Transaction Support in a Log-Structured File System

Margo I. Seltzer Harvard University Division of Applied Sciences Data Engineering 1993

Outline

- Introduction
- Implementation
- Performance
- Conclusions

Introduction

- Technology ⇒ I/O Bottleneck
- Caching ⇒ Write Performance Critical
- Write Performance ⇒ Write-optimizing file system.

Log-Structured File Systems

Mendel Rosenblum, John Ousterhout "The Design and Implementation of a Log-Structured File System" Transactions on Computer Systems, February 1992

- All writes are sequential.
- Append-only writes.

 \Rightarrow No-overwrite policy.

• Uses database logging techniques for recovery.

Why LFS for Transactions

Traditionally	Using LFS
Update files in place	Update by sequential write
Use a separate log file	Use LFS's logging
Force log for commit	Use segments to impose atomicity

It's basically free!

Implementation Goals

- Compare transaction performance on LFS to transaction performance on a traditional file system.
- Compare user-level transaction performance to LFS-embedded performance.

Can we provide transactions as a file system primitive with little or no overhead?

Application Structure

Architecture

Implementation Techniques

- Commit: Force policy
- Abort: No-Steal
- Abort: Shadow Files

Performance

 DECstation 5000 (15 Mips), 300 MB SCSI drive, 32 MB memory, Sprite Operating System.

Modified TPCB Benchmark

10 TPS Scaling Single-user (worst case) No replicated log No think time between transactions Measure throughput only

Single-User TP Throughput

Sequential Performance

Conclusions

- LFS attractive for transactions.
- Embedded support is feasible.
- Sequential performance is not terrific.
- Need to experiment with alternative cleaning strategies to improve sequential write performance.