
Transaction Support in a Log-Structured File System

Margo I. Seltzer

Harvard University Division of Applied Sciences

Abstract
This paper presents the design and implementation of a
transaction manager embedded in a log-structured file
system [11]. Measurements show that transaction sup-
port on a log-structured file system offers a 10% perfor-
mance improvement over transaction support on a con-
ventional, read-optimized file system. When the transac-
tion manager is embedded in the log-structured file sys-
tem, the resulting performance is comparable to that of a
more traditional, user-level system. The performance
results also indicate that embedding transactions in the
file system need not impact the performance of non-
transaction applications.

1. Introduction
Traditionally, transaction support has been provided by
database management systems running as user-level
processes. These systems maintain their own cache of
frequently accessed data pages and perform their own
scheduling, allowing multiple processes to access a single
database. When transaction support is provided as an
operating system service, concurrency control and crash
recovery become transparently available to all applica-
tions instead of only to the clients of the database
manager. Additionally, such an environment provides a
single recovery paradigm (transaction recovery) rather
than two separate recovery paradigms (file system
recovery and database recovery).

The performance of user-level transaction support and
embedded transaction support is compared in the simula-
tion study presented in [14]. The study concluded that a
log-structured file system (LFS) offers better performance
than a read-optimized file system for a short-transaction
workload, and that the embedded transaction manager
performs as well as a user-level transaction manager
except in extremely contentious environments. These
results were based solely on simulation and did not
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The work described here was supported in part by the National
Science Foundation under grant MIP-8715235 and NSF IRI-9107455
and the Defense Advanced Research Projects Agency under contract
DABT63-92-C-0007.

consider the functional redundancy that results when tran-
saction management is done in user-space. This paper
addresses these issues.

The remainder of this paper is organized as follows.
First, the log-structured file system is briefly described.
Next, the user-level transaction model and implementa-
tion and the embedded transaction model and implemen-
tation are presented. Finally, performance results are dis-
cussed.

2. A log-structured file system
A log-structured file system, described fully in [12], is a
hybrid between a simple, sequential database log, and a
UNIX1 file system [8]. Like a database log, all data is
written sequentially. Like a UNIX file system, a file’s
physical disk layout is described by an index structure
(inode) that contains the disk addresses of some number
of direct, indirect, and doubly indirect blocks. Direct
blocks contain data, while indirect blocks contain disk
addresses of direct blocks, and doubly indirect blocks
contain disk addresses of indirect blocks. For the
remainder of this paper, the index structures and both sin-
gle and double indirect blocks are referred to as meta-
data.

While conventional UNIX file systems preallocate disk
space to optimize sequential reading, an LFS allocates
disk space dynamically to optimize the write performance
of the file system. In a conventional file system, the
blocks within a file are assigned permanent disk
addresses, and each time a block is modified, the same
disk block is overwritten. An LFS does not assign per-
manent disk addresses to blocks. Instead, when blocks
are written to disk, a large number of dirty blocks, the
meta-data describing them, and a summary block describ-
ing the blocks are sorted and written sequentially in a sin-
gle unit, called a segment [10]. Figure 1 shows the allo-
cation and modification of three files in a log-structured
file system.

Since the structure described is an append-only log, the
disk system will eventually become full, requiring a
mechanism to reclaim previously used space. If there are
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 UNIX is a trademark of USL.



hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Inode Map Block

... dirty data blocks ...

... dirty data blocks ... ...free blocks...

SEGMENTSEGMENT

file1 file2

SEGMENTSEGMENT

Summary Block

file1 file2

file1

more of

file2
block 2 file3

Data Block Meta Data

(a)

(b)

... free blocks ...

Figure 1: A Log-Structured File System. In figure (a), the first segment contains two new files, file1 and file2, as
well as other dirty data blocks. The meta-data block following each file contains that file’s index structure. In
figure (b), the middle block of file2 has been modified. A new version of it is added to the log, as well as a new ver-
sion of its meta-data. Then file3 is created, causing its blocks and meta-data to be appended to the log. Next, file1
has two more blocks appended to it. These two blocks and a new version of file1’s meta-data are appended to the
log. Finally, the inode map, which contains the addresses of the inodes, is written.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

files that have been deleted or modified, some blocks in
the log will be ‘‘dead’’ (those that belong to deleted files
or have been superseeded by later versions). The
cleaner, a garbage collector, reclaims segments from the
log by reading a segment, discarding ‘‘dead’’ blocks, and
appending any ‘‘live’’ blocks to the log. In this manner,
space is continually reclaimed [11].

There are two characteristics of a log-structured file sys-
tem that make it desirable for transaction processing.
First, a large number of dirty pages are written contigu-
ously. Since only a single seek is performed to write out
these dirty blocks, the ‘‘per write’’ overhead is much
closer to that of a sequential disk access than to that of a
random disk access. Taking advantage of this for transac-
tion processing is similar to the database cache discussed
in [4]. The database cache technique writes pages
sequentially to a cache, typically on disk. As pages in this
cache need to be replaced, they are written back to the
actual database, which resides on a conventional file sys-
tem. In a heavily used database, writing from the cache
to the database can still limit performance. In a log-
structured file system, the sequential log is the only
representation of the database. Therefore, a log-
structured file system always writes at sequential disk
speeds approaching 100% of the disk bandwidth, while
the database cache technique can, at best, sort I/Os before
issuing writes from the cache to the disk. Simulation
results show that even well-ordered writes are unlikely to
achieve utilization beyond 40% of the disk bandwidth

[13].

The second characteristic of a log-structured file system
that makes it desirable for transaction processing is that
the file system is updated in a ‘‘no-overwrite’’ fashion.
Since data is not overwritten as part of the update process,
before-images of updated pages exist in the file system
until they are reclaimed by the cleaner. Therefore, no
separate log file is required to hold before-images of
updated records.

3. A user-level transaction system
For the experiments described in this paper, a traditional
transaction system using write-ahead logging (WAL) and
two-phase locking [5] was implemented to provide a basis
for comparison to LFS-embedded support. The transac-
tion application uses the record-oriented subroutine inter-
face provided by the 4.4BSD database access routines [2]
to read and write B-Tree, hashed, or fixed-length records.
This record library makes calls to the buffer manager,
lock manager, and log manager provided in the LIBTP
library [15]. LIBTP uses the conventional transaction
architecture depicted in Figure 2.

The system uses before-image and after-image logging
to support both ‘‘redo’’ and ‘‘undo’’ recovery. Con-
currency control is provided by a general purpose lock
manager (single writer, multiple readers) which performs
two-phase, page-level locking and high concurrency B-
Tree locking [7]. To reduce disk traffic, the system



hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

log_commit

buf_unpin
buf_get

buf_unpin
buf_pin
buf_get

Txn Manager Record Manager

lock
logunlock_all

log_unroll

sleep_onsleep_on
wake wake

Lock
Manager

Log
Manager

Buffer
Manager

Process Manager

unlock

sleep_on
wake

Figure 2: Conventional, User-Level Architecture.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

maintains a least-recently-used (LRU) buffer cache of
database pages in shared memory. Since transactions
must occasionally wait for locks or buffers, a process
management module is responsible for scheduling and
descheduling processes. Finally, a subroutine interface is
provided to begin, commit, and abort transactions.

4. The embedded implementation
In this model, transaction support is implemented within
the file system. Like protections or access control lists,
transaction-protection is considered to be an attribute of a
file and may be turned on or off through a provided util-
ity. The interface to transaction-protected files is identi-
cal to the interface to unprotected files (open, close, read,
and write). In addition, transaction begin, commit, and
abort are provided by three new system calls txn_begin,
txn_abort and txn_commit which have no affect on unpro-
tected files.

When transactions are embedded in the file system, the
operating system’s buffer cache obviates the need for a
user-level buffer cache and the kernel scheduler obviates
the need for any user-level process management. No
explicit logging is performed, but the ‘‘no-overwrite’’
policy observed by LFS guarantees the existence of
before-images and flushing all dirty pages at commit
guarantees the existence of after-images in the file sys-
tem. Therefore, the only functionality which needs to be
added to the kernel is lock management and transaction
management. This architecture is depicted in Figure 3.

4.1. Data Structures and Modifications
The operating system required two new data structures
and extensions to three existing data structures in order to
support embedded transactions. The new structures are

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

unlock_all

Lock
Manager

User

Kernel
txn_abort

txn_commit
txn_begin

Record Manager

Application

read
write

Transaction
Manager

Operating System

Figure 3: LFS Embedded Architecture.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

the lock table and the transaction state, and the struc-
tures requiring modification are the inode, file system
state, and the process state. Each is described below.

The lock table maintains a hash table of currently
locked objects which are identified by file and block
number. Locks are chained both by object and transac-
tion, facilitating rapid traversal during transaction commit
and abort.

The transaction state is a per-transaction structure
which describes the currently running transaction. It con-
tains the status of the transaction (idle, running, aborting,
committing), a pointer to the chain of locks currently held,
a transaction identifier, and links to other transaction
states.

The inode is used both in memory and on disk and
describes the physical layout and other characteristics of a
file. It is the physical representation of the index structure
described in Section 2. The information contained in the
inode includes such things as access times, modification
times, file size, ownership, and protection. It is extended
to include information which indicates if the file is
transaction-protected. The in-memory representation of
the inode additionally includes lists of buffers and links to
other inodes. It is extended to contain a list of
transaction-protected buffers, in addition to its normal
buffer lists.

The file system state is an in-memory data structure
which describes the file system and keeps track of its
current state (e.g. read-only, current segment). It is
extended to contain a pointer to the transaction lock table



so that all transaction locks for the file system are accessi-
ble from a single point (as opposed to from each process
with an active transaction).

The process state maintains information about all
currently active processes. It contains links to run and
sleep queues and to other active processes. In addition, it
records the process permissions, resource limits and
usage, the process id, and a list of open files for the pro-
cess. It is extended to include a pointer to the transaction
state.

4.2. Modifications to the Buffer Cache
The read and write system calls behave nearly identically
to those in the original operating system. A read request
is specified by a byte offset and length. This request is
translated into one or more page requests serviced
through the operating system’s buffer cache. If the blocks
belong to a transaction-protected file, a read lock is
requested for each page before the page request is
satisfied (either from the buffer cache or by reading it
from disk). If the lock can be granted, the read continues
normally. If it cannot be granted, the process is
descheduled and left sleeping, until the lock is released.
Writes are implemented similarly, except that a write lock
is requested instead of a read lock.

4.3. The Kernel Transaction Module
Where the user-level model provides a subroutine inter-
face, the embedded model provides a system call inter-
face for transaction begin, commit, and abort processing.
At txn_begin, a transaction structure is either created or
initialized (depending on whether the process in question
had previously ever invoked a transaction). The next
available transaction identifier (maintained by the operat-
ing system) is assigned, and the transaction’s lock list is
initialized.

When a process issues a txn_abort, the kernel locates the
lock chain for the transaction through the transaction
state. It then traverses the lock chain, releasing locks and
invalidating any dirty buffers associated with those locks.

At txn_commit, the same chain is traversed, but the dirty
buffers are moved from the inode’s transaction list to its
dirty list. Once all the dirty buffers have been moved, the
kernel flushes them to disk and releases locks when the
writes have completed. In the case where only part of a
page is modified, the entire page still gets written to disk
at commit. This compares rather dismally with logging
schemes where only the updated bytes need be written.
While we might expect the increased amount of data
flushed at commit to result in a heavy performance
penalty, both the simulation results in [14] and the imple-
mentation do not indicate this. Rather, the overall tran-
saction time is so dominated by random reads to data-
bases too large to cache in main memory, that the addi-
tional sequential bytes written during commit are not

noticeable in the resulting performance. Furthermore,
forcing dirty blocks at commit obviates the need to write
these blocks later when their buffers need to be
reclaimed.

4.4. Group Commit
As database systems use group commit [3] to amortize the
cost of flushing log records at commit, LFS can use group
commit to amortize the cost of flushing its dirty blocks.
Rather than flushing a transaction’s blocks immediately
upon issuing a txn_commit, the process sleeps until a
timeout interval has elapsed or until sufficiently more
transactions have committed to justify the write (create a
larger segment).

4.5. Implementation Restrictions
It is important to notice that there are several deficiencies
with the described implementation, most notably:

(1) All dirty buffers must be held in memory until com-
mit.

(2) Locking is strictly two-phase and is performed at
the granularity of a page.

(3) Transactions may not span processes.

(4) Processes have only one transaction active at any
point in time.

(5) It is not obvious how to do media recovery.

For the benchmark described in this paper (a modified
TPCB), requiring that buffers stay in main memory until
commit does not pose a problem, because transactions are
small and short-lived. With regard to page level locking,
while the tests in Section 5 are not highly contentious, the
simulation study in [14] indicated that locking at granu-
larities smaller than a page is required for environments
that are. Enhancements to the implementation described
here that address these deficiencies are described in detail
in [16].

5. Performance
The measurements reported here are from a DECstation
5000/2002 running the Sprite Operating System [9]. The
system had 32 megabytes of memory and a 300 megabyte
RZ55 SCSI disk drive. The database utilized approxi-
mately 50% of the local disk while binaries were served
from remote machines, accessed via the Sprite distributed
file system. Reported times are the means of five tests
and have standard deviations within two percent of the
mean.

The performance analysis is divided into three sections:
transaction, non-transaction, and sequential read perfor-
mance. The transaction benchmark compares the LFS
embedded system with the conventional, user-level
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2 DEC is a trademark of Digital Equipment Corporation



systems on both the log-structured and read-optimized file
systems. The non-transaction benchmark is used to show
that kernel transaction support does not impact non-
transaction applications. The sequential read test meas-
ures the impact of LFS’s write-optimized policy on
sequential read performance.

5.1. Transaction Performance
To evaluate transaction performance, we used a modified
version of the industry-standard TPCB transaction pro-
cessing benchmark [18]. The test database was
configured according to the TPCB scaling rules for a 10
transaction per second (TPS) system with 1,000,000
account records, 100 teller records, and 10 branch
records. The TPCB benchmark simulates a withdrawal
performed by hypothetical tellers at a hypothetical bank.
The database consists of relations (files) for accounts,
branches, tellers, and history. For each transaction, the
account, teller, and branch balances are updated to reflect
the withdrawal and a history record, containing the
account number, branch number, teller number, and the
amount of the withdrawal, is written. The account,
branch, and teller relations were all implemented as pri-
mary B-Tree indices (the data resides in the B-Tree file)
while the history relation was implemented as a fixed-size
record file (records are accessible sequentially or by
record number).

This implementation of the benchmark differs from the
specification in three aspects. First, the specification
requires that the database keep redundant logs on dif-
ferent devices, but only a single log was used. Second, all
tests were run on a single, centralized system, so there
was no notion of remote accesses. Third, the tests were
run single-user (multiprogramming level of 1), providing
a worst-case analysis. The configuration measured is so
disk-bound that increasing the multi-programming level
increases throughput only marginally. See [15] for a
detailed discussion of the performance in a multi-user
environment.

The interesting comparisons in this test are:

g User-level transaction manager on a log-structured
file system and on a traditional file system.

g User-level transaction manager on LFS vs. kernel
level transaction manager in LFS.

Figure 4 shows the results of this test. As expected, the
LFS system outperformed the conventional file system,
but by a disappointing 10% (12.3 TPS compared with
13.6 TPS). The fact that there was a difference at all is
because LFS flushes dirty pages from the buffer pool
more efficiently. When the user process flushes a page,
the page is cached in the kernel’s buffer pool and eventu-
ally flushed to disk. In the LFS case, this write occurs as
part of a segment write and takes place at near-sequential
speed. In the read-optimized case, this write occurs
within 30 seconds of when it entered the buffer cache and

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Optimized
Read

user-level

20

15

10

5

TPS

LFS LFS

kernel

Figure 4: Transaction Performance Summary. The
left and middle bars compare performance of a user-
level transaction manager on the original Sprite file
system (read-optimized) and on LFS. The middle and
right bars compare the performance of the user-level
transaction manager on LFS to the LFS embedded
transaction manager.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

is sorted in the disk queue with all other I/O to the same
device (the random reads). Thus, the overhead is greater
than the overhead of the sequential write in LFS.

The 10% performance improvement observed in this
experiment is disappointing when compared to the disk
bound simulation in [14] which predicted a 27% perfor-
mance improvement. The difference between the imple-
mentation and the simulation can be explained by two
factors. First, the simulation study did not account for the
overhead of the cleaner. When the cleaner runs, it locks
out all accesses to the particular files being cleaned. In
this benchmark, there are only four files being accessed
and these same files are the ones being cleaned. There-
fore, when the cleaner locks these files, no regular pro-
cessing can take place. As a result, periods of very high
transaction throughput are interrupted by periods of no
transaction throughput, and the resulting average is disap-
pointing.

The second reason for the difference between the simu-
lation and the implementation is that the simulation
ignores much of the system overhead, focusing only on
the transaction processing operations. For example, the
simulation does not account for query processing over-
head, context switch times, system calls other than those
required for locking, or process scheduling. As a result,
the actual transaction time is much greater and the differ-
ence in performance is a smaller percentage of the total
transaction time.



The next comparison contrasts the performance of the
user-level and kernel implementations on LFS. Once
again, the simulation results of [14], predicting no differ-
ence between user-level and kernel models, differ from
implementation results. A fundamental assumption made
in the simulation was that synchronization would be much
faster in the user-level model than in the kernel model.
The argument was that user-level processes could syn-
chronize in shared memory without involving the kernel
while synchronization in the kernel model required a sys-
tem call. Unfortunately, the DECstation test platform
does not have a hardware test-and-set instruction. As a
result, the synchronization of the user-level model, used
system calls to obtain and release semaphores, thus dou-
bling the synchronization overhead of the kernel imple-
mentation which required a single system call. This syn-
chronization overhead exactly accounts for the difference
between the user and kernel implementations and is dis-
cussed in detail in [15]. Techniques described in [1]
show how to implement user synchronization quickly on
systems without hardware test-and-set. Such techniques
would eliminate the performance gap shown in Figure 4.

5.2. Non-Transaction Performance
This test was designed to run programs that do not use the
embedded transaction manager to determine if its pres-
ence in the kernel affects the performance of applications
that do not use it. The non-transaction test consists of
three applications. The first is the user-level transaction
system, since it does not take advantage of any of the new
kernel mechanisms. The second, Andrew [6], is an
engineering workstation file system test. It consists of
copying a collection of small files, creating a directory
structure, traversing the directory hierarchy, and perform-
ing a series of compilations. The third, ‘‘Bigfile’’, was
designed to measure throughput of large file transfers. It
creates, copies, and removes a set of 10-20 relatively
large files (1 megabyte, 5 megabytes, and 10 megabytes
on a 300 megabyte file system).

All three benchmarks were run on an unmodified operat-
ing system and on one with embedded transaction sup-
port. Since the transaction code is isolated from the rest
of the system, no difference in performance is expected.
The results are summarized in Figure 5 and show that
there is virtually no impact for any of the tests. In all
tests, the difference between the two systems was within
1-2% of the total elapsed time and within the standard
deviations of the test runs. This is the expected result, as
non-transaction applications pay only a few instructions
in accessing buffers to determine that transaction locks
are unnecessary.

5.3. Sequential Read Performance
The improved write performance of LFS is not without its
costs. The log-structured file system optimizes random
writes at the expense of future sequential reads. To

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Transaction kernelNormal kernel

USER-TPBIGFILEANDREW

in seconds
Elapsed Time

50

100

150

200

Figure 5: Impact of Kernel Transaction Implementa-
tion on Non-transaction Performance. None of the
three benchmarks used the kernel transaction sup-
port. As is shown by the similarity in elapsed times for
all benchmarks, the embedded support did not de-
crease the overall system performance.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

construct a worse case test for LFS, begin with a sequen-
tially written file, randomly update the entire file, and then
read the file sequentially. The SCAN test consists of the
final sequential read phase and was designed to quantify
the penalty paid by sequentially reading a file after it has
been randomly updated. After creating a new account
file, 100,000 TPC-B transactions were executed, and then
the file was read in key order. The account file is approx-
imately 160 megabytes or 40,000 4-kilobyte pages, and
the 100,000 transactions should have touched a large frac-
tion of these pages, leaving the database randomly strewn
about the disk.

Figure 6 shows the elapsed time for the SCAN test. As
expected, the traditional file system (read-optimized)
significantly outperforms LFS. The conventional file sys-
tem paid disk seek penalties during transaction processing
to favor sequential layout. As a result, it demonstrates
50% better performance than LFS during the sequential
test. (This test does not correspond exactly to reading the
raw file sequentially since the file is read in key order.)

There are two ways to interpret this result. The first,
naive approach says that you get a small (10%) improve-
ment in the transaction workload, but you pay a large
(50%) penalty in the sequential workload. However, a
more complete interpretation considers the two workloads
(transactional and sequential) together. The time gained
by write-optimization during the transaction workload can
be directly traded off against the time lost during the
sequential read. To quantify this tradeoff, we can



hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

LFS

in seconds
Elapsed Time

1000

2000

3000

Read-Optimized

Read-Optimized

LFS

5 10 15 20

5000

10000

15000

20000

Transactions (in 10000’s)

Elapsed Time
(in seconds)

0
0

Figure 6: Sequential Performance after Random
I/O. These tests were run after both systems had
performed 100,000 TPCB transactions. The file
system which favors sequential layout (read-
optimized) was approximately 50% faster than
LFS.

Figure 7: Total Elapsed Time for both Transaction
Processing and Sequential Scan. Applications that
require sequential processing after some period of
transaction processing will observe better overall
performance from the read-optimized system when
the number of transactions executed is less than
134,300 and from LFS when more than that
number are executed.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

calculate how many transactions must be executed
between sequential reads so that the total elapsed time for
both file systems is the same.

Figure 7 shows the total elapsed time for both the tran-
saction run and the sequential run as a function of the
number of transactions executed before the sequential
processing. This is actually a pessimistic result for LFS.
The degradation in sequential performance observed by
LFS is a function of the number of transactions that have
been executed prior to the sequential scan. For example,
if only a single transaction is run before initiating the
sequential scan, the structure of the database will be
largely unchanged and the sequential read time for LFS
would be nearly identical to that for the read-optimized
system. However, the data in the graph shows the total
elapsed time for transactions and sequential scan assum-
ing that the sequential scan always takes as long as it did
after 100,000 transactions. Even so, the point at which
the two lines intersect is approximately 134,300 transac-
tions and represents how many transactions need to be
executed, per scan, to realize a benefit from the log-
structured file system.

From the perspective of time, a 13.6 TPS system would
have to run for approximately 2 hours 40 minutes to reach

the crossover point. That is, if the transaction workload
runs at peak throughout for less than 2 hours 40 minutes
before a sequential pass is made, the read-optimized sys-
tem is providing better overall performance, but if the
transaction workload runs for longer than that, LFS pro-
vides the better overall performance.

The ratio of transactions to sequential runs will be
extremely workload dependent. In an automatic teller
environment, short transactions are executed nearly 24
hours per day, while sequential scans occur very infre-
quently. However, in data-mining applications, the
majority of the processing is more likely to be complex
query processing with infrequent transactional updates.

This is not an entirely satisfying result. In practice, LFS
needs to address the issue of sequential read access after
random write access. Since LFS already has a mechan-
ism for rearranging the file system, namely the cleaner, it
seems obvious that this mechanism should be used to
coalesce files which become fragmented.

5.4. Modifications to LFS
The issues raised in Sections 5.1 and 5.3 indicated some
serious deficiencies in the current LFS design. As a



result, a new version of LFS is discussed and analyzed in
[17]. For the purposes of the specific issues highlighted
here, the major design change is moving the cleaner into
user-space.

Moving the cleaner into user-space accomplishes two
goals. First, it prevents the cleaner from locking out other
applications while the cleaner is running. Synchroniza-
tion between the cleaner and the kernel occurs during a
system call where cleaned blocks are checked against
recently modified blocks. This should alleviate the distur-
bance in performance observed during the TPCB bench-
mark and improve LFS’s overall performance.

Secondly, moving the cleaner into user-space makes it
simple to experiment with different cleaning policies and
implement multiple cleaners with different policies. So
far, we have considered two cleaners. The first would run
during idle periods and select segments to clean based on
coalescing and clustering of files. The second would
operate during periods of heavy activity using the same
algorithm that was used for these experiments. Our belief
is that removing the cleaner from the operating system
and applying a variety of cleaning policies will enable us
to close the gap in sequential read performance and to
improve the random write performance in the transaction
workload.

6. Conclusions
A log-structured file system shows potential for improv-
ing the performance of transaction processing workloads.
Currently, LFS provides a 10% performance improve-
ment over a conventional file system on a TPCB-style
workload. While there are still several semantic issues to
be resolved, embedding transactions in such a system also
looks viable, with an embedded implementation perform-
ing comparably to the user-level system. Such an imple-
mentation enables applications to easily incorporate
transaction-protection without rewriting existing applica-
tions. Products such as source code control systems,
software development environments (e.g. combined
assemblers, compilers, debuggers), and system utilities
(user registration, backups, ‘‘undelete’’, etc.), as well as
database systems could take advantage of this additional
file system functionality. While sequential read perfor-
mance after random write performance still poses a prob-
lem for LFS, new designs offer promising solutions.

7. References
[1] Bershad, B., Redell, D., Ellis, J., ‘‘Fast Mutual Exclusion

for Uniprocessors’’, to appear in Proceedings of
ASPLOS-V, Boston, MA, October 1992.

[2] DB(3), 4.4BSD Unix Programmer’s Manual Reference
Guide, University of California, Berkeley, 1991.

[3] DeWitt, D., Katz, R., Olken, F., Shapiro, L., Stonebraker,
M., Wood, D., ‘‘Implementation Techniques for Main
Memory Database Systems’’, Proceedings of SIGMOD,
June 1984, 1-8.

[4] Elkhardt, K., Bayer, R., ‘‘A Database Cache for High
Performance and Fast Restart in Database Systems,’’
ACM Transactions on Database Systems, 9(4); December
1984, 503-525.

[5] Gray, J., Lorie, R., Putzolu, F., and Traiger, I., ‘‘Granu-
larity of locks and degrees of consistency in a large
shared data base’’, Modeling in Data Base Management
Systems, Elsevier North Holland, New York, 365-394.

[6] Howard, J., Kazar, Menees, S., Nichols, D., Satyanaray-
anan, M., Sidebotham, N., West, M., ‘‘Scale and Perfor-
mance in a Distributed File System,’’ ACM Transaction
on Computer Systems 6, 1 (February 1988), 51-81.

[7] Lehman, P., Yao, S., ‘‘Efficient Locking for Concurrent
Operations on B-trees’’, ACM Transactions on Database
Systems, 6(4); December 1981.

[8] Marshall Kirk McKusick, William Joy, Sam Leffler, and
R. S. Fabry, ‘‘A Fast File System for UNIX’’, ACM
Transactions on Computer Systems, 2(3); August 1984,
181-197.

[9] Ousterhout, J., Cherenson, A., Douglis, F., Nelson, M.,
Welch, B., ‘‘The Sprite Network Operating System’’,
IEEE Computer, 21(2); February 1988, 23-36.

[10] Rosenblum, M., Ousterhout, J. K., ‘‘The LFS Storage
Manager’’, Proceedings of the 1990 Summer Usenix,
Anaheim, CA, June 1990.

[11] Rosenblum, M., Ousterhout, J. K., ‘‘The Design and
Implementation of a Log-Structured File System’’,
Proceedings of the Symposium on Operating System
Principles, Monterey, CA, October 1991, 1-15. Pub-
lished as Operating Systems Review 25, 5 (October
1991). Also available in Transactions on Computer Sys-
tems 10, 1 (February 1992), 26-52.

[12] Rosenblum, M., ‘‘The Design and Implementation of a
Log-structured File System,’’ PhD Thesis, University of
California, Berkeley, June 1992. Also available as
Technical Report UCB/CSD 92/696.

[13] Seltzer, M., Chen, P., Ousterhout, J., ‘‘Disk Scheduling
Revisited,’’ Proceedings of the 1990 Winter Usenix,
Washington, D.C., January 1990.

[14] Seltzer, M., Stonebraker, M., ‘‘Transaction Support in
Read Optimized and Write Optimized File Systems’’,
Proceedings of the 16th International Conference on
Very Large Data Bases, Brisbane, Australia, 1990.

[15] Seltzer, M., Olson, M., ‘‘LIBTP: Portable, Modular
Transactions for UNIX’’, Proceedings of the 1992 Winter
Usenix, San Francisco, CA, January 1992, 9-25.

[16] Seltzer, M., ‘‘File System Performance and Transaction
Support,’’ PhD Thesis, University of California, Berke-
ley, December 1992.

[17] Seltzer, M., Bostic, K., McKusick, M., Staelin, C., ‘‘An
Implementation of a Log-Structured File System for
UNIX,’’ Proceedings of the 1993 Winter Usenix, San
Diego, CA January 1993.

[18] Transaction Processing Performance Council, ‘‘TPC
Benchmark B’’, Standard Specification, Waterside Asso-
ciates, Fremont, CA., 1990.


