. We list the possible types of primitive prove-

nance in Appendix A. Currently, the tool designates an ‘original’

and a ‘reproduced’ model. When adding the value of a primitive

provenance object to the report, the tool places the value under

the keys ‘original’ or ‘reproduced.’ However, this mechanism is

designed to be easily extensible in case the tool is diffing models

that do not fit the relationship of “original” and “reproduced”.

For all objects contained in both models, the tool recurses until

it reaches primitive provenance. It compares the two values and,

if they are different, adds the comparison to the resulting report

nested in its correct position. For example, the timestamp for the

creation of a DataSource is found nested within the keys of the

provenance objects that contain it, as seen in Listing 1. If one object

is not in the other, we add the entire object tree to the diff.

Listing 1: An example diff between amodel’s provenance and
the reproduced model’s provenance. We have truncated the
timestamps for space.
{

" d a t a s e t " : {

" d a t a s ou r c e " : {

" s ou r c e " : {

" d a t a sou r c e − c r e a t i o n − t ime " : {

" o r i g i n a l " :

"2021 −09 −30 T19 : 5 4 : 0 1 . 9 9 " ,

" r eproduced " :

"2021 −09 −30 T19 : 5 4 : 0 3 . 8 3 "

}

}

}

} ,

" t r a i n e d − a t " : {

" o r i g i n a l " :

"2021 −09 −30 T19 : 5 4 : 0 2 . 0 9 " ,

" r ep roduced " :

"2021 −09 −30 T19 : 5 4 : 0 3 . 8 3 "

}

}

Based on our chosen behavior, the reports generated by our diff

tool tend to be smaller the more similar the two models are. For

example, a diff between an original model and a reproduced one

created by MERIT on the same machine differ only in timestamps,

Listing 1. This result indicates that Tribuo trained these two models

with identical pipelines.

MERIT’s diffs also avoid blow-ups and redundancy when it

can recognize that different objects have similar functionality, as-

suming they follow a standard naming convention, typically en-

forced through inheritance. For example, Listing 2 shows the diff

between two models trained using tree ensemble trainers. Tribuo’s

RandomForestTrainer and ExtraTreesTrainer are subclasses of
the BaggingTrainer, with the restriction that the inner trainer

is a tree trainer in both cases. Despite being different classes, the

diff has correctly recursed into the fields of the ensemble trainers,

determined that the tree trainer is the same across both classes, and

exposed only the difference in the tree trainer parameters. Individ-

ually these provenance objects are each 2000 lines
3
. We provide

more example diffs in Appendix C.

Listing 2: An example diff of two tree ensembles, one Ran-
domForest and one extremely randomized tree ensemble.
Both provenance objects pre-diff are 2000 lines. We have re-
moved the timestamps and shortened class names for clarity.
{ " t r a i n e r " : {

" c l a s s −name " : {

" o r i g i n a l " : " . . . RandomFores tTra iner " ,

" r eproduced " : " . . . E x t r aT r e e sT r a i n e r "

} ,

" i n n e rT r a i n e r " : {

" f r a c t i o n F e a t u r e s I n S p l i t " : {

" o r i g i n a l " : " 0 . 5 " ,

" r eproduced " : " 1 . 0 "

} ,

" u s eRandomSp l i t Po in t s " : {

" o r i g i n a l " : " f a l s e " ,

" r eproduced " : " t r u e "

}

}

}

}

6 RESULTS
There are various methods to evaluate whether or not a Tribuo

model is the ‘same’ as another. We choose to demonstrate the effec-

tiveness of MERIT by reproducing a variety of models, examining

the provenance diffs, comparing the model evaluations, and compar-

ing model weights. These metrics allow us to test for execution-exact
reproduction and bit-wise exact reproduction, as defined in Section

1.

6.1 Methodology
We identify two metrics for a successful execution-exact reproduc-
tion; 1) values in a provenance diff and 2) comparisons of the evalu-

ations. We previously discussed in Section 5.6 how provenance diffs

3
We uploaded the original provenance objects to our artifact at

https://doi.org/10.5281/zenodo.7987883

7

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Joseph Wonsil, Jack Sullivan, Margo Seltzer, and Adam Pocock

containing only timestamps identify twomodels that Tribuo trained

with the same pipeline. In addition, Tribuo has Evaluator classes
that perform standard ML model evaluations. For classifications,

it computes accuracy, precision, recall, F-score, and the confusion

matrix. For regressions, it calculates the root-mean-square error,

mean absolute error, and 𝑅2 metrics. While two models might differ

in their predictions but have similar provenance, it is much less

likely that different models will have the same evaluation metrics.

We use these two metrics to define an execution-exact reproduc-
tion as an instance where two models differ only in timestamps

related to start and end times, and the evaluations of the models

are identical. For bit-wise reproduction we use these two metrics

and a direct comparison of float values in a model’s weights.

Next, we need tasks and data that we can use to train models for

these metrics. We use Tribuo’s tutorials
4
and example Trainer con-

figuration files to generate example models. The tutorials demon-

strate how to perform common ML tasks in Tribuo and explain

Tribuo’s features. They are a set of Jupyter notebooks that cover

various tasks: classification, regression, and clustering, and a wide

range of data sources: including IDX, CSV, JSON, directories of

text files, and data generators. They use well-known datasets in

the ML literature: the irises dataset [12], MNIST [17], wine quality

[9], yeast [10], and Twenty Newsgroups [20]. Some models trans-

form data using feature scaling or splitting between train and test

data, and some train without any transformations. Meanwhile, the

example Trainer configurations help ensure our reproducibility

framework is successful for various algorithm types. Together, these

factors help ensure that our reproducibility framework works with

commonly used ML tasks and data.

Our process of reproducing and evaluating models is straightfor-

ward. First, we need models to reproduce. For the models from the

tutorials, we directly copy the necessary code to load the dataset

and train the model into a new notebook. Unlike the tutorials, the

configurations do not have corresponding datasets. Fortunately, the

configurations are categorized by task, so we loaded one dataset for

each task: irises for classification, yeast for multilabel classification,

and wine quality for regression. Then we build an instance of each

trainer from the configuration and train a model.

We test reproducing models on the same machine and on differ-

ent machines with varying hardware and architectures. To facilitate

this process, whenever we train one of our original models we also

serialize it to a file. Then, when on different machines, we can de-

serialize the original models for re-training on different hardware.

Once we have trained models, we can reproduce them and make

comparisons. We pass the model as input to our reproducibility

framework and invoke its reproduce method, which is two lines of

code. Once we have both models, we diff their provenance to see

if any values changed other than expected timestamps. Then we

use an Evaluator to produce an evaluation for each and compare

them. When comparing across machines we also verify bit-wise

reproducibility for models with weight matrices. Finally, we record

the provenance, diff, and evaluation comparison.

Table 1: Our evaluation reproduced models using this set of
tasks and algorithms. Some rows correspond to one model,
while others correspond to multiple models trained with
different hyperparameters.

Task Algorithm

Anomaly Det. One-class RBF-SVM

Classification Bagging Ensemble

Classification CART Classifier

Classification Extremely Randomized Trees

Classification Factorization Machine

Classification K-Nearest Neighbor

Classification LibLinear Classifier

Classification LibSVM RBF-SVM

Classification Logistic Regression/AdaGrad

Classification Multi-class Adaboost

Classification Multinomial Naive Bayes

Classification Random Forest

Classification XGBoost Classifier

Clustering K-Means

Multi-label Classifier Chain

Multi-label Classifier Chain Ensemble

Multi-label Factorization Machine

Multi-label K-Nearest Neighbor

Multi-label Logistic Regression/AdaGrad

Regression CART Joint Regression

Regression CART Regression

Regression ElasticNet/Coordinate Descent

Regression Extremely Randomized Trees

Regression Factorization Machine

Regression K-Nearest Neighbor

Regression Least Angle Regression

Regression LibLinear Regression

Regression LibSVM RBF-SVM

Regression Linear Regression/SGD

Regression Linear Regression/AdaGrad

Regression Random Forest

Regression XGBoost Regression

Table 2: Datasets and their corresponding format we evalu-
ated.

Dataset Data Format

Generated Generator

Generated CSV

Generated JSON

Irises CSV

MNIST IDX

Twenty Newsgroups Text files - Unigram tokens

Twenty Newsgroups Text files - Bigram tokens

WineQuality CSV

Yeast LibSVM

8

Integrated Reproducibility with Self-describing Machine Learning Models ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

6.2 Reproduction Results
We trained 48 models, 14 from the Tribuo tutorials section and 34

from the example configurations. For reproducing on a single ma-

chine, Table 1 presents the various tasks and algorithms we tested,

and Table 2 presents the datasets we used. These tables display

aggregated information since some models were the same with

varying hyperparameters or input data. We were able to success-

fully reproduce all of the models we trained
5
. While we cannot

show all of the diffs due to size constraints, they contained only

timestamps, and the evaluations produced the same values. Given

the breadth of tasks and algorithms we used, we believe this result

shows our framework is robust to common use cases that Tribuo

supports
6
.

For reproducing on different machines, we used one of each

algorithm from the Regression and Classification tasks on the wine

and irises datasets respectively. We chose a simple subset to eval-

uate rather than all the previous experiments since it takes only

one failure to achieve bit-wise reproducibility for us to relax our

reproducibility claim to recipe-exact instead. We trained them on

x86 and reproduced them on another x86 machine and an ARM ma-

chine. Environment details are in Appendix D.We achieved bit-wise

reproducibility between x86 machines. We also achieved execution-

exact reproducibility between x86 and ARM based on the metrics

in Section 6.1; however, we did not achieve bit-wise reproducibility

due to differences in the JVM, as we found weight differences up

to 6.4 × 10
−16

. We discuss the reasons for this difference next in

Section 7 and a more in-depth discussion on cross-architecture

reproduction is in Appendix E.

While we do not explicitly evaluate the full performance of

Tribuo’s provenance collection system, we note that the tradeoffs

in its design lead to low overhead. For example, each model in

Tribuo’s random forest implementation with ten trees takes less

than or equal to one millisecond to capture provenance on the wine

quality dataset. In these experiments the total training time took 180

to 130 milliseconds depending on JIT compiler optimizations. This

cost is roughly constant as it usually will not scale with dataset size.

An exception is a DataSource that uses a RowProcessor which

will create an object per feature in the dataset. However, the cost

is still minimal as the creation of each object is cheap, especially

when compared to the time of the training loop.

7 DISCUSSION AND LIMITATIONS
Tribuo’s integrated provenance collection via self-describing mod-

els was a significant step towards reproducibility and laid the

groundwork for MERIT. Provenance collection provides useful

information about models; however, without a well defined use

case such as reproducibility it is difficult to tell if the provenance

collection is sufficient to describe the computation or completely

captures all the sources of variability. Building MERIT exposed

deficiencies in Tribuo’s provenance collection that we fixed.

4
github.com/oracle/tribuo/tree/main/tutorials

5
Tribuo has a TensorFlow trainer and tutorial, which we did not attempt to reproduce.

We discuss this in Section 7.

6
This evaluation is available for reproduction using our uploaded artifact or at

https://doi.org/10.5281/zenodo.7987883

7.1 Tribuo and Ecosystem Improvements
We used the diff tool to identify bugs in the provenance collection

implementation in some of Tribuo’s Trainers. Typically we caught
these bugs, because MERIT threw an unexpected error or unexpect-

edly failed to produce a bit-wise exact reproduction. Occasionally,

during implementation of MERIT, we uncovered non-fatal errors.

We identified an issue with multidimensional regressions where

a mapping between dimension names and ids broke due to reliance

on the order of an unsorted map. We also found two trainers with

bugs where the recorded RNG state could be incorrect. Outside of

training, we discoverd a data source where an equality check on

a filepath could fail since only one side would normalize a path

containing either “.” or “..”. This issue is particularly interest-

ing, as someone reproducing a model manually might not catch

it, because they would see that the two file paths were the same.

We also discovered the CSVDataSource class was not completely

integrated with the provenance collection and required refactoring.

We successfully implemented fixes for all of these issues, and they

are now merged into the main Tribuo code.

Outside of Tribuo, our development led to the discovery of hidden

RNG state in the LIBLINEAR [11] and LIBSVM [5] Java libraries. We

reported these issues, and in the case of LIBLINEAR, the developers
implemented a change to address the un-captured global RNG

state we found
7
. Future bugs in either Tribuo or a user’s model

might also be caught thanks to the ability of the reproducibility

framework to control many of the variables that otherwise might

create interference when debugging.

As we discuss in Section 6.2, changes between CPU architectures

can cause a reproduction failure, which led to a new provenance

feature: recording the host architecture and JVM version. We no-

ticed that Tribuo’s logistic regression training algorithm produces

slightly different models when trained on x86_64 and ARM64 ar-

chitectures. We traced this to a difference in the implementation

of the Math.exp compiler intrinsic between the two architectures,

and the CPU architecture and JVM version difference is now noted

in the provenance diff (see Section 5.6), but not elsewhere in the

provenance. If Tribuo’s provenance is integrated with system level

provenance [21], then we could further track differences in the

environment that can impact the computation. A more detailed

explanation of this behavior is in Appendix E.

7.2 Limitations
Our reproducibility system has limitations in terms of both data

collection and reproduction fidelity. MERIT operates on Tribuo-

trained models of the same version since they take advantage of

the provenance collection. Therefore, we lose reproducibility guar-

antees when Tribuo loads external models saved in TensorFlow

[1] or XGBoost [6] formats and different versions of Tribuo. We

cannot reproduce all models prior to this version, 4.2.0. Future ver-

sions will have backwards compatibility; however, they might be

execution-exact rather than bit-wise due to optimizations chang-

ing the underlying computations. Although the version change

will appear in the provenance diff to help explain potential model

differences. Additionally Tribuo’s deep learning implementation

7
https://github.com/bwaldvogel/liblinear-java/issues/40

9

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Joseph Wonsil, Jack Sullivan, Margo Seltzer, and Adam Pocock

relies on TensorFlow-Java, which, at submission time, has known

reproducibility bugs, so we do not consider it further
8
.

An intentional limitation on MERIT is its lack of ability to au-
tomatically verify reproductions. Since we also created MERIT to

provide a way to make controlled changes to models, we did not

want to automatically flag different models since a different model

might be the goal for some users. Future work could involve ex-

tending the type system of Tribuo to include “variable” types with

relaxed equality so types such as timestamps would not cause com-

paring diffs to fail an automated check.

MERIT assumes that all provenance collection implementations

are correct. However, Tribuo is an extensible framework using

object-oriented design principles, so developers can implement new

trainers, data sources, or other objects. Interfaces ensure that these

objects have provenance collection methods, but cannot ensure

that the implementations are correct.

Tribuo also provides a feature for removing provenance from

a model before deployment, in case the provenance contains sen-

sitive information. Although the provenance object is removed, it

is replaced by a hash of its contents. In this case, our framework

cannot use the model itself since they are no longer self-describing.

However, if the user saved the provenance before removal, they

can still reproduce the model using the saved provenance.

Additionally there are events outside of Tribuo’s control, such

as user overrides of class paths and library versions, JVM optimiza-

tions, external libraries such as LIBLINEAR, and differences between
hardware architectures. Zhuang et al. specifically identified soft-

ware choice and hardware architecture as typically unaccounted for

sources of noise in ML pipelines [36]. System level provenance [21]

could automatically capture more details about these events and

supplement Tribuo provenance to make these changes more visible.

Assuming that information is known, users will have to re-create

the necessary computational environment themselves before using

MERIT so they can achieve full bit-wise reproducibility.

These scenarios highlight an overarching limitation in Tribuo:

requiring control over its environment restricts the amount of inte-

gration possible with external libraries.

7.3 Guidance for Existing or New ML Libraries
Our experience creating MERIT informed us of two critical and

related considerations for ML reproducibility via provenance.

First, provenance is necessary but not sufficient for reproducibil-

ity. For example, consider the running example from Section 5.5.

A provenance record indicating that Tribuo trained an ensemble

model with a non-contiguous set of RNG states is an accurate

and valid record. It does not mean a user can easily reproduce

the model. MERIT can only reproduce BaggingTrainers in the

presence of parallelism due to modifications we made to the main

Tribuo code. Those modifications also relied on another new feature

we added to the library, the ability to set RNG state. Even assuming

Tribuo always recorded accurate and valid provenance, without

these changes, reproducibility is challenging or impossible.

Second, a provenance collection system benefits from use by

a machine driven application such as reproducibility. Otherwise,

8
https://github.com/tensorflow/tensorflow/issues/48855

manual processes can fill in missing details that the provenance sys-

tem should collect, e.g. the appropriate software version or compute

environment. Specifically we identified two benefits: completeness

and correctness. In the case of Tribuo, MERIT can verify provenance

by reproducing the model it describes. This behavior demonstrates

the provenance is correct and complete; Tribuo accurately recorded

everything needed to describe the model. Auditors can thereby

employ MERIT for verification when using Tribuo provenance as a

means of regulatory compliance. When MERIT cannot reproduce a

model, as we discussed earlier, we now have a controlled environ-

ment in which to debug the issue. Therefore, we recommend that

researchers use a specific machine application such as automatic

reproducibility or LIMA’s memoization to derive the requirements

of a provenance collection system.

This approach can apply to existing ML libraries, although hav-

ing a strong focus on provenance and reproducibility from the

beginning changes the way developers will approach the architec-

ture of the library. Some potential changes that might otherwise

be added without more thought might seem less attractive as they

will affect the overall reproducibility of the library. Systems such

as scikit-learn will find using our design difficult, as its authors

implemented drastically different design philosophies that focus

on making integration with external tools easy [26]. Another chal-

lenge comes from systems that let users control the training loop,

such as PyTorch [25]. A provenance system can record that it used

an external library or integrated user-written code, but it will not

necessarily know how to use those artifacts. Existing ML libraries

that are already integrated with external libraries have to find a

way to integrate provenance throughout the whole system, use the

tools described in Section 2, or perform significant refactoring to

move towards a system with simpler introspection capabilities.

8 CONCLUSION
We presented MERIT, a reproducibility framework for the Tribuo

ML library, enabled by Tribuo’s integrated provenance architec-

ture. The framework uses Tribuo model provenance to automati-

cally produce a training pipeline that reproduces the input model.

Through the development of MERIT we also improved Tribuo’s

provenance collection, Tribuo’s training implementations, and the

reproducibility of external libraries. The framework also produces

a diff between the reproduced model provenance and the input

model provenance, highlighting differences such as changes in

the training data, e.g., a different number of examples or features.

This comparison increases confidence in Tribuo’s reproduction and

provenance collection, making it easier to perform reproducible

research in data science and perform audits of ML models. We also

identified another use case for the combined Tribuo provenance

and reproducibility framework – development of an experimen-

tal framework. Since the reproducibility framework controls the

variables used to train a model, it is relatively straightforward to

assist with model evolution similar to some of the related work

we discussed in Section 2. We plan to extend MERIT to support

such a framework using the model provenance as a means to derive

and train new models in a controlled environment, allowing easy

comparisons between different experimental setups and parameter

configurations.

10

Integrated Reproducibility with Self-describing Machine Learning Models ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265–283.

[2] Michele Alberti, Vinaychandran Pondenkandath, Marcel Würsch, Rolf Ingold,

and Marcus Liwicki. 2018. DeepDIVA: a highly-functional python framework

for reproducible experiments. In 2018 16th International Conference on Frontiers
in Handwriting Recognition (ICFHR). IEEE, 423–428.

[3] Monya Baker. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533,
7604 (2016), 452–454. https://doi.org/10.1038/533452a

[4] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert

Ginthör, Kevin Innerebner, Florijan Klezin, Stefanie N. Lindstaedt, Arnab Phani,

Benjamin Rath, Berthold Reinwald, Shafaq Siddiqui, and Sebastian Benjamin

Wrede. 2020. SystemDS: A Declarative Machine Learning System for the End-

to-End Data Science Lifecycle. In 10th Conference on Innovative Data Systems
Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p22-boehm-

cidr20.pdf

[5] Chih—chung Chang and Chih-jen Lin. 2001. LIBSVM: A library for support

vector machines. ACM Transactions on Intelligent Systems and Technology (TIST),
2011 2, 3 (2001), 280–292.

[6] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting

System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 785–794.

[7] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible

and Efficient Machine Learning Library for Heterogeneous Distributed Systems.

CoRR abs/1512.01274 (2015). arXiv:1512.01274 http://arxiv.org/abs/1512.01274

[8] Fernando Chirigati, Rémi Rampin, Dennis Shasha, and Juliana Freire. 2016. Re-

proZip: Computational Reproducibility With Ease. In Proceedings of the 2016
International Conference on Management of Data (San Francisco, California, USA)

(SIGMOD ’16). ACM, 2085–2088. https://doi.org/10.1145/2882903.2899401

[9] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis.

2009. Modelingwine preferences by datamining from physicochemical properties.

Decision support systems 47, 4 (2009), 547–553.
[10] André Elisseeff and Jason Weston. 2001. A kernel method for multi-labelled

classification. Advances in neural information processing systems 14 (2001), 681–
687.

[11] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.

2008. LIBLINEAR: A library for large linear classification. the Journal of machine
Learning research 9 (2008), 1871–1874.

[12] R.A. Fisher. 1988. Iris. UCI Machine Learning Repository.

[13] James Gosling, Bill Joy, Guy L Steele, Gilad Bracha, and Alex Buckley. 2014. The
Java Language Specification, Java SE 8 Edition. Addison-Wesley Professional.

[14] Odd Erik Gundersen and Sigbjørn Kjensmo. 2018. State of the art: Reproducibility

in artificial intelligence. In Thirty-second AAAI conference on artificial intelligence.
[15] Philip J Guo and Dawson Engler. 2011. Using automatic persistent memoiza-

tion to facilitate data analysis scripting. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis. 287–297.

[16] Matthew Hartley and Tjelvar SG Olsson. 2020. dtoolai: Reproducibility for deep

learning. Patterns 1, 5 (2020), 100073.
[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–

2324.

[18] B.S. Lerner and E.R. Boose. 2014. RDataTracker: Collecting Provenance in an In-

teractive Scripting Environment. In USENIX Workshop on the Theory and Practice
of Provenance (TaPP). https://doi.org/10.1007/978-3-319-16462-5_36

[19] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-

man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al.

2016. Mllib: Machine learning in apache spark. The Journal of Machine Learning
Research 17, 1 (2016), 1235–1241.

[20] Tom Mitchell. 1997. Machine Learning. (1997).

[21] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko,

Diana Maclean, Daniel Margo, Margo Seltzer, and Robin Smogor. 2009. Layering

in Provenance Systems. In Proceedings of the 2009 Conference on USENIX Annual
Technical Conference (San Diego, California) (USENIX’09). USENIX Association,

USA, 10.

[22] Leonardo Murta, Vanessa Braganholo, Fernando Chirigati, David Koop, and

Juliana Freire. 2015. noWorkflow: Capturing and Analyzing Provenance of

Scripts. In Provenance and Annotation of Data and Processes, Bertram Ludäscher

and Beth Plale (Eds.). Springer International Publishing, 71–83.

[23] Daniel Nüst and Matthias Hinz. 2019. containerit: Generating Dockerfiles for

reproducible research with R. Journal of Open Source Software 4, 40 (8 2019), 1603.
https://doi.org/10.21105/joss.01603

[24] Michela Paganini and Jessica Zosa Forde. 2020. dagger: A Python Framework

for Reproducible Machine Learning Experiment Orchestration. arXiv preprint

arXiv:2006.07484 (2020).
[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-

imperative-style-high-performance-deep-learning-library.pdf

[26] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,

Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[27] Arnab Phani, Benjamin Rath, and Matthias Boehm. 2021. LIMA: Fine-grained

Lineage Tracing and Reuse in Machine Learning Systems. In Proceedings of the
2021 International Conference on Management of Data. 1426–1439.

[28] Adam Pocock. 2021. Tribuo: Machine Learning with Provenance in Java. arXiv
preprint arXiv:2110.03022 (2021).

[29] Project Jupyter. 2020. repo2docker. https://repo2docker.readthedocs.io/en/latest/

[30] Sheeba Samuel and Birgitta König-Ries. 2020. ReproduceMeGit: A

Visualization Tool for Analyzing Reproducibility of Jupyter Notebooks.

arXiv:2006.12110 [cs.CY]

[31] Sebastian Schelter, Joos-Hendrik Boese, Johannes Kirschnick, Thoralf Klein, and

Stephan Seufert. 2017. Automatically tracking metadata and provenance of

machine learning experiments. In Machine Learning Systems Workshop at NIPS.
27–29.

[32] Guy L Steele Jr, Doug Lea, and Christine H Flood. 2014. Fast splittable pseudo-

random number generators. ACM SIGPLAN Notices 49, 10 (2014), 453–472.
[33] Victoria Stodden. 2010. The Scientific Method in Practice: Reproducibility in the

Computational Sciences. SSRN Electronic Journal (2010). https://doi.org/10.2139/

ssrn.1550193

[34] Ana Trisovic, Philip Durbin, Tania Schlatter, Gustavo Durand, Sonia Barbosa,

Danny Brooke, and Mercè Crosas. 2020. Advancing Computational Reproducibil-

ity in the Dataverse Data Repository Platform. In Proceedings of the 3rd Inter-
national Workshop on Practical Reproducible Evaluation of Computer Systems
(Stockholm, Sweden) (P-RECS ’20). Association for Computing Machinery, New

York, NY, USA, 15–20. https://doi.org/10.1145/3391800.3398173

[35] Joseph Wonsil. 2021. Reproducibility as a service. Master’s thesis. University of

British Columbia. https://doi.org/10.14288/1.0398221

[36] Donglin Zhuang, Xingyao Zhang, Shuaiwen Song, and Sara Hooker. 2022. Ran-

domness in neural network training: Characterizing the impact of tooling. Pro-
ceedings of Machine Learning and Systems 4 (2022), 316–336.

A PRIMITIVE PROVENANCE TYPES
These provenance types only contain their respective named type

as a value, and will not contain another provenance object.

• BooleanProvenance
• ByteProvenance
• CharProvenance
• DateProvenance
• DateTimeProvenance
• DoubleProvenance
• EnumProvenance
• FileProvenance
• FloatProvenance
• HashProvenance
• IntProvenance
• LongProvenance
• ShortProvenance
• StringProvenance
• TimeProvenance
• URLProvenance

B METHODOLOGY FOR DEBUGGING
REPRODUCIBILITY BUGS

MERIT’s control over the training environment provides a stable

environment for users to debug reproducibility issues. If a user

11

https://doi.org/10.1038/533452a
http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p22-boehm-cidr20.pdf
https://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
https://doi.org/10.1145/2882903.2899401
https://doi.org/10.1007/978-3-319-16462-5_36
https://doi.org/10.21105/joss.01603
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://repo2docker.readthedocs.io/en/latest/
https://arxiv.org/abs/2006.12110
https://doi.org/10.2139/ssrn.1550193
https://doi.org/10.2139/ssrn.1550193
https://doi.org/10.1145/3391800.3398173
https://doi.org/10.14288/1.0398221

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Joseph Wonsil, Jack Sullivan, Margo Seltzer, and Adam Pocock

reproduces a model, they can test that the reproduced model makes

the same predictions on a given test set as the original model. In

some cases, the weights are available via a getter method, and

they can directly compare the float values as well. If the test set

predictions or weights differ than the user knows that MERIT failed

to provide bit-wise reproducibility. To examine for root causes, they

can check the diff of the two models. If there is an architectural or

version difference between the two models, that is likely the culprit.

If there are no differences, the root cause might be due to untracked

system-level differences: backend library changes, JIT compiler

optimizations, or something else. In that case, debugging the issue

will require a more in-depth understanding of the computational

environments than Tribuo can provide.

C EXAMPLE PROVENANCE DIFFS
We have already presented a diff from a successfully reproduced

model in Section 5.6; however, we identified other diffs that we

believe shows readily helpful information. For more details on these

models, the reproduce-models.ipynb notebook in our uploaded

artifact (found at: https://doi.org/10.5281/zenodo.7987883) contains

the code we used to generate these diffs. Each key in the JSON

represents some provenance object, with its value being either

another provenance object or a primitive. For example, in Listing 3,

a model depended on a trainer which ran for 15 epochs.
Listing 3 shows the diff between two linear SGD models trained

using the same Trainer but for a different number of epochs. List-

ing 4 shows the diff between two identical models trained on dif-

ferent architectures. Listing 5 shows the diff between two models

trained using the same Trainer but different optimizers.

Listing 3: An example diff of two linear SGD models that
used different epochs but are otherwise the same. We have
removed the timestamps from the diff for clarity.
{

" t r a i n e r " : {

" epochs " : {

" o r i g i n a l " : " 1 0 " ,

" r eproduced " : " 1 5 "

}

}

}

Listing 4: An example diff of models we trained in the same
way but on different architectures. We have removed the
timestamps from the diff and removed a key which showed
that the path to the data is different since they executed on
different machines for clarity.
{

" os − arch " : {

" o r i g i n a l " : " amd64 " ,

" r ep roduced " : " a a r ch64 "

} ,

}

Listing 5: An example diff of two linear models that used
different optimizers with the same learning rate. We have
removed the timestamps and shortened class names for clar-
ity.
{ " t r a i n e r " : {

" o p t im i s e r " : {

" c l a s s −name " : {

" o r i g i n a l " : " . . . LinearDecaySGD " ,

" r eproduced " : " . . . AdaGrad "

} ,

" rho " : {

" o r i g i n a l " : " 0 . 0 "

} ,

" useMomentum " : {

" o r i g i n a l " : "NONE"

} ,

" e p s i l o n " : {

" r eproduced " : " 1 . 0 E−6"

} ,

" i n i t i a l V a l u e " : {

" r eproduced " : " 0 . 0 "

}

}

}

}

D EXPERIMENTAL DETAILS
All experiments were run using the Oracle OpenJDK 17.0.2 version

of Java on both x86 and ARM64 platforms using the default JVM pa-

rameters for those platforms. The x86 experiments were performed

on an Intel Xeon E-2276M processor and an Intel Xeon E5-2407.

The AMR64 experiments were performed on a 4-core VM running

on an Ampere Altra. All machines were running Linux.

E ARM64 AND X86 REPRODUCIBILITY
As mentioned in Section 6.2 we reproduced models originally

trained on an Intel x86_64 machine on a 4-core ARM64 VM run-

ning on an Ampere Altra chip. These models performed the exact

same computations as the models trained on x86_64, but in some

cases produced slightly different models. Many models were bit-

wise exact reproductions, e.g. tree based models, however ones

which used trancendental functions from java.lang.Math exhib-
ited slight differences. Specifically, we had replication issues with

classification models which used a softmax or RBF function, such as

LibSVM with RBF, Logistic Regression, and Factorization Machines.

These models depend upon repeated applications of Math.exp and

Math.log which increase the divergence between ARM & x86’s

implementations. In Java 16 (also checked on Java 8 and Java 11),

the aarch64 platform (i.e., ARM64) uses java.lang.StrictMath
to provide java.lang.Math, while on the x86_64 platform there

are faster implementations of several java.lang.Math functions
which have slightly looser bounds (they are allowed a 2 ulp dif-

ference from the correctly rounded floating point value
9
). With

9
https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/lang/Math.html

12

https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/lang/Math.html

Integrated Reproducibility with Self-describing Machine Learning Models ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA

repeated iterations of the trancendental functions (e.g., via mini-

batch stochastic gradient descent) these slight differences can add

up to larger differences in the weights, which under certain condi-

tions are visible as causing different predictions on large datasets.

In our test datasets we only observed weight differences, all the

evaluations remained the same, but in other experiments we have

observed slightly different predictions from otherwise identically

trained models on x86_64 and ARM64. Additionally we noticed that

between Java 8 and Java 16 on x86_64 some of the implementations

of java.lang.Math were changed and these changes again result

in slightly different model weights, which in specific circumstances

can result in different predictions.

F EXAMPLE PROVENANCE
We present an example model provenance for a logistic regression

model trained on the Iris dataset. It is split into two parts for ease

of presentation with Listing 6 presenting the model provenance

excluding the data provenance, and Listing 7 presenting the data

provenance.

Listing 6: Examplemodel provenance for a logistic regression
trained on Irises. The DataSource provenance is presented
separately in Figure 7 to improve readability, it would appear
in the “source” key.
{ " c l a s s −name " : " org . t r i b u o . c l a s s i f i c a t i o n .

sgd . l i n e a r . LinearSGDModel " ,

" d a t a s e t " : {

" c l a s s −name " : " org . t r i b u o .

Mu tab l eDa t a s e t " ,

" d a t a s ou r c e " : {

" c l a s s −name " : " org . t r i b u o .

e v a l u a t i o n . T r a i n T e s t S p l i t t e r " ,

" i s − t r a i n " : " t r u e " ,

" s eed " : " 1 " ,

" s i z e " : " 1 5 0 " ,

" s ou r c e " : <See nex t f i g u r e > ,

" t r a i n − p r opo r t i on " : " 0 . 7 " } ,

" i s −dense " : " t r u e " ,

" i s − sequence " : " f a l s e " ,

"num− examples " : " 1 0 5 " ,

"num− f e a t u r e s " : " 4 " ,

"num− ou tpu t s " : " 3 " ,

" t r a n s f o rma t i o n s " : [] ,

" t r i buo − v e r s i o n " : " 4 . 2 . 0 − SNAPSHOT" } ,

" i n s t an c e − v a l u e s " : { } ,

" j ava − v e r s i o n " : " 1 6 . 0 . 2 " ,

" os − arch " : " amd64 " ,

" os −name " : " L inux " ,

" t r a i n e d − a t " : "2021 −10 −01 T17

: 4 6 : 2 1 . 7 4 3 9 1 4 0 2 2 Z " ,

" t r a i n e r " : {

" c l a s s −name " : " org . t r i b u o .

c l a s s i f i c a t i o n . sgd . l i n e a r .

L o g i s t i c R e g r e s s i o n T r a i n e r " ,

" epochs " : " 5 " ,

" host − shor t −name " : " T r a i n e r " ,

" i s − sequence " : " f a l s e " ,

" l o g g i n g I n t e r v a l " : " 1 0 0 0 " ,

" m i n i b a t c h S i z e " : " 1 " ,

" o b j e c t i v e " : {

" c l a s s −name " : " org . t r i b u o .

c l a s s i f i c a t i o n . sgd . o b j e c t i v e s .

L o gMu l t i c l a s s " ,

" host − shor t −name " : " L a b e lO b j e c t i v e "

} ,

" o p t im i s e r " : {

" c l a s s −name " : " org . t r i b u o . math .

o p t im i s e r s . AdaGrad " ,

" e p s i l o n " : " 0 . 1 " ,

" host − shor t −name " : "

S t o c h a s t i cG r a d i e n tOp t im i s e r " ,

" i n i t i a l L e a r n i n g R a t e " : " 1 . 0 " ,

" i n i t i a l V a l u e " : " 0 . 0 " } ,

" s eed " : " 1 2 3 4 5 " ,

" s h u f f l e " : " t r u e " ,

" t r a i n − i n vo c a t i on − count " : " 0 " ,

" t r i buo − v e r s i o n " : " 4 . 2 . 0 − SNAPSHOT " } ,

" t r i buo − v e r s i o n " : " 4 . 2 . 0 − SNAPSHOT" }

Listing 7: Example DataSource provenance, pulled from Fig-
ure 6 where it goes in the “source” key from the model’s
provenance. Additionally, due to space concerns we removed
three “DoubleFieldProcessors”. They are the same as the one
listed here but with the following values for “fieldName”:
“petalWidth”, “sepalWidth”, and “sepalLength”.
{ " c l a s s −name " : " org . t r i b u o . d a t a . c sv .

CSVDataSource " ,

" d a t aPa th " : " / home / j u p y t e r / r e s u l t s /

b e z d e k I r i s . d a t a " ,

" d a t a sou r c e − c r e a t i o n − t ime " : "2021 −10 −01

T17 : 4 6 : 2 1 . 4 4 9 9 5 1 7 0 8 Z " ,

" f i l e −modi f i ed − t ime " : "1999 −12 −14 T20

: 1 2 : 3 9 Z " ,

" heade r s " : [" s ep a l L eng th " , " s epa lWid th

" , " p e t a l L eng t h " , " pe t a lWid th " , "

s p e c i e s "] ,

" host − shor t −name " : " DataSource " ,

" o u t pu t F a c t o r y " : {

" c l a s s −name " : " org . t r i b u o .

c l a s s i f i c a t i o n . L a b e l F a c t o r y "

} ,

" ou tpu tRequ i r ed " : " t r u e " ,

" quote " : " \ " " ,

" r e sou r ce −hash " : " 0

FED2A99DB77EC533A62DC66894D3EC6DF3B58

B6A8F3CF4A6B47E4086B7F97DC " ,

13

ACM REP ’23, June 27–29, 2023, Santa Cruz, CA, USA Joseph Wonsil, Jack Sullivan, Margo Seltzer, and Adam Pocock

" rowProces so r " : {

" c l a s s −name " : " org . t r i b u o . d a t a .

columnar . RowProcessor " ,

" f e a t u r e P r o c e s s o r s " : [] ,

" f i e l d P r o c e s s o r L i s t " : [{

" c l a s s −name " : " org . t r i b u o . d a t a .

columnar . p r o c e s s o r s . f i e l d .

Doub l e F i e l d P r o c e s s o r " ,

" f i e ldName " : " p e t a l L eng t h " ,

" host − shor t −name " : " F i e l d P r o c e s s o r

" ,

" on lyF ie ldName " : " t r u e " ,

" th rowOnInva l id " : " t r u e "

} , . . .] ,

" host − shor t −name " : " RowProcessor " ,

" me t a d a t a E x t r a c t o r s " : [] ,

" r egexMapp ingProce s so r s " : { } ,

" r ep l a c eNewl ine sWi thSpace s " : " t r u e " ,

" r e s p on s eP r o c e s s o r " : {

" c l a s s −name " : " org . t r i b u o . d a t a .

columnar . p r o c e s s o r s . r e sponse .

F i e l dR e s p on s e P r o c e s s o r " ,

" d e f a u l t V a l u e s " : [" "] ,

" d i s p l a y F i e l d " : " f a l s e " ,

" f i e l dNames " : [" s p e c i e s "] ,

" host − shor t −name " : "

Re sponseP ro ce s so r " ,

" o u t pu t F a c t o r y " : {

" c l a s s −name " : " org . t r i b u o .

c l a s s i f i c a t i o n . L a b e l F a c t o r y "

} ,

" uppe r ca se " : " f a l s e "

} ,

" w e i g h t E x t r a c t o r " : {

" c l a s s −name " : " org . t r i b u o . d a t a .

columnar . F i e l d E x t r a c t o r "

}

} ,

" s e p a r a t o r " : " , "

}

14

	Abstract
	1 Introduction
	2 Related Work
	2.1 Wrapper Libraries
	2.2 Fine-grain Collection

	3 Tribuo Overview
	4 Reproducibility Challenges
	5 Integrated Reproducibility Design
	5.1 Overview
	5.2 Usage
	5.3 Object Re-instantiation
	5.4 Setting RNG State
	5.5 Ensemble Trainer Non-determinism
	5.6 Provenance Diffs

	6 Results
	6.1 Methodology
	6.2 Reproduction Results

	7 Discussion and Limitations
	7.1 Tribuo and Ecosystem Improvements
	7.2 Limitations
	7.3 Guidance for Existing or New ML Libraries

	8 Conclusion
	References
	A Primitive Provenance Types
	B Methodology for Debugging Reproducibility Bugs
	C Example Provenance Diffs
	D Experimental Details
	E ARM64 and x86 Reproducibility
	F Example Provenance

