
1

A version of this paper will appear inThe Proceedings of the 15th ACM Symposium on Operating System Principles.

The Measured Performance of
Personal Computer Operating Systems
J. Bradley Chen, Yasuhiro Endo, Kee Chan, David Mazières

Antonio Dias, Margo Seltzer, and Michael D. Smith
Division of Applied Sciences

Harvard University

Abstract
This paper presents a comparative study of the performance of
three operating systems that run on the personal computer archi-
tecture derived from the IBM-PC. The operating systems, Win-
dows for Workgroups, Windows NT, and NetBSD (a freely
available variant of the UNIX operating system), cover a broad
range of system functionality and user requirements, from a single
address space model to full protection with preemptive multi-task-
ing. Our measurements were enabled by hardware counters in
Intel’s Pentium processor that permit measurement of a broad
range of processor events including instruction counts and on-chip
cache miss counts. We used both microbenchmarks, which expose
specific differences between the systems, and application work-
loads, which provide an indication of expected end-to-end perfor-
mance. Our microbenchmark results show that accessing system
functionality is often more expensive in Windows for Workgroups
than in the other two systems due to frequent changes in machine
mode and the use of system call hooks. When running native
applications, Windows NT is more efficient than Windows, but it
incurs overhead similar to that of a microkernel since its applica-
tion interface (the Win32 API) is implemented as a user-level
server. Overall, system functionality can be accessed most effi-
ciently in NetBSD; we attribute this to its monolithic structure, and
to the absence of the complications created by hardware back-
wards compatibility requirements in the other systems. Measure-
ments of application performance show that although the impact of
these differences is significant in terms of instruction counts and
other hardware events (often a factor of 2 to 7 difference between
the systems), overall performance is sometimes determined by the
functionality provided by specific subsystems, such as the graphics
subsystem or the file system buffer cache.

1. Introduction
While most current operating systems research takes place using a
variant of the UNIX operating system, the vast majority of main-
stream computing occurs on personal computer (PC) systems,
derived from the IBM-PC architecture, running Microsoft Win-

dows. The differences between the OS platforms used in research
and mainstream OS products makes some systems research irrele-
vant with respect to the current needs of the software industry. At
the same time, researchers ignore important problems in non-
UNIX systems.

The operating system most commonly used on PC platforms
is Microsoft Windows. Windows lacks many features that the OS
research community takes for granted, most notably preemptive
multitasking and protected address spaces. New operating systems
for the PC market such as Windows NT and OS/2 incorporate the
multitasking support found in modern UNIX operating systems,
while also supporting Windows applications. Though the operat-
ing systems community is familiar with the benefits of features
such as separate protected address spaces, little attention has been
given to systems without them. Our goal is to compare a typical
research system with typical commodity systems by measuring
primitive operation costs, and to use these measurements to under-
stand how system differences affect application performance.

As a first step towards this goal, we present a quantitative
comparison of three operating systems, all of which run on the
same PC hardware. Microsoft Windows for Workgroups is a ver-
sion of Windows with integrated networking support. NetBSD is a
freely available version of the UNIX operating system. Microsoft
Windows NT combines support for Windows applications with
operating system features found in UNIX operating systems. There
are important similarities in how the systems are used. All are used
in personal (i.e. single-user) computing. All are used to load multi-
ple applications into memory and switch between them. All are
used with an interactive, window-based interface. These similari-
ties give us a basis for comparison.

Nevertheless, the three systems provide different core func-
tionality. The success of Windows suggests that the functionality it
lacks as compared to the other systems is not of primary impor-
tance in a personal computer operating system. More specifically:

• Protected address spaces: People learn to work around bugs
that cause systems to crash.

• Preemptive multi-tasking: People wait for printers and
batch jobs and initiate context switches manually.

• High-level system abstractions: Abstractions like pipes and
background jobs are not immediately useful for highly
interactive applications.

A key distinction between NetBSD and the Microsoft oper-
ating system products is that the Microsoft products must support
software originally written for the Intel 8086. This has influenced
the structure of Windows NT. For example, in order to support
multiple application interfaces (e.g. Win32, OS/2, POSIX), the
interfaces are implemented as user-level servers, producing micro-
kernel-like behavior and performance for NT.

This study explores how structural features affect perfor-
mance. We use hardware counters in the Pentium microprocessor
[19, 26] to gather a variety of system metrics and use these met-
rics to quantify performance. We present results from two sets of

This research was sponsored in part by grants from Digital Equipment Cor-
poration, Intel Corporation, Sun Microsystems Laboratories, the Sloan
Foundation, and the National Science Foundation. Chen and Seltzer were
supported by NSF Career Awards. Smith was supported by an NSF Young
Investigator Award.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of our research sponsors.

2

experiments, one using microbenchmarks and another using appli-
cation workloads. The general strategy for our analysis is:

• Gather statistics for the microbenchmarks.
• Explain the measurements for the microbenchmarks in so

far as possible from available documentation.
• Gather statistics for the applications.
• Explain application performance based on microbenchmark

results and available documentation.
In our comparison we were obliged to make compromises on cer-
tain factors beyond our control. For example, we could not com-
pile the three operating systems using the same compiler since we
do not have access to source code for Windows and Windows NT.
Instead we measured systems that were compiled in the same way
as the systems in common use. There were also occasions where
our lack of access to source code for Windows or Windows NT
prevented us from answering detailed questions about their inter-
nals. Nonetheless, analysis of data from the measurements yields
revealing and frequently surprising results. We found that:

• For 16-bit Windows system calls, frequent changes in
machine mode, required for backward compatibility,
increase system overhead by a factor of seven.

• The microkernel-like structure of Windows NT adds
significantly to the cost of accessing system functionality.

• The integrated buffer cache and device-dependent graphics
in Windows NT give it significant performance advantages
over NetBSD.

The next section provides background on the three operating sys-
tems and the hardware on which they run. In Section 3 we discuss
issues specific to our experiments, including configuration details
for the machine used, information on the hardware counters and
how we accessed them, and a description of the microbenchmarks
and application workloads. In Section 4 and Section 5 we describe
our experiments and explain the results we obtained. In Section 6
we discuss the ramifications of our work and note some issues that
warrant further investigation.

2. Background
This section provides background on the systems that we mea-
sured and machines on which they run. Table 1 presents some gen-
eral data on the three operating systems. Due to space constraints,
we cannot give all relevant details about the three systems. Refer-
ences are provided for readers requiring more complete technical
documentation on the systems.

2.1 Windows
Windows is thedefacto standard operating environment for PCs.
Windows is sometimes referred to as anMS-DOS extenderand
must be used in conjunction with MS-DOS, which provides a layer
of basic system functionality. MS-DOS also defines a system inter-
face that Windows must preserve. As Windows and MS-DOS are
usually used together, we will use the term “Windows” to refer to
the composition of Windows running on top of MS-DOS.

Current Windows applications typically execute in 16-bit
protected or “Win16” mode, ignoring the top 16 bits of 32-bit reg-
isters. Win16 applications operate in a segmented address space,
with a maximum segment size of 64K bytes imposed by the 16 bit
registers used for segment offsets. Windows and all Win16 appli-
cations share this segmented address space. Context switches
between applications occur when an application voluntarily yields
control. Windows does not support protected address spaces or
involuntary context switches. We estimate that about half of Win-
dows is written in hand-coded assembler.

The Windows system software is composed of four compo-
nents that are loaded separately: KRNL386.EXE, USER.EXE,
WIN386.EXE, and GDI.EXE. Third-party developers who wish to
extend Windows can do so by creating dynamically loaded librar-
ies (DLLs) and loadable device drivers (VxDs), which are loaded
into the Windows shared address space. DLLs and VxDs in Win-
dows make it possible to incorporate new system functionality into
the system and are used extensively in Windows software.

We selected Windows for Workgroups over Windows
because it was the most recent Windows release available, and
because its network support is similar to that provided by Win-
dows NT and NetBSD. Only the network microbenchmark and the
Web server use the network. All Windows experiments used the
FAT filesystem. We used the default 16-bit MS-DOS implementa-
tion of FAT for all experiments except for the filesystem bench-
marks, where we also tested the 32-bit driver option. We used
Smartdrv (with delayed write enabled) in conjunction with the
MS-DOS FAT implementation to provide caching for disk reads
[31]. The 32-bit FAT driver implements caching internally, elimi-
nating the need for Smartdrv.

Although we did not have source code for Windows, we did
have a Windows debugger that made it possible to single-step
through interrupt handlers and other parts of the system,1 helping
us answer questions about Windows control structure. There are
many books which provide a more comprehensive technical
description of Windows [6, 29, 35, 38]

2.2 Windows NT
Unlike Windows, Windows NT supports protected address spaces,
preemptive multi-tasking and multiple APIs, including the Win32
API [41] as well as the MS-DOS and Windows APIs. Although
Windows NT is not a microkernel, it does implement system APIs
using user-level server processes calledprotected subsystems. As
such, many aspects of Windows NT performance and behavior are
consistent with earlier results for microkernels [7].

The kernel in Windows NT is called the NT Executive. It
provides interrupt and exception handling, virtual memory, inter-

1. We used the SoftIce debugger from NuMega Technologies Inc.

system principal components
executable

 size
(bytes)

Windows for
Workgroups
3.11

MS-DOS 213,000

KRNL386.EXE - control for seg-
mented memory

76,400

WIN386.EXE - the Virtual Machine
Manager (VMM) and other VxDs.
The VMM handles task switching,
paging, and other low-level services

577,577

USER.EXE - the windowing sys-
tem

264,096

GDI.EXE - graphics engine module 220,800

Windows NT
Version 3.5
Build 807

Executive - interrupt handling, VM,
IPC, file system, network

752,944

Win32 subsystem - Win32 user
interface, windowing system

4,194,304

NetBSD 1.0 /netbsd — monolithic kernel 606,208

XF86_S3 - X11 Windowing System
Server 3.1.1

2,400,256

Table 1. Components of the three systems.

3

process communication (IPC), file systems, and network access.
The NT Executive implements a set of native services which are
used by the protected subsystems. Services exported by the NT
Executive are intended for use by protected subsystems, and are
not meant to be accessed directly by applications [11].

The Win32 API is the preferred API for Windows NT appli-
cations. It provides a flat 4G byte virtual address space. The upper
half is reserved for the NT Executive, and the lower half is the user
address space. Unlike Windows, the user address space is private
and is not shared between Win32 processes. The Win32 protected
subsystem implements the display interface, the console input
device, the window manager, and also maintains input queues for
each Win32 client. Other subsystems (such as the POSIX sub-
system) act as Win32 clients when accessing the display or con-
sole input device.

Windows NT includes a Local Procedure Call (LPC) facility.
LPC supports message delivery via shared memory that avoids
copies when large amounts of data must be transferred [11]. To
reduce communications overhead, the NT Executive can cache
information in the client DLL and within the executive. Addition-
ally, multiple system call requests can sometimes be batched in a
single message.

The I/O system is composed of an I/O manager and device
drivers that can be loaded and unloaded dynamically as required.
NT device drivers can be composed hierarchically to implement an
I/O abstraction. For example, file systems such as FAT, HPFS, and
NTFS are implemented as device drivers. The multiple file system
implementations do not have direct access to the hardware.
Instead, they use an intermediate driver that accesses the hardware
directly. Intermediate drivers can also implement additional func-
tionality (such as mirroring, encryption, compression) when
installed at an appropriate level in the stack of drivers.

With the exception of the NTFS tests in Section 4.5 all Win-
dows NT experiments used the FAT file system. Disk caching is an
integral part of Windows NT. We did not have source code for
Windows NT. There are many books providing a more compre-
hensive technical description of Windows NT [11, 12, 30].

2.3 NetBSD
NetBSD is a descendent of Berkeley (BSD) UNIX, and was
selected as a representative example of modern UNIX systems. It
is a monolithic kernel, with the system call interface implemented
directly by the operating system kernel. Each NetBSD process
runs in its own 32-bit protected address space, with the lower half
available to the user process, and the upper half reserved for the
system. The X11 Windowing System runs outside the operating
system kernel as a collection of user processes. This is in contrast
to Windows and Windows NT, where the windowing system is an
integral part of the operating system. There are many excellent
technical references for UNIX systems [3, 22].

Our NetBSD system used the Berkeley Fast File System
(FFS) [27]. For our experiments, all NetBSD device drivers were
statically loaded. Executables were statically linked except as
noted. Our NetBSD kernel was compiled from the 1.0 distribution
at the default optimization level (-O6) with gcc version 2.4.5.2

The selection of our experimental UNIX platform was a dif-
ficult choice. We selected NetBSD because source code is publicly

2. Our NetBSD system was configured with clustering enabled,
rotdelay = 0 and maxcontig = 8.Coalescing I/O operations was
enabled.Aside from the addition of a device driver to access the
Pentium counters, one change was made locally to the system: a
trivial (3 line) change was required to the initialization code of the
NCR PCI SCSI device driver to support the NCR 815 controller.

available, and because it shares a common heritage and some
source code with many current commercial UNIX systems.
Although a commercial UNIX system might have permitted a
comparison using UNIX applications that more closely resembled
typical Windows workloads, all potential candidates had serious
shortcomings,3 so we chose a freely available system that we knew
would support the device drivers required by our study.

2.4 Related Work
Although prior work has considered the impact of structure on
UNIX operating systems [7], very little attention has been given to
the behavior of commodity operating systems. In the commodity
computing world, performance measurement studies are typically
based on the assumption that the Windows operating system will
be used, and concentrate primarily on the performance for varia-
tions in computer hardware [43]. Popular computing magazines
regularly publish articles that compare current operating system
offerings for PCs, but these evaluations usually focus on function-
ality. They tend not to explore performance issues [15, 42], and
when they do the analysis is superficial, presenting end-to-end
benchmark results with little attempt to explain or understand per-
formance differences [24]. In addition, these articles frequently
anticipate future OS offerings, going to press before the systems
that they feature are ready for performance evaluation [24, 42]. We
did find one study that compared 32-bit operating systems includ-
ing several commercial UNIX products; however, the article
focused on qualitative differences in functionality with criteria
such as “Graphics and Multimedia,” “Business Productivity,” and
“DOS and Windows emulation” [23]. Another study compared
“Network Operating Systems,” but the only performance results
presented were for local and remote file transfers [17].

Some attention from the research community has gone to
supporting MS-DOS interfaces under a UNIX operating system.
Forin & Malan [16] compare the FAT and Berkeley FFS file sys-
tems implemented for a Mach 3.0 system. Another article
described a server for the MS-DOS API on top of Mach 3.0 [37].

3. Methodology
In this section, we document the hardware and software details of
our experiments. We start by describing the hardware platform on
which this study is based. We next describe the particular Pentium
counters that we use in our study, and the software that we used to
access them. We go on to describe our microbenchmarks and
application workloads, and then close with a discussion of the met-
rics that we use to compare the three systems.

3.1 PC Hardware
Our experimental machine was based on the Intel Premiere II
motherboard, with a 90-MHz Intel Pentium processor, a 256K byte
direct-mapped second-level cache, and 32M bytes of main mem-
ory. The Pentium processor includes split first-level instruction
and data caches. The first-level caches are 8K bytes each and two-
way set-associative, with 32 byte lines and a pseudo-LRU replace-
ment algorithm. Periodically, the Pentium fetches a block of
instructions from the instruction cache and places them into one of
four large prefetch buffers. To deal with the Pentium’s variable
length instructions, the instruction cache can return anywhere from
17 to 32 bytes, as many as are required to fill the prefetch buffer.
Prefetch buffer logic handles instruction identification and align-

3. For example, Microsoft Word runs under SCO UNIX, but only using
XENIX emulation mode.

4

ment. The processor can issue two “simple” instructions during
each clock cycle. Dual datapath pipelines enable both instructions
to issue memory operations to the first-level data cache. More
complex x86 instructions (e.g. a string copy instruction) issue and
execute alone, but use both datapath pipelines. The Pentium on-
chip data cache is write no-allocate; writes that miss in the cache
do not affect cache contents.

The Pentium processor also includes separate instruction and
data translation lookaside buffers (TLBs) and a hardware TLB
fault handler. Both the instruction and data TLBs are 4-way set
associative with pseudo-LRU replacement. The instruction TLB
contains 32 entries. The data TLB contains 64+8 entries and is
dual-ported to support translation for two data memory references
per cycle. The 64-entry portion of the data TLB stores translations
for the 4K byte pages as specified by the 80386 architecture [19].
The 8-entry portion maps 4M byte pages. The larger page size is
used for graphics frame buffers and some operating system seg-
ments, to avoid flushing the 4K byte-page portion of the data TLB.

The Intel Premiere II motherboard has a PCI bus, an ISA
bus, and a BIOS ROM (AMIBIOS 1.00.10.AX1). We used a PCI
SCSI-II controller based on the NCR 815 chip to control two
Seagate ST32550N Barracuda hard disks. One disk was allocated
to NetBSD and the other was shared by Windows and Windows
NT. Our machine was equipped with a SMC-8013W ISA Ethernet
controller card and a Diamond Stealth 64D video adaptor card.
The video card has 2M bytes of DRAM memory and a Vision864
graphics chip.

3.2 The Pentium Counters
We made our measurements using event counters implemented in
the Intel Pentium processor. Although the counters are not docu-
mented in the public specification for the Pentium chip, they have
been reported in popular magazines [26], and it is rumored that
they will become a documented feature in future microprocessors
from Intel [18]. The following description of the Pentium counters
and our use of these undocumented hardware features is based on
the description from an unencumbered document [26] as well as
publicly available source code referenced in the same document.

The Intel Pentium processor includes one 64-bit cycle
counter and two 64-bit, software-configurable event counters. The
Pentium provides several privileged instructions for configuring
these counters. Each counter can be configured to count one of a
number of different hardware events. In addition, the counters can
be configured to count events in ring 0 (kernel mode), events in
rings 1 through 3 (user mode), or events in all rings. This feature
permits some separation of user and system activity; however such
counts cannot be compared directly across the three operating sys-
tems because each of the systems implements a different amount
of functionality in kernel mode. In Windows, the Virtual Machine
Manager (VMM) and virtual device drivers run in kernel mode,
but the rest of the system (including MS-DOS and the BIOS) runs
in user mode. In Windows NT, the NT Executive runs in kernel
mode, with applications and the Win32 subsystem running in user
mode. In NetBSD, only the kernel runs in kernel mode. This parti-
tioning must be considered when comparing kernel and user mode
events across the different systems. Because of the barriers to
comparison across systems, all counts reported in this paper are
the total for all protection rings.

Table 2 lists the subset of the Pentium event counts that we
report for our experiments. Although the cycle counter continues

to increment when the machine is halted (e.g. in the idle loop of
Windows NT), no other event counts are incremented.

In addition to using the Pentium cycle counter to measure
the run times of our benchmarks and applications, we also used
them to monitor our experiments. We recorded the cycle count for
every experiment, and used it to ensure that our experimental runs
were repeatable and that our measurements were not unexpectedly
affected by background activity.

3.3 Device Drivers
The Pentium counters are accessed and controlled using special
instructions that are available in kernel mode (ring 0) only. We
augmented each of the three operating systems with mechanisms
to support user level counter access and control. To accomplish
this under Windows, we used a virtual device driver, commonly
known as a VxD [36]. A VxD is a dynamically-loadable module
that runs in protection ring 0, in 32-bit mode. VxDs are commonly
used to multiplex physical devices for virtual machines. Windows
uses a dozen or so VxDs; additional VxDs can be specified in the
system configuration files that are processed during Windows ini-
tialization. VxDs are commonly activated by hardware interrupts
or system calls, but they can also publish an entry point, thereby
permitting user-level programs to call them directly. We used the
latter method to access our Pentium counter VxD.

For NetBSD, we accessed the Pentium counters using device
drivers and named files in /dev. We used four separate named
devices: one each for system and user event counts, one for the
cycle counter, and a fourth that implemented a software-based
count of idle loop iterations. This gave us a measure of the amount
of time a given workload spent waiting for disk requests. The
event counters were configured using ioctl system calls. Further
ioctl calls zero or freeze all counters in a single operation.

Windows NT provides an elaborate API to support dynami-
cally-loadable device drivers. Using this API we implemented a
device driver that is dynamically loaded into the NT Executive to
access the Pentium counters. This device driver allows user pro-
grams to manipulate the counters by using reads and writes of a
device special file, similar to the driver used with NetBSD.

Index Name Comments
0x00 Data Reads Count is independent of data

size. Misaligned reads count
twice.

0x01 Data Writes Misaligned writes count once.

0x02 Data TLB misses

0x03 Data read cache misses

0x04 Data write cache misses

0x0d Code TLB misses

0x0e Code cache misses

0x0f Segment register loads

0x16 Instructions executed Instructions using the REP pre-
fix count as a single instruction.

0x27 Hardware interrupts

Table 2. Pentium Event Counters.Only counters used in this study are
listed.

5

3.4 Microbenchmarks
We used a suite of microbenchmarks to measure and compare spe-
cific aspects of system functionality. Most of our microbench-
marks are based on thelmbench portable system measurement
suite [28], and all of them borrow from the lmbench methodology.
They include:

• Null — counter access latency. Measures time to access our
counter control device. A starting point for understanding
more complex behavior. This benchmark is not from the
lmbench suite.

• Syscall — minimum system call latency. Time to invoke
functionality implemented in the operating system.

• Exec — latency to load and run a trivial program. We tested
Exec with both static and dynamically loaded libraries.

• Memory access time — access time for references spanning
arrays of various sizes. This measures the impact of the
segmented architecture in Windows and of page-mapping
policy in Windows NT and NetBSD.

• A suite of file system performance tests.
• Bitblt — a graphics benchmark to test bitblt performance.

This benchmark is not from the lmbench suite.
• Netbw — a network throughput test.

The insights gained from understanding the microbenchmark
results provide a basis for analyzing the behavior of application
workloads. More detailed descriptions of the individual
microbenchmarks are given with the experimental results in Sec-
tion 4.

The benchmarks were compiled for each of the three sys-
tems with the highest available optimization level. Windows does
not support static linking for all libraries. All benchmarks on Net-
BSD and Windows NT were linked statically, except for the static
vs. dynamic linking comparison of the Exec benchmark. The
impact of compiler optimization on the microbenchmarks is small
— most of the measured execution time is system time and very
little time is spent in user code for the microbenchmarks. The
microbenchmarks were compiled for NetBSD with gcc version
2.6.3 using optimization level -O6. We used Visual C++ 1.5 for
Windows and Visual C++ 2.0 for Windows NT, with optimization
level /O2. No Pentium-specific optimizations were applied for any
of the experimental workloads or systems.

3.5 Application Workloads
For application workloads we restricted ourselves to software that
ran on all three systems. Regrettably, this excludes the “shrink-
wrapped” software that makes up the bulk of Windows computa-
tion. Our workloads may tend to favor NetBSD because all of
them were originally developed for the UNIX API. Despite this
bias, they do provide grounds for comparison, which Windows
software would not.

Wish is a command interpreter for the Tcl language that pro-
vides windowing support using the Tk toolkit [34]. Our goal in
using this workload was to model behavior that might be a part of
a graphical user interface. Our Wish benchmark was based on the
“widget” demo included in the standard Tk release. We used the
“source” Tcl command to load the widget file and “invoke” com-
mands to exercise various widgets on the screen. This workload
was CPU intensive, making extensive use of the windowing sys-
tem with little disk activity. Wish was compiled with standard opti-
mizations (-O) on all three systems.

Ghostscript is a publicly available Postscript previewer [2].
For our experiment, we used Ghostscript to display a 13 page,
372K byte conference paper. This workload was compute inten-
sive and made significant use of the windowing system and dis-

play. Relatively little time went to file access. Ghostscript was run
with the same screen resolution, view size, magnification, and
screen refresh rate on all three systems, and was compiled at the
highest optimization level. Ghostscript was dynamically linked on
all three systems.

Our third application, a World Wide Web Server [4], uses the
network and the file system. The NetBSD HTTP server used was
version 1.3R of the NCSA HTTP daemon, compiled with gcc 2.6.3
at optimization level -O2. The Windows NT server is distributed
as an executable from the European Microsoft Windows NT Aca-
demic Centre at the University of Edinburgh [1], and is the server
used by Microsoft (host www.microsoft.com). The Windows
HTTP server we used is from Alisa Corporation and is based on
the NCSA Mosaic code base.

We used a separate counter-control program to start, stop,
and record counter values. In this way we avoided including server
start-up and shutdown overhead in our measurements. The Web
experiments ran long enough so that the activity generated by the
counter control program was not significant. To improve the repro-
ducibility of our results, we defragmented our FAT disk before
loading the Web server tree. Because FFS has good aging proper-
ties [40], FFS defragmentation was not required.

3.6 Methodology and Metrics
When running our experiments we attempted to minimize back-
ground activity in the operating system. For NetBSD, this meant
that we ran our experiments in single-user mode. Experiments in
multi-user mode yielded similar results but with larger standard
deviations. We disconnected the network during all tests except the
Web server and network bandwidth experiments.

Idle time is implemented differently on each of the three
operating systems, and we account for these differences when
interpreting the counter values. Windows NT executes a HALT
instruction when the system is idle, and although the cycle counter
continues to increment, no instructions or other events occur. Net-
BSD, on the other hand, uses an idle loop. We adjust our NetBSD
counts for idle loop activity so that they are comparable with the
Windows NT counts. Windows also halts the machine during idle
time, however the idle halt is not used during disk waits; I/O
requests cause Windows to busy wait. This makes it harder to
interpret counts for Windows when significant disk activity occurs.

We use several different metrics in our comparison of the
different operating systems executing on the Pentium. The most
important measure is the time required by the computer system to
perform a specific task, and so we frequently usecycle countsto
compare the total latency for comparable computations on the
three different systems. We also reportinstruction counts for com-
parable computations. The instruction count gives a measure of the
total work involved in a computation for RISC processors, but
cannot always be readily interpreted for the Pentium. With its
complex multi-cycle instructions, there are many opportunities for
system programmers to implement equivalent computations that
cause vastly different instruction counts. A simple example is a
block copy operation, which can be implemented as a loop con-
taining load, store, and branch operations, or as a single instruction
(REP MOVSB). In the first case, the instruction count is propor-
tional to the number of data accesses. In the second case the
instruction count is one. We found that NetBSD and Windows NT
use the repeat prefix in their respective block copy routines, and
we found that Windows uses the repeat prefix extensively in hand-
coded assembler. In short, instruction counts cannot be immedi-
ately compared when evaluating two different operating systems.

We also report the total number of data read references and
data write references for each experiment. Again, these numbers
can vary depending on how a given operation was implemented,

6

although the variability is much lower than that of the instruction
count. We also use the Pentium counters to compare cache and
TLB performance for the three systems. These metrics are
reported asmisses per reference.

Ideally, we would have liked to present the percentage of
total cycles that result from (as an example) data cache read stalls.
The Pentium does provide stall cycle counts, but they cannot be
interpreted in this way. The Pentium with its ability to issue multi-
ple instructions per cycle and overlap the processing of multiple
events made it impossible for us to assign cycles to specific events.

The interpretation of data cache miss rates is further compli-
cated by the write no-allocate policy used by the Pentium data
cache, because write misses do not cause a cache fill. A side effect
of this policy is that consecutive writes to the same cache line can
cause multiple write misses. This magnifies the impact of writes
relative to total data activity. Although the misses per reference
metric we use to report data cache activity gives a measure of the
relative behavior of the three systems in the data cache, it should
not be used to estimate data stalls cycles and should not be com-
pared with instruction cache miss rates. Readers interested in the
precise count of read and write miss events that occurred during
our experiments should consult the extended version of this paper
[8].

The above metrics are used throughout the experiments.
Several experiments also use data from additional counters which
will be described as they are introduced.

4. Microbenchmark Results

4.1 The Null Benchmark
The Null benchmark measures the overhead for invoking our
device that controls the Pentium counters. Pseudocode for this
benchmark is as follows:

for (each counter)
for (50 iterations) {
 start();
 stop();
}

The functionstart() zeros the current counter, andstop()
stores the counter value in an in-memory log. We used the results
from this benchmark to determine correction factors for removing
counter maintenance overhead from the other experiments.

Figure 1 shows baseline results for the Null benchmark on
the three systems. Comparison of the instruction counts shows that
Windows requires far fewer instructions to access the counters
than do the other systems. This is because a user program can call
the Windows protected mode driver directly, with no significant
operating system activity. In NetBSD and Windows NT, the call to
the counter driver must pass through a layer of file system func-
tionality before reaching the actual device driver. Windows NT
requires many more instructions to access the counters relative to
the other systems. This overhead is due to the multiple protection
domain crossings required to access the counter device in Win-
dows NT. From the Windows NT documentation [11], we have
inferred that six protection boundary crossings are required for this
operation: from the application to the Executive; from the Execu-
tive to the Win32 subsystem; from the Win32 subsystem back into
the executive; and then a return through each of these domains. In
comparison, NetBSD requires two protection boundary crossings.
Windows does not require protection boundary crossings, although
it does require two changes of machine mode.

The results of the Null benchmark illustrate several other
distinctions between the operating systems that occur throughout

our experiments. The first is a higher cycles per instruction ratio
(CPI) for Windows (3.2) than for NetBSD (2.5). The higher CPI in
Windows is due in part to multi-cycle instructions used to imple-
ment calls between different Windows subsystems. Although the
same instructions are used in NetBSD, they have lower latency
because a change of machine mode is not needed. As an example,
the INT and IRET instructions that are used to call and return from
a VxD subroutine are accompanied by changes in the machine
mode under Windows, such that the latency of the INT and IRET
instructions are about 100 cycles [19]. In Windows NT and Net-
BSD, access to a protected device driver does not require a change
in machine mode, and this decreases the latencies of the INT and
IRET instructions to 48 and 27 cycles, respectively.

The counters reveal that the elevated cycle counts under
Windows NT are also due in part to a high instruction cache miss
rate relative to the other systems. Using 10 cycles as a lower bound
for the cache miss penalty, about 40% of the execution time is due
to instruction cache misses.

Overall, our Null benchmark accurately reflects the over-
head for accessing third-party kernel mode functionality in the
three systems. The results show that Windows applications that
directly access hardware devices get a substantial performance
advantage compared to the other two systems. However, the
results are not indicative of the time required to access system
functionality in general. The Syscall benchmark presented in the
next section gives a better indication of the cost of accessing func-
tionality implemented in the system.

4.2 The Syscall Benchmark
The Syscall benchmark measures the minimum time required to
invoke a system call. Pseudocode for our microbenchmark is as
follows

for (each counter)
for (50 iterations) {

start();
system call
stop();

}

AAAA
AAAA

AAAA AAAA AAAA

E
ve

nt
s

0

1000

2000

3000

4000

5000

6000

7000

Cycles Inst. Data read Data write

9
4

0

3
8

1

1
6

1

1
1

1

5
7

0
0

1
4

9
2

5
6

9

4
7

8

3
4

0

1
0

5

6
6

4
4

NetBSD NT
AAAA
AAAA
AAAA

Windows

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

M
is

se
s

pe
r

R
ef

er
en

ce

0

0.1

0.2

ICache ITLB DCache DTLB

0

0
.0

2
9

0
.0

1
30
.0

3
2

0
.0

0
1

9

0
.0

7
0

0
.0

0
1

3

0
.1

5

0

0
.0

3
6

0

0
.0

1
9

Figure 1. The Null Benchmark.These graphs show measures
of system activity required to access third party device drivers.
They illustrate the activity required to start and stop the
Pentium counters.

7

To test each system, we selected a call that always went to
the system (i.e. could not be batched or cached). For Windows NT
and NetBSD we used dup(). The choice in Windows was less
straightforward. In Windows, the concept of “system call” has
been complicated by the evolution of the system. Although early
Windows implementations ran entirely in 16-bit CPU modes, sig-
nificant functionality in more recent releases runs in 32-bit mode
[21, 39]. We present results for two Windows system calls, “get
extended error information” (int 21 function 59), which runs in 16-
bit mode, and “get interrupt vector” (int 21 function 35), which
runs in 32-bit mode. The comparison of system services imple-
mented in 16-bit vs. 32-bit mode allows us to evaluate the impact
of the shift towards a 32-bit Windows implementation.

Figure 2 shows results for the Syscall benchmark, corrected
for counter manipulation overhead. The overhead for the dup()
system call in Windows NT and NetBSD is similar to the overhead
required to start and stop the counters in the Null benchmark. Also,
observations from the Null benchmark with respect to the instruc-
tion cache continue to hold (Figure 1 and Figure 2). The “Get
interrupt vector” system call in Windows is the most efficient, with
the overhead for dup() in NetBSD slightly higher.

Comparing the two Windows system calls, the overhead for
the 16-bit call is a factor of six higher. The additional overhead can
be attributed to two causes. The first is changes in machine mode.
The 32-bit Windows call requires two changes of machine mode,
from 16-bit protected mode (user code) to 32-bit protected mode
(the kernel) and back again. In contrast, a 16-bit Windows call
requires at least six changes between three CPU modes: 16-bit pro-
tected mode, 32-bit protected mode, and virtual 8086 mode [32].
Additional machine mode changes are required when the system
call uses privileged instructions or executes from the BIOS ROM,
as is the case system calls for file access.4 Each change of CPU
mode requires a single instruction with latency of about 100 cycles

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

M
is

se
s

pe
r

R
ef

er
en

ce

0

0.1

0.2

0.3

ICache ITLB DCache DTLB

0
.0

4
6

0
.0

0
3

6

0
.0

1
8

0

0
.1

9

0
.0

1
7

0
.0

1
0

0
.0

0
1

3

0
.1

3

0
.0

0
9

4

0
.0

9
0

0
.0

1
4

0
.0

1
1

0
.0

7
6

0
.0

0
8

3

0
.1

3

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA AAAA AAAA

E
ve

nt
s

0

1000

2000

3000

4000

5000

6000

Cycles Inst. Data read Data write

7
7

0

2
8

0

1
3

4

8
6

4
7

0
0

1
0

6
2

4
1

3

2
9

5

3
9

0
0

7
4

2

4
9

5

3
3

5

4
05
21
2

16
0

0

NetBSD

NT

AAAA
AAAA
AAAA

Windows (16-bit)

AAAA
AAAA
AAAA

Windows (32-bit)

Figure 2. The Syscall Benchmark.These graphs show
measures of system activity required to access functionality
implemented in the operating system. Figures are corrected for
the cost of accessing the Pentium counters.

to save and restore hardware state, plus additional overhead to
maintain software state.

Another control structure that contributes to the cost of the
16-bit Windows call is the use of “hooks,” a mechanism by which
a program can extend MS-DOS functionality by intercepting sys-
tem calls. Many programs use hooks, including disk caching soft-
ware, CD-ROM drivers and disk compression software5. A system
call hook requires modifying the system call vector entry for int-
21; in this way, all interested programs filter system calls as they
arrive to see if the requested functionality is something they imple-
ment.

Our Syscall benchmark shows that NetBSD provides access
to all system functionality with low overhead, and the overhead is
similar for Windows functionality implemented in 32-bit.mode.
Both Windows NT and the 16-bit Windows calls have higher cost,
due to switching overhead between the various components of the
operating systems. As this test exercised very simple system calls,
most of the activity corresponds to system call invocation over-
head. In a realistic situation, system call invocation is a smaller
percentage of the latency required to service a system request.

4.3 The Exec Benchmark
The Exec benchmark measures how quickly the system can load
and run a trivial test program. Pseudo code for our benchmark is as
follows:

for each counter
for (50 iterations) {

start();
start_program_in_new_process();
wait_for_process_to_exit();
stop();

}
Data reported in this section is for the cost of a single program
execution averaged over 50 invocations. The activity required to
execute a program is slightly different for each system. NetBSD
uses the vfork() and exec() system calls. The vfork() avoids the
overhead of duplicating the parent address space. In Windows NT,
the CreateProcess() system call takes an executable file as one of
its parameters, and creates a new address space in which the exe-
cutable is subsequently run. For Windows, Win16 applications run
in a single shared address space so no address space creation
occurs. WinExec() takes an executable file along with other
parameters for running a program, loads the specified program into
the shared address space, and begins execution at its entry point.

We tested both static and dynamic linking for NetBSD and
Windows NT. Windows does not provide a comparable linking
option. Windows executables are linked statically with libraries
that provide functionality comparable to that of UNIX libraries.
References to system APIs are resolved optimistically, under the
assumption that DLLs (dynamically loaded libraries) will be avail-
able at a preferred location in the shared address space. If, when
the program is run, a DLL cannot be loaded in its preferred loca-
tion or has been loaded elsewhere, references to library functions
are updated with the correct address. A similar mechanism is used
with dynamically loaded Windows NT executables.

Our test program for Windows was loaded as a Windows
executable using Visual C++ Version 1.5 default settings (medium

4. The variety of protection mode transitions required by various
Windows calls is too complex to provide a comprehensive
explanation in this paper. The technical documentation for Windows
provides a more detailed description of this behavior.[32].

5. Our test system included disk-caching and CD-ROM drivers which
use int-21 hooks.

8

memory model, includes prologue for protected mode application
functions). On Windows NT we used a Win32 binary running in
Win32 console mode and using the window of its parent.

Figure 3 shows that the NetBSD static case gives the best
performance. Address space creation and program loading are rel-
atively simple operations in NetBSD and have been optimized
over many generations of UNIX systems. In contrast, the Win-
dows NT static case requires a factor of five more cycles than Net-
BSD. Part of this overhead is due to how functionality is split
between the NT Executive and the Win32 subsystem. The need to
support multiple APIs through protected subsystems make it nec-
essary for the NT Executive interface to be simple and general. In
the case of CreateProcess(), the Win32 subsystem uses two distinct
NT Executive calls, one to create an address space, and a second to
create a thread to execute in that address space [11]. Our measure-
ments for the static case are consistent with prior results for sys-
tems where the system API is implemented in a user process [7].
For Windows, exec overhead is higher than NetBSD static linking
and significantly lower than dynamic linking on either system.

Windows NT requires six times more data reads and five
times more data writes than NetBSD. Table 3 shows that the sizes
of the executables for the test programs are not responsible for this
difference. Extra copies of the executable file between the NT
Executive and the Win32 subsystem and the overhead of address
space duplication are probably contributing. A further possibility
is that mechanisms in NT are not optimized for the case of static
linking, as dynamic linking is the most common case.

Dynamic linking doubles the exec cost for NetBSD and
Windows NT. This is due to the increased cost of linking at execu-
tion time. The overhead for Windows NT is by far the highest of
any of the systems. Although this may not be important for pro-
grams that run for a long time, it would contribute to the delay in
starting applications.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA

M
is

se
s

pe
r

R
ef

er
en

ce

0

0.1

0.2

0.3

ICache ITLB DCache DTLB

0
.0

9
4

0
.0

0
9

4

0
.2

7

0
.0

2
2

0
.0

3
7

0
.0

0
4

8

0
.1

4

0
.0

1
8

0
.1

0

0
.0

0
8

4

0
.1

8

0
.0

0
8

8

0
.0

0
7

0
.1

5

0
.0

0
6

9

0
.0

9
2

0
.0

0
4

5

0
.2

1

0
.0

0
3

3

0
.0

6
1

Figure 3. The Exec Benchmark.This workload measures the
activity required to load and execute a trivial program. The
horizontal bars for the DCache columns indicate the relative
contribution of reads and writes to the DCache miss rate.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA

E
ve

nt
s

(t
ho

us
an

ds
)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Cycles Inst. Data read Data write

4
0

0

4
9

2
9

2
3

1
5

0
0

3
9

0

1
8

0

9
7

2
2

0
0

4
1

0

1
7

0

1
3

0 2
9

0

3
7

0

9
1

0

4
4

0
0

1
2

0

2
0

0

2
9

0

1
7

0
0

NetBSD static

NetBSD dynamic

AAAA
AAAA

NT static

AAAA
AAAA
AAAA

NT dynamic

AAAA
AAAA
AAAA

Windows

The results for the Exec benchmark serve as an example of
the cost of invoking significant system functionality. They also
serve to demonstrate how the structural differences between Win-
dows NT and NetBSD contribute to differences in performance.
Although the Exec benchmark is interesting for understanding sys-
tem structure, its relevance to performance is limited, particularly
for Windows and Windows NT, where applications typically run
for a long time once they are started, and where functionality is
frequently implemented as a subroutine or library call rather than a
separate program (for example, the dir command in the MS-DOS
command interpreter).

4.4 Memory Access Time
We used the memory read microbenchmark fromlmbenchto mea-
sure average memory access time for repeated references to inte-
ger arrays of various sizes, using a stride of 128 bytes. Pseudocode
for the benchmark is as follows:

void *a[SIZE], *p;
for (i = 0; i < SIZE; i++)

a[i] = (void *)&a[(i+32)% SIZE]
p = a[0];
start();
for (1,000,000 iterations)

p = *p;
stop();

Figure 4 shows experimental results for array sizes ranging
from 512 bytes to 1M byte. The curves show that differences in
memory access time between the three systems can be substantial.
Comparing Windows NT and NetBSD, both systems get similar
average access times below 8K bytes, where the test array fits in
the on-chip cache. Above 8K bytes, access times are determined
by how pages are mapped into the 256K byte board cache. Win-
dows NT uses a deterministic page mapping policy [7] that gives
similar performance for arrays up to the size of the second level
cache and a smooth performance degradation for arrays from
256K bytes up to 512K bytes (twice the size of the second level
cache). The deterministic page mapping policy guarantees that no
two pages will conflict for arrays less than 256K bytes, and that
pages will conflict in pairs for arrays from 256 - 512K bytes. At
the 512K byte boundary, each page conflicts with at least one other
page; thus the board cache is of no benefit as the array is traversed
sequentially.

NetBSD uses the trivial page mapping policy of simply tak-
ing the next page off the free list. Since the free list is unordered,
this results in a non-deterministic page mapping policy. The curve
for NetBSD shows that the NetBSD policy can do a poor job of
avoiding cache conflicts. The randomness in the NetBSD policy
causes unnecessary conflicts for arrays between 8K bytes and
512K bytes, giving NetBSD worse performance relative to Win-
dows NT up to a crossover point slightly before 512K bytes.
Above 512K bytes, the NetBSD policy randomly avoids conflicts,
sometimes providing slightly better performance than Windows
NT.

Windows NT uses a bin hopping algorithm that tries to allo-
cate physical pages so as to avoid conflicts in the cache [20]. Addi-

NetBSD Windows NT Windows

static 9 10 3

dynamic 14 3 not supported

Table 3. Size of child program for the Exec Benchmark, in kilobytes.
The anomaly in the sizes for NetBSD is due to extra code included
to support dynamic linking. This extra code is insignificant relative
to the size of a non-trivial program.

9

tionally, its file system buffer cache is integrated with the VM
system, allowing pages to be used by whichever subsystem
appears to need them the most. We found that this integration can
sometimes interfere with the page allocation policy, as the page
allocator will sometimes ignore a page bin request rather than take
a page from the cache manager. The NT measurements for Figure
4 were obtained from a recently booted system, so that few pages
were in use by the cache manager. Other tests showed that an NT
system with more pages allocated to the disk cache exhibits worse
behavior between 8 and 256K bytes.

Turning to Windows, the segment size limitation of the
Win16 interface causes performance degradation in all the tests.
The Win16 interface imposes a 64K byte upper limit for allocation
of contiguous memory. Because of the pointer-chasing loop used
by our microbenchmark, it is impossible for the Win16 compiler to
determine when a memory reference will cross a segment bound-
ary. This forces the Win16 compiler to generate a four-instruction
sequence to load the segment register, which is executed before
every array reference. Segment register maintenance increases the
instructions per iteration from one to five, and cycles per iteration
from a minimum of two (in case of a 512 byte array) to a minimum
of nine.

As the size of the array increases, we see that the effects of
the memory hierarchy on Windows reference times are similar to
those of the other two systems, except that the Windows curve is
shifted up due to the overhead of maintaining segment registers.
The segmented address space used by the Win16 API causes sig-
nificantly increased overhead both in terms of cycles and instruc-
tions for the Windows test, and is representative of behavior
expected in Win16 programs that use significant amounts of data
(more than 64K bytes) but have not been carefully tuned to accom-
modate segment boundaries. Readers should take note that this
benchmark tests the worst possible case for Windows data refer-
ence patterns, and that the penalty for most Win16 applications
will be smaller. In practice, skilled Windows programers use spe-
cial “near” and “far” declarations to control the compiler and avoid
segment management overhead.

Our memory access test shows that the operating system can
affect application performance in ways that have little to do with
the latency of operating system activity during program execution.
API and system policy have a large impact on the average memory
access times for user code.

Figure 4. Memory Access Time. This graph illustrates the
relationship between cycles per native integer memory
reference and array size, for arrays ranging from 512 bytes to
1M byte. A stride of 128 bytes was used. The shape of the
curves show how system policy, API, and memory hierarchy
parameters combine to determine memory access time.

0

10

20

30

40

50

60

256 1K 4K 16K 64K 256K 1M

C
yc

le
s

Array size in bytes (log2 scale)

NetBSD
NT

Windows

Array size in bytes (log2 scale)

4.5 File System Performance
Our file system tests evaluate three kinds of activity:

• operations that hit in the disk cache,
• accesses to small files that go to disk, and
• file creation.
We designed our experiments to focus on each type of activ-

ity independently, and to draw out the differences between the sys-
tems. It is important to recognize that a real system will require a
blend of operations that will not correspond to any single
microbenchmark. For Windows NT we tested both the FAT and
the NTFS filesystem. Windows uses the 16-bit MS-DOS imple-
mentation of the FAT filesystem by default, but a system configu-
ration option can be set to use a 32-bit implementation. For this
section we measured both implementations. All other Windows
experiments reported in this paper used the default 16-bit version.

A few details on the three file systems are useful for inter-
preting these results. A FAT file system has a single File Alloca-
tion Table (FAT) with a fixed size of 64K entries. Each entry holds
information for one logical disk block. As the size of the FAT is
fixed, the size of a logical disk block is determined by the size of
the filesystem. Our tests were run using a 256M byte partition,
which gives an allocation size of 4K bytes. Our NTFS filesystem
used 4K byte blocks6 (the maximum supported NTFS block size),
and our NetBSD file system used 8K byte blocks. A crucial detail
is that NTFS is a journaling file system [9]. This means that write
operations are written to a log and then written again when the
logged operation is committed. FAT is a very simple file system as
compared to NTFS or FFS; this affects the amount of activity
needed to perform basic file operations.

To investigate the cost of operations that hit in the disk cache
we used a workload that repeatedly reads a set of files smaller than
the cache. The relative behavior of NetBSD and the Windows NT/
FAT system is similar to the comparison of NetBSD and Windows
NT in the Syscall benchmark: NT/FAT consistently required more
instruction overhead than NetBSD. Figure 5 shows that NT/FAT
executes over twice as many instructions, and each instruction is
more expensive due to higher I-Cache and ITLB miss rates as
compared to NetBSD. For accessing small files in the buffer cache,
NT/FAT runs 2.5 times slower. Using NTFS instead of FAT
increases the overhead for Windows NT, with the instruction count
a 35% higher and the elapsed time in cycles increasing by 30%.
The default Windows system shows significantly higher overheads
than Windows with the 32-bit option enabled. Counts for cycles,
data reads and data writes for the 32-bit system are about one-half
of those measured for the 16-bit system. The 16-bit vs. 32-bit
buffer cache implementation alone does not explain the perfor-
mance difference, however, as the limiting resource in this experi-
ment should be memory bandwidth and not instruction issue rate.
We believe that an extra copy occurs within the user-level buffer
cache used in the 16-bit case. The limitations of our methodology
do not permit a more precise analysis.

For file system operations that require disk I/O, we found
that Windows NT has much higher latency than the other systems.
Figure 6 shows that, in both the NTFS and FAT cases, Windows
NT performance lags behind the other two systems by almost a
factor of two. One probable factor is the structure and complexity
of Windows NT. Figure 6 shows that instruction counts for Win-
dows NT are seven times higher than for NetBSD.

Another issue exposed by our experiments is disk layout.
FFS places file data and meta-data in nearby cylinders to reduce

6. In NTFS terminology, our filesystem used 512 byte blocks and 4K
byte clusters.

10

seek times when accessing a single file, and places files in the
same directory in nearby cylinders to reduce seeks between differ-
ent files. In contrast, FAT places all file meta-data in a single table,
requiring potentially long seeks when both file data and meta-data
are accessed in succession. Comparing NTFS to FAT under Win-
dows NT, instruction counts are higher for NTFS but cycle counts
are lower. This suggests that NTFS provides better disk layout
than FAT for this workload.

Windows instruction behavior differs greatly from the other
systems in that Windows busy waits during disk requests rather
than using I/O interrupts.7 This is a probable explanation for the
high instruction counts and low cycle count for the Windows cases
as compared to NT/FAT (Figure 6). The count of non-clock inter-
rupts during the small file disk test (Table 4) shows that Windows
is busy-waiting for disk events rather than using interrupts. Win-
dows NT/FAT uses many more I/O interrupts per disk request than
NetBSD. This is due to the absence of certain device-dependent
optimizations in the Windows NT device driver implementation.8

7. Windows performance is a factor of five worse (in cycles) when the
default device driver is used to access the SCSI device. As MS-DOS
runs in Virtual 8086 mode and Windows applications run in Protected
16-bit mode, the standard driver requires an expensive copy
operation to transfer the I/O data from MS-DOS memory to memory
the application can use. Better performance is possible with a SCSI
device and device driver that use a technique called “VDMA” - DMA
to virtual memory [33]. VDMA is supported by the NCR 815 SCSI
interface we used.

8. Alessandro Forin. Personal Communication.

NetBSD NT/NTFS NT/FAT Win (16) Win (32)

8842 113276 59944 444 450

Table 4. Non-clock Interrupts during the Small File Disk Test.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA

M
is

se
s

pe
r

R
ef

er
en

ce

0

0.1

0.2

0.3

ICache ITLB DCache DTLB

0
.0

9
9

0
.0

0
4

0

0
.2

5

0
.0

0
6

0

0
.1

5

0
.0

0
9

0

0
.1

8

0
.0

0
7

5

0
.1

7

0
.0

1
2

0
.1

8

0
.0

0
4

5

0
.0

0
7

8

0
.1

9

0
.0

0
6

2

0
.0

9
2

0
.0

0
5

8

0
.1

9

0
.0

0
3

0

0
.0

7
8

Figure 5. Buffer Cache Test. This test measured read
performance from the file system cache by measuring the read
time for 128 4K byte files that had been recently created.
Hardware interrupts were monitored to ascertain that no disk
accesses occurred.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA

E
ve

nt
s

(m
ill

io
ns

)

0

2

4

6

8

10

12

14

16

18

20

Cycles Inst. Data read Data write

5
.2

0
.7

4

0
.4

7

0
.3

1

1
7

2
.7

1
.2

0
.9

5

1
3

2
.0

0
.9

2

0
.7

6

1
.01

.8

3
.2

1
7

0
.5

0

0
.8

3

1
.6

8
.3

NetBSD

NT/NTFS

AAAA
AAAA

NT/FAT

AAAA
AAAA
AAAA

Windows (16-bit)

AAAA
AAAA
AAAA

Windows (32-bit)

The large number of interrupts for NT/NTFS may be due to meta-
data logging overhead, although we could not determine this for
certain.

For small file accesses, the 32-bit Windows option offers no
advantage over the 16-bit case, increasing the latency by almost
10%. The similarity is due to the fact that both implementations
rely on the same 16-bit device driver for the SCSI disk.

Our last file system microbenchmark evaluates the cost of
meta-data operations. FFS uses two synchronous writes for every
file creation, to guarantee the integrity of file creation across sys-
tem failures. In contrast, the disk caches used with FAT buffer
meta-data operations in memory [12, 31], and NTFS writes them
to a log, deferring the actual operation until a more convenient
time. To quantify the performance impact of these policy differ-
ences, we used a benchmark that created 128 zero-length files
(Figure 7). Meta-data operations are an order of magnitude faster
under Windows NT/FAT than under NetBSD/FFS. The low num-
ber of non-clock hardware interrupts shows that meta-data updates
remain in memory for the FAT filesystems rather than being writ-
ten synchronously to disk as with FFS (Table 5). As a result, this
workload is disk-bound under NetBSD and CPU bound under
Windows NT and Windows. The low number of I/O interrupts for
NTFS is explained by the fact that it uses a lazy commit policy,
batching log records rather than forcing them to disk immediately
after a create [13].

The FAT tests for Windows NT and Windows show how
weak FAT semantics influence the performance of meta-data
updates. In both cases, FAT handles meta-data more quickly than
FFS, although the high overhead of the 16-bit Windows imple-
mentation increases the overall instruction and cycle counts (Fig-
ure 2 and Figure 7). The meta-data test gives the best illustration of

Figure 6. Small File Disk Test. Performance of file accesses to
disk was measured by reading 8192 - 8K byte files. The files
were split evenly among 32 directories.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

E
ve

nt
s

(m
ill

io
ns

)

0

5000

10000

15000

Cycles Inst. Data read Data write

3
8

0
0

8
5

5
3

3
9

8
2

0
0

6
6

0

3
0

0

2
3

0

9
2

0
0

5
0

0

2
1

0

1
4

0

5
1

0

7
2

01
2

0
0

4
6

0
0

6
3

0

8
5

01
7

0
0

4
9

0
0

NetBSD

NT/NTFS

AAAA
AAAA

NT/FAT

AAAA
AAAA
AAAA

Windows (16-bit)

AAAA
AAAA
AAAA

Windows (32-bit)

AAAA
AAAA

AAAA AAAA AAAAAAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAAAAAA
AAAA

AAAA AAAA AAAA

E
ve

nt
s

(m
ill

io
ns

)

0

100

200

300

Cycles Inst. Data read Data write
2

3
0

2.
2

0.
95

0.
49

4
4

1
1

4.
1

2.
71

8

5.
0

2.
3

1.
1 6.
8

1
11
2

7
3

0.
57

1.
3

3.
21
0

NetBSD

NT/NTFS

AAAA
AAAA

NT/FAT

AAAA
AAAA
AAAA

Windows (16-bit)

AAAA
AAAA
AAAA

Windows (32-bit)

Figure 7. Meta-Data Test. This test measured the overhead of
creating 128 zero-length files.

11

the impact of the compromise in NTFS between FAT and FFS
semantics. NTFS provides low latency and recoverability, but does
not guarantee that meta-data operations will survive a crash. FFS
provides this guarantee but incurs higher latency. FAT provides
neither recoverability or guaranteed meta-data operations, but it
does have better performance. Finally, the comparison of NT/FAT
and the 32-bit Windows test shows the impact of the microkernel-
like structure of Windows NT, with NT overhead almost a factor
of two higher.

Overall, our file system measurements show that system
structure has a significant impact on the cycles and instructions
required for file system operations. For all our microbenchmarks,
NT/NTFS requires four times more instructions than NetBSD for
similar file operations. For operations that go to disk, the file allo-
cation algorithms also affect latency and system overhead. While
Windows NT performs worse than NetBSD for file operations to
disk, it avoids overhead through relaxed commit semantics in the
meta-data test. Additionally, by unifying the disk cache and VM
free page pool, Windows NT can economically support a much
larger disk cache than the statically allocated cache in NetBSD.
For disk-intensive workloads, this can significantly reduce the
number of disk operations required by Windows NT as compared
to NetBSD. This behavior is observed in our Web Server applica-
tion benchmark (Section 5.3).

4.6 Graphics Performance: Bitblt
The goals of our Bitblt experiment were to compare the three sys-
tems with respect to a specific graphics operation, and to gain
insight on the impact of graphics performance on the Ghostscript
workload. Although a comprehensive study of graphics perfor-
mance is beyond the scope of this work, the performance of the
bitblt operation exposes key differences between the three systems
that give insight into other aspects of graphics performance.

Our Bitblt benchmark displayed a 570x1520 array of pixels
in a window of size 570x760 (the maximum permitted by the reso-

NetBSD NT/NTFS NT/FAT Win (16) Win (32)

261 46 0 0 0

Table 5. Non-clock interrupts during the Meta-data test.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA AAAA AAAA

E
ve

nt
s

(m
ill

io
ns

)

0

200

400

600

800

1000

1200

Cycles Inst. Data read Data write

9
7

0

7
3

0

2
5

0

1
1

01
9

0

7
.3 1
2

1
0

6
4

0

8
.0 1
2

1
2

NetBSD NT
AAAA
AAAA
AAAA

Windows

Figure 8. The Bitblt test. This workload repeatedly displayed
560x760 arrays of pixels to the screen.

AAAA AAAAAAAA AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAA

M
is

se
s

pe
r

R
ef

er
en

ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ICache ITLB DCache DTLB

0
.0

0
1

4

0
.0

0
0

1
0

0
.0

6
4

0
.0

0
0

3
0

0
.0

2
5

0
.0

0
3

2

0
.5

0

0
.0

0
2

9

0
.0

1
6

0
.0

0
0

6
0

0
.5

0

0
.0

0
0

7
0

lution of our screen), repeating this operation 760 times. The first
iteration displayed rows 0-759 and the row index was increased by
one with each iteration. Figure 8 shows results for an array of one-
bit pixels. NetBSD requires a factor of ten more data references
and a factor of 100 more instructions than Windows or Windows
NT. To understand this behavior we consider the specific opera-
tions used by each system to move a pixel array from its source to
the screen.

A 570x760 bitmap occupies 54K bytes. Copying the bitmap
into graphics memory 760 times implies a transfer of approxi-
mately 40M bytes or 10 million 32-bit words. Windows and Win-
dows NT copy each bitmap only once, from application memory
directly into graphics memory as a 1-bit per pixel array. This
explains the approximately 10 million data writes for Windows
and Windows NT. X11 appears to copy each pixel map multiple
times, with the most expensive copy transforming the 1-bit per
pixel array into an 8-bit per pixel array. This increases the required
number of writes by a factor of eight over Windows and Windows
NT, accounting for 80 million writes. Our experiments indicate
that the additional 26 million writes occur in the X11 server,
although the complexity of the X11 source and the limitations of
our tools made it difficult to identify the source of the writes with
any greater precision. We measured about 1.5M kernel-mode
writes during the test, indicating that no copy of the image data
occurred in the kernel.

The number of instructions executed in Windows and Win-
dows NT is significantly less than the number of data references.
This indicates that the REP prefix is being used to copy many
words with a single instruction. In X11 pixels are copied using
machine independent code written in C. It appears that the code
generated by the compiler does not use the REP prefix, and each
write instruction issued writes at most a single word. X11 uses
twice as many read operations as write operations because each
word is read twice during the conversion from one-bit to eight-bit
pixels. Overall we see that protection and portability in X11 have a
significant cost for the bitblt operation.

4.7 Network Throughput
Our network throughput benchmark was designed to determine if
network throughput was limiting performance in our Web server
experiments. We measured the time to send a 256K byte buffer to a
remote host on a dedicated Ethernet, using TCP/IP and a 24K byte
receive buffer. Figure 9 shows comparable networking behavior
for NetBSD and Windows NT, with similar instruction, data refer-
ences, and data cache miss counts. The only significant difference
between the two systems was worse code locality for Windows
NT, with both instruction cache and TLB misses significantly
higher. This is consistent with results for other benchmarks, sug-
gesting that Windows NT has worse overall instruction locality
than the other systems.

Although Windows shows higher event counts than the other
systems, throughput is comparable with the other two systems at
about 1M byte per second. All three systems are limited by the
capacity of the raw Ethernet, and not by internal software bottle-
necks.

4.8 Microbenchmark Summary
Our experiments with microbenchmarks have identified several
key performance differences between the three systems. In Win-
dows, frequent CPU mode changes require expensive multicycle
instructions, and the 64K byte segment size limitation imposes
extra overhead in application code. The Null and Syscall bench-
marks revealed higher instruction counts and instruction cache
penalties in Windows NT, due in part to the user-level implementa-

12

tion of the Win32 API. At the same time, a more efficient graphics
implementation and relaxed file system semantics give the
Microsoft systems a performance advantage over NetBSD.
Although they reveal important structural differences between the
systems, the relevance of microbenchmarks to the performance of
realistic workloads is limited. In the next section we examine the
effect of the differences between the systems for more realistic
workloads.

5. Application Workloads
Table 6 gives baseline information for our application workloads.
Because all of the workloads have a working set size of under 32M
bytes, no significant paging activity occurred during the experi-
ments. Extensive use of dynamically loaded libraries makes it dif-
ficult to interpret executable sizes for these programs. For this
reason we have provided both executable size and resident size.
Although these measurements are crude, they do give an indica-
tion of the real memory requirements of the application.

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA

M
is

se
s

pe
r

R
ef

er
en

ce

0.000

0.100

0.200

0.300

0.400

ICache ITLB DCache DTLB

0
.0

5
0

0
.0

0
0

3
0

0
.2

9

0
.0

0
1

0

0
.1

1

0
.0

0
3

1

0
.3

0

0
.0

0
2

80
.0

6
9

0
.0

0
3

3

0
.3

0

0
.0

0
2

8

Figure 9. Network Throughput test. For this benchmark a 256K
byte buffer was sent over a dedicated 10Mb Ethernet using a 24K
byte receive buffer.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA

AAAA AAAA

E
ve

nt
s

(t
ho

us
an

ds
)

0

5000

10000

15000

20000

25000

30000

35000

Cycles Inst. Data read Data write

2
2

0
0

0

8
8

0

5
8

0

3
8

0

2
3

0
0

0

8
9

0

5
1

0

4
0

0

2
4

0
0

0

1
3

0
0

7
4

0

6
2

0

NetBSD NT
AAAA
AAAA
AAAA

Windows

5.1 Wish
Our Wish benchmark allows us to compare the overhead required
by each of the three systems to support a graphical user interface.
The system activity includes context switches and communication
between the application and graphics server. Because the bench-
mark does not use large data files, little disk activity occurs during
the run. Figure 10 shows that the cost of accessing system func-
tionality in Windows results in higher overhead both in terms of
cycle counts and instructions executed. Wish requires frequent
switching between the graphics device VxD (protected 32-bit
mode), the window manager (16 bit mode), and the application (16
bit mode). These frequent changes of CPU mode, along with 16 bit
data transfers, contribute to higher cycle counts in Windows. The
differences between Windows NT and NetBSD can be attributed
to two factors: domain crossings required by the server-based
structure of Windows NT, and stall cycles due to worse memory
locality. Windows has relatively good instruction cache behavior,
consistent with results for the microbenchmarks. However, the
high instruction count dominates Windows performance.

Counts of segment register loads (Table 7) provide a useful
indication of the sources of system overhead in Wish. In Windows
NT and NetBSD, segment register loads are required for changes
of protection domain. In Windows they are required for changes of
machine mode and to support the segmented address space. Apart
from being an indicator of system activity, segment register loads

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

E
ve

nt
s

(m
ill

io
ns

)

0

500

1000

1500

2000

2500

Cycles Inst. Data read Data write

6
4

0

2
2

0

8
4

4
6

1
4

0
0

3
4

0

1
4

0

8
9

1
8

0
0

9
2

0

2
3

0

1
4

0

NetBSD NT
AAAA
AAAA
AAAA

Windows

AAAA
AAAA
AAAA
AAAA

AAAAAAAA AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAA

M
is

se
s

pe
r

R
ef

er
en

ce

0

0.1

0.2

ICache ITLB DCache DTLB

0
.0

4
6

0
.0

0
1

5

0
.1

2

0
.0

0
3

3

0
.0

7
5

0
.0

0
8

6

0
.1

1

0
.0

2
2

0
.0

2
3

0
.0

0
0

8
0

0
.1

3

0
.0

0
2

0

Figure 10. Wish.This benchmark was based on the “widget”
demo included in the standard Tk release.

Workload
Execution time (seconds) Executable size (kilobytes) Resident Size (kilobytes)

NetBSD NT Windows NetBSD NT Windows NetBSD NT Windows

Wish 7.05 14.94 18.95 433 1080 836 1740 1000 799

Ghostscript 16.92 9.30 20.32 397 472 555 2380 3000 1535

Web Server 45.56 83.33 52.22 243 225 243 3684 4688 1004

Table 6. Application Workloads.Executable size for Wish includes executables and Wish-specific DLLs. The resident sizes were measured using the ps
command under NetBSD, the Performance Monitor under Windows NT, and Stretch utility from Microsoft Visual C++ 1.5 under Windows. The Web
Server under NetBSD forks approximately 22 processes, each of which has an average resident size of 399K bytes. These resident sizes are not addi-
tive because all text pages are shared and data pages are shared copy-on-write. The NetBSD Web resident size estimate assumes 156K bytes of unique
data per process.

13

can be expensive instructions (Section 4.4). Windows NT required
eight times as many segment register loads as NetBSD. This
shows that hardware protection boundary crossings are much more
frequent in Windows NT, and are probably due to its use of a
server-based API implementation. Windows requires a factor of 28
more segment register loads than Windows NT, demonstrating
how context switching and segmented memory in Windows has
substantial overhead for applications using graphical user inter-
faces.

Elevated TLB miss rates for Windows NT (Figure 10) also
suggest frequent context switches, and give evidence of memory
locality problems in Windows NT as compared to the other two
systems.

5.2 Ghostscript
To understand the results of our Ghostscript experiment, it is
important to understand the differences in how graphics are ren-
dered in the three systems. The NetBSD version of Ghostscript
uses Xlib functions such as XDrawString() to render graphics.
This distinguishes it from the Windows and Windows NT versions
of Ghostscript, which render directly into a pixel map in applica-
tion memory. When a page has been completed, control is trans-
ferred to the windowing system and the pixel map is displayed on
the screen. This rendering operation was explored in isolation in
Section 4.6 with our Bitblt microbenchmark. Figure 11 shows that
graphics performance differences between the three systems have
a significant impact on application performance.

The performance of Windows NT was almost a factor of two
better than the other systems, both in terms of instruction counts
and elapsed time in cycles. Compared to Windows NT, NetBSD
suffers from its inefficient graphics implementation. Part of the
cycle differences between Windows and Windows NT is perfor-
mance of graphics primitives; however, this does not explain the
difference in instruction counts. We suspect that some part of the

NetBSD Windows NT Windows

170,827 1,400,228 37,715,255

Table 7. Segment register loads for Wish.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

E
ve

nt
s

(m
ill

io
ns

)

0

500

1000

1500

2000

2500

Cycles Inst. Data read Data write

1
5

0
0

5
9

0

2
6

0

1
3

0

8
4

0

3
7

0

1
3

0

7
7

1
8

0
0

7
3

0

3
2

0

1
7

0

NetBSD NT
AAAA
AAAA
AAAA

Windows

Figure 11. Ghostscript. For this benchmark, Ghostscript was
used to preview a 13 page, 372K byte conference paper.

AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAA AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAA

M
is

se
s

pe
r

R
ef

er
en

ce

0

0.1

0.2

ICache ITLB DCache DTLB

0
.0

4
6

0
.0

0
1

3

0
.0

6
2

0
.0

0
1

50
.0

3
1

0
.0

0
1

3

0
.1

2

0
.0

0
3

30
.0

3
3

0
.0

0
1

6

0
.0

6
6

0
.0

0
1

7

difference is due to a combination of the effects observed in the
Memory Read microbenchmark and the Syscall benchmark. The
difference in data reference counts between Windows NT and
Windows is striking, although the limitations of our tools do not
permit us to explain it fully. Sixteen bit data accesses under Win-
dows are likely to be contributing to the problem.

We ran Ghostscript using publicly available distributions on
all three systems, and although the three implementations are sub-
stantially similar, only the UNIX version displays in color. Color
has minimal impact on the bandwidth required by X11 protocol
requests, but it could have a large impact for Windows and Win-
dows NT versions of Ghostscript if they used color rather than bit-
maps. We investigated this impact of color pixel maps by running
a version of the Bitblt test which used 8 bits-per-pixel rather than
one. Not surprisingly, the number of data reference operations and
the latency of the benchmark increased by approximately a factor
of eight. This suggests that a color version of Ghostscript for Win-
dows NT might have to change the way it interacts with the graph-
ics system in order to avoid a large performance hit, either by
using high-level graphics operations, more like X11 protocol
requests, or by rendering directly into screen memory.

5.3 Web Server
Baseline results for the Web server appear in Figure 12. The
throughput for the NetBSD and Windows servers is similar at
about 20 requests per second, while the NT server achieves only
about 14 requests per second. Unlike the network throughput
benchmark, the limiting resource in this case was not the Ethernet,
which was transferring data at less than 11% of its capacity (144K
bytes/second for Windows NT), but rather the combined require-
ments of network activity and filesystem access. Additionally we
believe that the Windows NT system was affected by problems in
its networking implementation.

For each operating system, we set the Web client parameters
to maximize server throughput. The accept queues of both Win-
dows and Windows NT were easily overrun by parallel connection
attempts, resulting in a significant performance penalty. Windows
throughput dropped significantly under a load of nine or more con-
current requests, so we limited the number of concurrent Windows
requests to eight. The Windows server generated approximately
900 connection-refused messages for 1024 successful HTTP
retrievals. For Windows NT, even a small number of back-to-back
connection requests caused long periods of idle time that we could
not explain. By inserting a 40ms pause in the client between
requests we were able to achieve reasonable throughput with up to
15 concurrent requests. We did observe higher throughputs (up to
16 requests per second) when the number of concurrent requests
was increased over 15, but at this load the NT system would some-
times enter a state where throughput dropped to about four
requests per second. This degenerate behavior occurred consis-
tently with 20 or more concurrent requests. We ran our Windows
NT experiments with a maximum of 15 concurrent requests to
avoid this degenerate behavior. The throughput of NetBSD
increased in a stable way with increased client parallelism. We
drove the NetBSD Web server with 32 concurrent requests. No
connections were refused under NetBSD.

All three systems suffer from very high memory system pen-
alties. Figure 12 shows that Web server cache miss penalties are
higher for the NetBSD and Windows NT Web servers than for our
other application workloads. Although there is some locality in our
Web trace, the cache memory is not large enough to take advan-
tage of it. This suggests that machines intended to provide high
performance Web service could benefit from optimizations to
avoid cache latency.

14

Instruction cache miss rates are significantly higher for Win-
dows NT than for the other two systems, and this supports our
overall conclusion that Windows NT has worse instruction locality
than the other two systems.

Windows NT requires fewer instructions than the other two
systems. Its integrated buffer cache/free memory pool means that
more file system requests can be serviced without going to disk,
hence there are fewer disk requests (Table 8). The other two sys-
tems have smaller buffer caches, resulting in more disk activity
during the trace. The NetBSD system benefits from higher paral-
lelism to maintain throughput in spite of increased disk activity.

5.4 Discussion
Our experiments have revealed a number of structural issues that
affect the performance of the three operating systems we studied.
System designers can benefit from an understanding of these
issues.

Prior work has documented the overhead required to support
a microkernel system [7]. Our experiments confirm these prior
results and show that they apply to Windows NT and more gener-
ally to systems that implement system APIs as user processes.

Prior to our investigation of Windows we imagined we
might discover advantages to the unified address space model that
would provide support for proposed system structures such as
Exokernels [14] and software virtual memory [25]. We did not.
The Windows example provides no convincing evidence for the
advantages of eliminating protection boundaries.

NetBSD Windows NT Windows

13226 13516 43615

Table 8. Non-clock interrupts for the Web server. The interrupt
counts for the Web Server benchmark show that NT benefits from its
integrated buffer cache, doing many fewer disk requests than Net-
BSD. (Recall from Section 4.5 that NT uses four interrupts per disk
request as compared to one for NetBSD). Our observation of the
LED activity indicator on the disk drive confirms this conclusion.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

E
ve

nt
s

(m
ill

io
ns

)

0

2000

4000

6000

8000

10000

Cycles Inst. Data read Data write

4
1

0
0

9
3

0

3
8

0

2
1

0

7
5

0
0

6
9

0

2
8

0

1
8

0

4
7

0
0

1
2

0
0

6
1

0

4
5

0

NetBSD NT
AAAA
AAAA
AAAA

Windows

AAAA
AAAA
AAAA

AAAAAAAA AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAAAAAA

M
is

se
s

pe
r

R
ef

er
en

ce

0

0.1

0.2

0.3

ICache ITLB DCache DTLB

0
.0

4
7

0
.0

0
3

4

0
.1

9

0
.0

1
6

0
.1

2

0
.0

0
8

0

0
.1

3

0
.0

0
9

2

0
.0

3
2

0
.0

0
2

0

0
.0

9
9

0
.0

0
2

1

Figure 12. Web Server. This workload used a trace of 1024 Web
server requests to the hostwww.nsca.uiuc.edu for a total of 9.7M
bytes of data. The test was run using a dedicated network. The
server load was generated by a client using non-blocking socket I/O
to issue parallel HTTP requests. The servers were configured to
keep an access log and to ignore access controls.

A number of shortcomings of the Windows system model
have become apparent in our study of the three systems. System
call hooks provide a degree of flexibility in Windows, but there is a
performance penalty associated with that flexibility. Because Win-
dows must support prior generations of software, machine mode
changes are unavoidable. The penalties associated with this back-
wards compatibility requirement are apparent from our measure-
ments, and the penalties are likely to increase in future generations
of 80386 compatible processors [10]. The segmented memory
architecture used by Windows not only complicates programming
but also has serious performance implications. As with machine
mode changes, these penalties are expected to increase in future
PC processors. The performance issues that we discuss for Win-
dows for Workgroups 3.11 have been recognized by Microsoft. By
discouraging use of segmented memory and reducing machine-
mode changes, Windows 95 [21] addresses these problems. Our
results for 32-bit Windows functionality in Sections 4.2 and 4.5
give an indication of the performance that can be anticipated in
Windows 95.

Our Web server experiment demonstrates the potential bene-
fit of integrating the buffer cache and free page pool for Web serv-
ers and other systems where disk caching has a significant
performance impact. However, the memory test provides an exam-
ple of how such integration of resources also creates new problems
in resource management. System implementors need to be aware
of these problems and implement systems with the flexibility to
accommodate potential tradeoffs.

Hardware manufacturers who want to provide improved per-
formance for the current generations of the Windows operating
system will probably need to control the latency of multi-cycle
operations such as segment register loads and machine mode
changes. If Mach 3.0 and Windows NT are indications of the
direction of future operating systems, hardware designers need to
anticipate an increase in the absolute amount of system activity
needed to support a typical user computation. They may need to
consider more aggressive techniques for accommodating poor
instruction locality [5, 44].

6. Conclusions
The structure of personal computer operating systems has a signif-
icant impact on the cost of accessing system functionality. Our
experiments have served to quantify performance differences in
three personal computer operating system, and to identify some of
their sources.

The Windows backward compatibility requirement is detri-
mental to performance. Using our microbenchmarks we identified
machine mode changes, system call hooks, and segmented mem-
ory as aspects of Windows structure that have a detrimental impact
on performance.

A significant part of the cost of system functionality in Win-
dows is due to the structure of the system rather than the API
required by Windows applications. The superior performance of
Windows NT relative to Windows suggests that PC-style applica-
tions can be supported without the large negative performance
impact that occurs in the current Windows implementation. Even
so, the microkernel system structure used by Windows NT to sup-
port protected address spaces and multiple APIs leads to a signifi-
cant increase in system overhead for microbenchmarks relative to
NetBSD. Furthermore, our measurements consistently showed that
Windows NT has worse instruction locality. Windows NT presents
a higher load to TLBs and caches than the other two systems. This
may be due to its microkernel-like structure, or the way objects are
used for resource management, although without better tools it is
difficult to pinpoint the difference with any precision. Finally, an

15

efficient graphics implementation helped Windows NT achieve the
best overall performance for Ghostscript, in spite of the negative
performance impact of Windows NT structure that was exposed by
the microbenchmarks.

Our experiments with NetBSD demonstrate the performance
advantages of its monolithic structure. Although in most cases the
performance impact of protection and portability is not significant,
it can lead to extra copies and poor use of hardware features, as
shown by the graphics microbenchmark. The poor use of graphics
hardware in NetBSD is due to issues of portability, adherence to
open standards, and the overhead required to support a network
windowing system. It would be possible to improve graphics per-
formance for NetBSD by supporting more device-dependent
graphics, but it is not clear that the trade-offs, in terms of function-
ality, make it a desirable option.

A major shortcoming of our workloads is that they are Unix-
centric. They fail to demonstrate the strong point of Windows —
the abundance of interactive application software available for that
platform. Even so, they have permitted us to understand perfor-
mance issues and identify crucial structural differences between
personal computer operating systems.

Microbenchmarks are useful because they are easy to ana-
lyze. With realistic applications it is much more difficult to get a
complete understanding of software activity during a computation.
Our experiments with application workloads give evidence that the
behavior we isolated with our microbenchmarks has significant
impact in realistic situations. Performance counters provide clues
about behavior, but often they cannot give conclusive evidence. A
means of acquiring complete and detailed measurements of the
activity within the system is needed. This is the subject of continu-
ing work at Harvard.

7. Acknowledgments
We are grateful to Andrew Black, Alan Eustace, Sando Forin,
Mike Jones, Gene Munce, and the SOSP program committee for
useful comments on preliminary drafts of this paper. We would
also like to acknowledge Larry McVoy, who made thelmbench
suite available for our work. Special thanks to Terje Mathisen for
his work documenting the Pentium counters.

Microsoft, MS-DOS, Windows, Windows NT, Visual C++,
Win32, Windows for Workgroups and XENIX are trademarks of
Microsoft Corporation. UNIX is a trademark of X/Open. Intel and
Pentium are trademarks of Intel Corporation. IBM and OS/2 are
trademarks of IBM Corporation. Postscript is a trademark of
Adobe Systems Incorporated. SCO is a trademark of The Santa
Cruz Operation Inc. Soft Ice is a trademark of NuMega Technolo-
gies.

8. Bibliography
[1]. Chris Adie.HTTP Server Manual, Version 0.96. European

Microsoft Windows NT Academic Centre, University of Edin-
burgh, Edinburgh, UK, November 1994.

[2]. Adobe Systems Incorporated.Postscript Reference Manual.
Addison-Wesley, Reading, Massachusetts, 1985.

[3]. Maurice J. Bach.The Design of the UNIX Operating System.
Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[4]. T. Berners-Lee, R. Cailliau, J-F. Groff, and B. Pollermann.
“World-wide web: The Information Universe.”Electronic Net-
working Research, Applications and Policy, Volume 2, Num-
ber 1, 1992, pages 52–58.

[5]. Brian N. Bershad, J. Bradley Chen, Dennis Lee, and Theodore
H. Romer. “Avoiding Conflict Misses Dynamically in Large

Direct-Mapped Caches.”Proceedings of the Sixth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating System, October 1994, pages 158–
170.

[6]. Geoff Chappell.DOS Internals. Addison-Wesley, Reading,
Massachusetts, 1994.

[7]. J. Bradley Chen and Brian N. Bershad. “The Impact of Operat-
ing System Structure on Memory System Performance.”Pro-
ceedings of the 14th ACM Symposium on Operating System
Principles, December 1993, pages 120–133.

[8]. J. Bradley Chen, Yasuhiro Endo, Kee Chan, David Mazières,
Antonio Dias, Margo Seltzer, and Mike Smith.The Measured
Performance of Personal Computer Operating Systems. Tech-
nical Report TR-09-95, Center for Research in Computing
Technology, Harvard University.

[9]. S. Chutani, O. Anderson, M. Kazar, B. Leverett, W. Mason,
and R. Sidebotham. “The Episode File System.”Proceedings
of the 1992 Winter Usenix Conference, San Francisco, CA,
January 1992.

[10]. John Clyman and Nick Stam. “Intel Positions the P6 for 32-bit
Apps, Eschewing Windows 3.1.”PC Magazine, June 30 1995.

[11]. Helen Custer.Inside Windows NT. Microsoft Press, Redmond,
Washington, 1993.

[12]. Helen Custer.Inside the Windows NT File System. Microsoft
Press, Redmond, Washington, 1994.

[13]. Helen Custer. “Detail and Implementation Details of the Win-
dows NT Virtual Block Cache Manager.”Microsoft Systems
Journal, Volume 10, Number 7, July 1995, pages 67-79.

[14]. Dawson R. Engler, M. Frans Kaashoek and James O’Toole Jr.
“Exokernel: An Operating System Architecture for Applica-
tion-level Resource Management.”Proceedings of the 15th
ACM Symposium on Operating System Principles, December
1995.

[15]. Ben Ezzell. “The Power Under the Hood; Preview: Windows
NT.” PC Magazine, Volume 12, Number 11, June 15 1993,
pages 219-263.

[16]. Alessandro Forin and Gerald R. Malan. “An MS-DOS File
System for UNIX.” Proceedings of the 1994 Winter USENIX
Conference, January 1994, pages 337–354.

[17]. Gary Gunnerson. “Network Operating Systems: Playing The
Odds.”PC Magazine, Volume 12, Number 18, October 26,
1993, pages 285–336.

[18]. Linley Gwennap. “P6 Underscores Intel’s Lead.”Micropro-
cessor Report, Volume 9, no. 2, February 1995.

[19]. Intel Corporation.Pentium Family User’s Manual, Volume 3:
Architecture and Programming Manual. Intel Corporation,
1994.

[20]. R.E. Kessler and Mark D. Hill. “Page Placement Algorithms
for Large Real-Indexed Caches.”ACM Transactions on Com-
puter Systems, November 1992.

[21]. Adrian King. “Windows, the Next Generation: An Advance
Look at the Architecture of Chicago.” Microsoft Systems Jour-
nal, Volume 9, Number 1, pages 15-24, January 1994.

[22]. Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels,
and John S. Quarterman. The Design and Implementation of
the 4.3 BSD UNIX Operating System. Addison-Wesley, Read-
ing, Massachusetts, 1989.

[23]. David S. Linthicum. “Life After DOS.”PC Magazine, May
31, 1994, pages 203–237.

[24]. David S. Linthicum and Steven J. Vaughan-Nichols. “The
Beast Turns Beauty; UNIX on Intel.”PC Magazine, Volume
12, Number 11, June 15, 1993, page 219–263.

16

[25]. Steve Lucco.Software Fault Isolation. Invited talk, Harvard
Computer Science Colloquium Series, Harvard University, 28
November 1994.

[26]. Terje Mathisen. “Pentium Secrets.”Byte, July 1994, pages
191–192.

[27]. M. McKusick, W. Joy. S. Leffler, R. Fabry. “A Fast File Sys-
tem for UNIX.” ACM Transactions on Computing Systems,
Volume 2, Number 3, August 1984, pages 181-197.

[28]. Larry McVoy, lmbench: Portable Tools for Performance Anal-
ysis, To appear inProceedings of the 1996 USENIX Technical
Conference, January 1996.

[29]. Microsoft Corporation.Microsoft Windows Guide to Program-
ming. Microsoft Press, Redmond, Washington, 1990.

[30]. Microsoft Corporation.Microsoft Windows NT Resource Kit.
Microsoft Press, Redmond, Washington, 1993.

[31]. Microsoft Corporation.MS-DOS SMARTDRV help page.
Redmond Washington, 1994.

[32]. Microsoft Corporation.SDKs: Windows for Workgroups 3.11
Addendum; Chapter 1 - Windows for Workgroups 3.11 Archi-
tecture. Microsoft Developer Network Development Library,
Microsoft Developer Network, Redmond, Washington, Janu-
ary 1995.

[33]. Intel Corporation.PCI SCSI Adapters, PCISCSI Product Fam-
ily Installation Guide (with SDMS 3.0 User’s Guide). Intel
Corporation, Order number 619896-002, 1994.

[34]. John K. Ousterhout.Tcl and the Tk Toolkit. Addison-Wesley,
Reading, Massachusetts, 1994.

[35]. Matt Pietrek.Windows Internals. Addison-Wesley, Reading
Massachusetts, 1993.

[36]. Jeff Prosis. “Adventures in Flatland with VxDs.”PC Maga-
zine, May 31 1994.

[37]. Richard Rashid, Gerald Malan, David Golub, and Robert
Baron. “DOS as a Mach 3.0 Application.”Proceedings of the
USENIX Mach Symposium, pages 27-40, November 1991.

[38]. Andrew Schulman, David Maxey, and Matt Pietrek. Undocu-
mented Windows. Addison-Wesley, Reading Massachusetts,
1992.

[39]. Andrew Schulman.Unauthorized Windows 95. IDG Books
Worldwide, Inc., San Mateo CA, 1994.

[40]. Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jacqueline
Chang, Sara McMains, Venkata Padmanabhan. “File System
Logging versus Clustering: A Performance Comparison.”Pro-
ceedings of the USENIX 1995 Technical Conference, New
Orleans, LA, January 1995, pages 249-264.

[41]. Richard Hale Shaw. “An Introduction to The Win32 API.”PC
Magazine, pp 291–297, April 1994.

[42]. Jon Udell et al. “The Great OS Debate, Special Report on
Advanced Operating Systems.”Byte, January 1994, pp. 117–
168.

[43]. Mark L. Van Name and Bill Catchings. “Reaching New
Heights in Benchmark Testing.”PC Magazine, December
1994, pages 327–332.

[44]. Richard Uhlig, David Nagle, Trevor Mudge, Stuart Sechrest,
and Joel Emer. “Instruction Fetching: Coping with Code
Bloat.” Proceedings of the 22nd International Symposium on
Computer Architecture, Santa-Margherita Ligure, Italy, May
1995, pages 345-356.

