
Tickets and Currencies Revisited:
Extensions to Multi-Resource Lottery Scheduling

David G. Sullivan, Robert Haas, Margo I. Seltzer
Harvard University

her
ys-

ith
ur-
a
es,
cy,
the
g
ure
ys-
gle

sti-
is-

ry

One

h
es.
ge
n
a-
ts
n

se
ts
ng
ket

in

rols

m-
ry”
U.

s

In Proceedings of the Fifth Workshop on Hot Topics in Operating Systems(Rio Rico, Arizona), IEEE Computer Society
Press, 1999, pp. 148-152.
Abstract
Lottery scheduling’s ticket and currency abstractions

provide a resource management framework that allows for
both flexible allocation and insulation between groups of
processes. We propose extensions to this framework that
enable greater flexibility while preserving the ability to
isolate groups of processes. In particular, we present a
mechanism that allows processes to modify their own
resource rights by exchanging resource-specific tickets
with other processes. Ticket exchanges limit the effects of
the changed allocations to the participants in the
exchange, and they allow applications to coordinate with
each other in ways that are mutually beneficial. Applica-
tion-specific “negotiators” can be used to initiate
exchanges based on an application’s quality-of-service
requirements and the current state of the system. We also
propose flexible access controls for currencies through
extensible “brokers” that solve such problems as the
inability of users isolated by currencies to renice back-
ground jobs. Finally, we suggest using extensibility to
allow users to install specialized allocation mechanisms
for their processes. Together, these extensions enable an
application-centered approach to resource management
that is both secure and effective.

1 Introduction

Different applications have different resource require-
ments. For example, scientific calculations or simulations
tend to be predominately processor-bound, while database
management systems are typically I/O- or memory-inten-
sive. Furthermore, an application’s needs can change
dynamically as it executes. Traditional resource allocation
mechanisms are often too general to adequately meet these
differing and dynamically changing needs. The resource
management framework developed for lottery scheduling
[10, 11, 12] provides a means for resource allocation to be
more flexible and responsive. Clients receive a share of a
given resource that is proportional to the number of “tick-
ets” that they hold for that resource; changing the number
of tickets that a client holds automatically leads to a
change in its resource rights.

In addition, lottery scheduling provides acurrency
abstraction that allows processes to be grouped toget
and insulated from other processes. For example, the s
tem might choose to fund each user’s applications w
tickets issued by a currency specific to that user. Each c
rency effectively maintains its own exchange rate with
central base currency: the more tickets a currency issu
the less they are worth with respect to the base curren
and their total base value can never exceed the value of
tickets used to back the currency itself. By employin
equally-funded “user currencies,” the system can ens
that each user receives the same overall rights to the s
tem’s resources for his or her processes, and that no sin
user can monopolize the system. Other, more sophi
cated policies are also possible; some of them are d
cussed below.

We have developed several extensions to lotte

scheduling’s resource management framework1 that
increase its flexibility and enable anapplication-centered
approach to operating system resource management.
of these extensions,ticket exchanges,allows processes to
adjust their own resource rights by bartering with eac
other over tickets that are specific to particular resourc
For example, a CPU-intensive application could exchan
some of its disk tickets for some of the CPU tickets of a
I/O-intensive application. These exchanges allow applic
tions to safely circumvent the upper resource limi
imposed by currencies, without sacrificing the protectio
that currencies provide. Application-specificresource
negotiatorscan be used to initiate exchanges in respon
to an application’s quality-of-service (QoS) requiremen
and the current levels of contention in the system, allowi
applications to adapt their resource usage over time. Tic
exchanges and resource negotiators are discussed
greater detail in Section 3.

In order for the ticket/currency framework to be
secure in a multi-user setting, some sort of access cont

1. Note that lottery scheduling’s ticket/currency framework can acco
modate scheduling mechanisms other than the probabilistic “lotte
algorithm that Waldspurger and Weihl proposed for scheduling the CP
In particular, more reliabledeterministicmechanisms can be used, a
Waldspurger and Weihl’s work itself attests [11, 12].

a
ca-
is
ds
s
an

s-
ed
ts
e
s.
ica-
er
r’s

ly

n
n,
rily
ial
li-

an
for
t
ke
rv-
he

re
g
ult
s,
ur-

e
e, as
he
ge
ake
e.
nly
ose

ch
f
es
es.
are needed. We thus propose associating anextensible bro-
ker object with each currency. Brokers allow a wide vari-
ety of policies to be implemented concerning how
currencies can be manipulated by users, and they help to
eliminate undesirable limitations that currencies would
otherwise impose. Extensibility can also be used to further
the goal of application-centered resource management by
allowing users to install specialized allocation mecha-
nisms on a per-currency basis. Brokers and other uses of
extensibility are discussed in Section 4.

In the next section, we briefly motivate the use of the
lottery scheduling framework and, in particular, the insula-
tion between groups of processes that it enables. We then
provide greater detail about our proposed extensions to the
framework. Finally, we discuss related work and conclude
with a summary of the status of our implementation.

2 Why lottery scheduling?

We have already suggested that the framework pro-
vided by lottery scheduling is valuable because it provides
a means for flexible responsiveness to the needs of appli-
cations, as well as the ability to easily group and isolate
users, processes, and threads. While the insulation pro-
vided by currencies may not be essential on a desktop PC
or workstation, it could be extremely valuable in systems
where multiple users compete for the resources provided

by a central server or group of servers2, as is often the case
in academic computing environments. A system based on
the thin-client computing model would also greatly benefit
from the insulation of currencies. In general, central ser-
vice providers can use currencies to guarantee that users
who pay the same amount receive the same rights to a sys-
tem’s resources. For example, a currency-based system
could be designed for use on Web servers that provide vir-
tual hosting. Each site would have its own currency, and
requests for files belonging to that site would be serviced
by threads funded by its currency. Such a system would
ensure that requests for any site hosted on the server are
handled at a reasonable rate, even in the face of an over-
whelming volume of requests for a particular site.

Lottery scheduling’s ticket and currency abstractions
also lend themselves to economic interpretations. For
example, the tickets that fund a particular process can be
viewed as assets belonging to that process. This interpreta-
tion leads naturally to the idea of ticket exchanges, which
we now present in detail.

3 Ticket exchanges

While the lottery scheduling framework provides
means for flexible responsiveness to the needs of appli
tions and for insulation between groups of processes, it
important to realize that these two goals are often at od
with each other. The protection provided by currencie
necessarily restricts the adjustments that can be made to
application’s resource allocations. For example, in a sy
tem that employs the user-currency scheme describ
above, users are free to modify the allocations of ticke
issued by their own currencies, but that only affects th
relative resource shares received by their application
The largest absolute resource share that a user’s appl
tion can receive in such a system is limited by the numb
of tickets that the operating system uses to fund the use
currency, something unprivileged users would ordinari
not be allowed to increase.

While the upper limits that currencies impose o
resource rights are essential to maintaining insulatio
there may be instances in which they are unnecessa
restrictive. Since certain resources may be more cruc
than others to the performance of an application, the app
cation may benefit from giving up a fraction of its rights to
one resource in order to receive a larger share of
another resource. Ticket exchanges provide a means
applications to initiate deals in which tickets for differen
resources are traded. They allow applications to ta
advantage of their differing resource needs while prese
ing the insulation of processes that do not participate in t
exchange.

3.1 Exchanges preserve insulation

To see that the resource rights of non-participants a
unaffected by ticket exchanges, consider the followin
scenario: processes A, B and C each start out with defa
allocations of 200 CPU tickets and 200 memory ticket
where the values are given with respect to the base c
rency. Process A is willing to give up CPU tickets worth
50 base value units in return for memory tickets with th
same base value, and process B agrees to this exchang
shown in the before and after picture in Figure 1. Since t
total values of the tickets for each resource do not chan
as a result of the exchange, Process C, which does not t
part, still has one-third of the tickets for each resourc
Therefore, its resource rights are unchanged. The o
applications whose resource rights are affected are th
who voluntarily take part in the exchange.

Ticket exchanges and currencies complement ea
other. Ticket exchanges allow for flexibility in the face o
the restrictions imposed by currencies, while currenci
insulate processes from the malicious use of exchang

2. Indeed, SUN Microsystems has developed a system to provide insula-
tion in such environments [9].

e
nd
. A
an
.
ge

ler
r
he
de
e

nge
-

fy
e

h,
ith
he
fit

the
nd
raft
ot
d

nd
ro-

ce
n

n
it
d
ll
r-
ill
to

t
e

For example, a process could fork off children that use
exchanges to give the process all of their tickets. With cur-
rencies, however, this tactic would only affect tasks funded
by the same currency as the malicious process.

3.2 Exchanges Enable Coordination

Ticket exchanges also enable applications to coordi-
nate with each other in ways that are mutually beneficial
and that may increase overall system efficiency. Various
levels of sophistication could be employed by applications
to determine what types of exchanges they are willing to
make, and at what rates of exchange.

Certain types of clients may be sufficiently bounded
by a given resource that they will always attempt to make
an exchange that obtains more tickets for that resource.
For example, consider two Web sites that are virtually
hosted on the same server. Site A has a small number of
frequently accessed files that it could keep in memory if it
had additional memory tickets for its currency. Site B has
a uniformly-accessed working set that is too large to fit in
memory, and it would thus benefit from giving up some of
its currency’s memory tickets for some of A’s disk tickets.

Processes could also apply economic and decision-
theoretic models to determine, based on information about
their performance (such as how often they are scheduled
per second, how many page faults they incur per second,
etc.) and the current state of the system (such as how many
tickets of each type are active in the system), when to ini-
tiate an exchange and at what rate.

3.3 Resource Negotiators

An actual implementation of ticket exchanges could
take a variety of forms. We are currently developing a pro-
totype ticket exchange system in the VINO operating sys-
tem that uses VINO’s extensibility mechanism (grafting)
[6, 7] to allow applications to safely download code for a

resource-negotiatorgraft that determines when to initiate
an exchange. A kerneldealerprocess will periodically call
this grafted function in each client that registers with th
dealer (provided there is more than one such client), a
the graft can at any time return a proposed exchange
graft that has no need to make additional exchanges c
inform the dealer of this fact by returning a special value

When the dealer receives complementary exchan
proposals from two or more clients, it will modify the
ticket allocations of the processes accordingly. The dea
will also inform negotiator grafts of the results of thei
proposed exchanges the next time they are invoked. If t
exchange could not be satisfied, these results will inclu
any corresponding proposals with conflicting exchang
rates (e.g., process A requests 20 CPU tickets in excha
for 10 memory tickets, while process B requests 10 mem
ory tickets but only offers 10 CPU tickets in return). In
this way, a negotiator graft can decide whether to modi
its exchange rate and try again for a compromise deal. W
still need to work out some of the details of this approac
such as the policy used by the dealer to handle rounds w
multiple possible pairings of proposed exchanges. T
complication here is that a given exchange may bene
one application more than another.

Using a graft that is periodically polled by the system
allows applications to base requests for exchanges on
current state of the system. Application developers a
users can thereby encode QoS requirements, and the g
will initiate exchanges whenever the requirements are n
being met. Also, no alteration of program code is require
except for the lines needed to install the negotiator, a
these instructions can be executed by a separate driver p
gram if the application’s source code is not available.

4 Currency Brokers

Extensibility can be used to add additional flexibility
to currencies and to enable a wider variety of resour
allocation and scheduling policies. In particular, we pla
to associateextensible brokers with each currency. A bro-
ker will control access to a currency, determining who ca
issue or revoke its tickets, fund or unfund it, or remove
entirely. Each currency will have an owner, group an
UNIX-style mode, and the default broker methods wi
implement permission checks based solely on this info
mation. However, users with the necessary privileges w
be able to download grafted versions of broker methods
specify different access control policies.

4.1 Enabling the Semantics of Nice

To illustrate the value of extensible brokers, we firs
note that currencies not only enforce an upper limit on th

200
200

200
200

200
200

150
250

250
150

200
200

Process A Process B Process C

Figure 1: Ticket Exchanges Insulate Non-Participants.
Processes A and B exchange tickets. Process C remains
unaffected, since it still has one-third of the total of each
ticket type.

Before Exchange:

After Exchange:

es

ry
for
t-
rks
at
p

o-
By

hat

ch
ets
em
ives
p-
ber
ple
her

n
gh
ose
PU
ts

ne

i-
age-
s
cal
e
offs
resources that a group of runnable processes can receive,
but they also enforce a lower limit. To see this, consider a
situation in which a user wants to run a non-essential job
in the background. On a standard UNIX system, she could
reniceit, giving it a lower priority as a favor to other users
of the system. In a system with user currencies, however,
the only way to accomplish this would be to reduce the
number of tickets used to fund the user’s currency as a
whole. Otherwise, no matter how few user-currency tick-
ets a task holds, if it is the only runnable process in that
currency, it will receiveall of the user’s share of the CPU.
A user would presumably be allowed to reduce the number
of tickets backing her currency, but if she later wanted to
use a different application, it too would suffer.

To solve this problem, a grafted version of the base-
currency broker’smay_issue() method could allow
users to issue base currency tickets, provided that the sum
of the base currency tickets backing their currency and the
base currency tickets they have already issued is less than
some upper bound. In this way, users could reduce the
number of tickets backing their currency by some small
amount, and then issue that same amount from the base
currency to fund a background job. The user’s total
resource rights would be unchanged (preserving the insu-
lation of other users), and the background job would run at
a reduced priority without crippling the user’s other jobs.

4.2 Why Extensibility?

An extensible broker is not the only way to solve this
particular problem; a special system call could be
designed to shift funding from one currency to another.
However, an extensible broker allows for additional,
unforeseen problems to be addressed without modifying
and recompiling the kernel. It also enables a wide variety
of resource management policies to be implemented. For
example, the base-currency broker could enforce strict
limits during periods of normal usage, but permit greater
flexibility during off-peak hours.

Extensibility also allows different policies to be used
when assigning users to currencies. A graftable method in
the system’s currency table is called whenever a process
changes its real user id; this method determines which cur-
rency should be used to fund the process, and creates and
funds that currency if it doesn’t already exist. This method
is used to correctly fund the login shell of a user; thereaf-
ter, processes forked by that shell are funded by the same
currency. Depending on the version of this method that is

installed3, the system could employ one currency per user,
one per group, or some combination of the two; in envi-

ronments where insulation is not critical, all process
could be funded by the base currency directly.

Finally, we plan to allow users with the necessa
privileges to download specialized scheduling methods
a given currency. For example, our implementation of lo
tery CPU scheduling starts at the base currency and wo
its way down the currency tree, holding a new lottery
each level. If a user’s currency wins the lottery at the to
level, then a second lottery is held to pick one of the pr
cesses (or subcurrencies) funded by that currency.
grafting a currency’sget_winner() method, a user can
gain greater control over how the processes funded by t
currency are scheduled.

5 Related Work

Waldspurger [11] recommended a different approa
to resource tradeoffs, in which processes are given tick
that are not resource-specific and allowed to devote th
to resources as they see fit. While such an approach g
processes greater flexibility, it violates the insulation pro
erties of currencies by causing changes in the total num
of tickets applied toward a given resource, as the exam
in Figure 2 demonstrates. Ticket exchanges, on the ot
hand, provide flexibility while preserving insulation. If
insulation is less important in a given environment, the
the system’s dealer thread could be modified throu
grafting to carry out the exchanges that processes prop
on the processes themselves (e.g., to take away 20 C
tickets from a process and give it 20 extra memory ticke
in return), thus giving an approach equivalent to the o
suggested by Waldspurger.

Other systems have allowed applications to coord
nate their use of system resources. The resource man
ment system proposed for the Rialto OS [2] allow
applications to negotiate for needed resources with a lo
“resource planner.” Applications renegotiate with th
resource planner as their needs change, and make trade

3. Note that this method would beroot-graftable, which means that only
superusers could replace it.

200
200

200
200

200
200

150
250

250
150

200
200

Process A Process B Process C

Figure 2: An Approach That Fails to Insulate. Process
A shifts 50 of its tickets from one resource to another.
Other processes now have a smaller percentage of the
tickets devoted to the second (“white ticket”) resource, and
thus a smaller share of that resource.

Before Adjustment:

After Adjustment:

200
200

150
250

200
200

200
200

200
200

200
200

rce

ry
t-

in
ing
h,
the

e
ia

III,
to

nd
e-
-

-

n

n,

tem

”
g

C.,
r
-

/

ign

i-
e-

-

among resources if their requested allocations cannot be
met. Negotiator grafts in our proposed system will be able
to perform the types of self-monitoring, reasoning about
resources, and performance-tuning that Rialto requires of
applications. Currency brokers and the system’s dealer
thread will serve some of the same functions as the Rialto
resource planner.

In the Odyssey system for mobile computing [5], the
system monitors changes in resource availability, notifies
applications of relevant changes, and allows them to
decide how best to adapt. Our proposed system is similar
in spirit to their “application-aware” approach, leaving
adaptation to applications while using the system to con-
trol and enforce resource allocations.

The system we have outlined will differ from existing
ones in the ability it gives applications to coordinate their
resource usage witheach other, as well as with the system
as a whole.

Much of the recent work on resource allocation and
scheduling has been motivated by the need to accommo-
date soft real-time (i.e., multimedia) applications [1, 3, 4,
8]. Waldspurger and Weihl [12] have suggested an alloca-
tion policy that allows the lottery scheduling framework to
support the resource reservations that such applications
require. Extensible brokers could be used to implement
this policy, and we hope to investigate whether the frame-
work can adequately support such applications.

6 Conclusions

The lottery scheduling resource management frame-
work [10, 11, 12] provides a means for both flexible
responsiveness to the differing needs of applications and
insulation between groups of processes. We believe that its
ability to easily group and isolate users, processes, and
threads makes it an excellent choice for systems in which
multiple users are using the resources of central server, as
in thin-client networks or Web servers used for virtual
hosting. We have proposed extensions to the basic frame-
work that increase its flexibility and enable an application-
centered approach to resource management that is both
secure and effective. Ticket exchanges allow processes to
adjust their ticket allocations while insulating clients that
do not take part in the exchange, and they provide a means
for applications to coordinate their resource usage with
each other. These exchanges can be initiated by applica-
tion-specific negotiators that allow an application to moni-
tor its resource usage and adapt as needed. Brokers
associated with each currency provide extensible access
controls, enabling currency-related policies to be both
flexible and secure. Finally, extensibility can also be used
to allow a variety of policies regarding how users are

assigned to currencies, and to install specialized resou
allocation mechanisms on a per-currency basis.

We have implemented and tested a complete lotte
scheduling framework in VINO, and the randomized lo
tery scheduling mechanism is used to schedule the CPU
the 0.50 release. We are in the process of implement
ticket-based allocation of memory and disk bandwidt
and of adding currency brokers and ticket exchanges to
system.

References

[1] Bruno, J., Gabber, E., Ozden, B., Silberschatz, A., “Th
Eclipse Operating System: Providing Quality of Service v
Reservation Domains,”Proceedings of the USENIX 1998
Annual Technical Conference, pp. 235-246, June 1998.

[2] Jones, M.B., Leach, P.J., Draves, R.P., Barrera, J.S.
“Modular Real-Time Resource Management in the Rial
Operating System,”Proceedings of the Fifth Workshop on
Hot Topics in Operating Systems, pp. 12-17, May 1995.

[3] Jones, M.B., Rosu, D., Rosu, M-C., “CPU Reservations a
Time Constraints: Efficient, Predictable Scheduling of Ind
pendent Activities,”Proceedings of the 16th ACM Sympo
sium on Operating System Principles, pp. 198-211, October
1997.

[4] Nieh, J.. Lam, M., “The Design, Implementation and Evalu
ation of SMART: A Scheduler for Multimedia Applica-
tions,” Proceedings of the 16th ACM Symposium o
Operating System Principles, pp. 184-197, October 1997.

[5] Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilto
J.E., Flinn, J., Walker, K.R., “Agile Application-Aware
Adaptation for Mobility,” Proceedings of the 16th ACM
Symposium on Operating System Principles, pp. 276-287,
October 1997.

[6] Seltzer, M., Endo, Y., Small, C., Smith, K., “Dealing with
Disaster: Surviving Misbehaved Kernel Extensions,”Pro-
ceedings of the Second Symposium on Operating Sys
Design and Implementation, pp. 213-228, October 1996.

[7] Small, C., “Building an Extensible Operating System,
Ph.D. thesis, Harvard University, Division of Engineerin
and Applied Sciences, October 1998.

[8] Steere, D.C., Goel, A., Gruenberg, J., McNamee, D., Pu,
Walpole, J., “A Feedback-Driven Proportion Allocator fo
Real-Rate Scheduling,”Proceedings of the Third Sympo
sium on Operating Systems Design and Implementation, pp.
145-158, February 1999.

[9] “Solaris Resource Manager 1.0: Controlling System
Resources Effectively: A White Paper,” http:/
www.sun.com/software/white-papers/wp-srm/ .

[10] Waldspurger, C.A., Weihl, W., “Lottery Scheduling: Flexi-
ble Proportional-Share Resource Management,”Proceed-
ings of the First Symposium on Operating System Des
and Implementation, pp. 1-11, November 1994.

[11] Waldspurger, C.A., “Lottery and Stride Scheduling: Flex
ble Proportional-Share Resource Management,” Ph.D. th
sis, MIT/LCS/TR-667, MIT Laboratory for Computer
Science, September 1995.

[12] Waldspurger, C.A., Weihl, W., “An Object-Oriented Frame
work for Modular Resource Management,”Proceedings of
the Fifth International Workshop on Object Orientation in
Operating Systems, pp. 138-143, October 1996.

	Tickets and Currencies Revisited:
	Extensions to Multi-Resource Lottery Scheduling
	David G. Sullivan, Robert Haas, Margo I. Seltzer
	Harvard University
	Abstract
	1 Introduction
	2 Why lottery scheduling?
	3 Ticket exchanges
	3.1 Exchanges preserve insulation
	Figure 1: Ticket Exchanges Insulate Non-Participants. Processes A and B exchange tickets. Process...

	3.2 Exchanges Enable Coordination
	3.3 Resource Negotiators

	4 Currency Brokers
	4.1 Enabling the Semantics of Nice
	4.2 Why Extensibility?

	5 Related Work
	Figure 2: An Approach That Fails to Insulate. Process A shifts 50 of its tickets from one resourc...

	6 Conclusions
	References

