
The Case for Geographical Push-CachingJames S. Gwertzman Margo SeltzerDivision of Applied Sciences Division of Applied SciencesHarvard University Harvard UniversityCambridge, MA 02138 Cambridge, MA 02138AbstractMost wide-area caching schemes are client initi-ated. Decisions on when and where to cache infor-mation are made without the bene�t of the server'sglobal knowledge of the situation. We believe that theserver should play a role in making these caching de-cisions, and we propose geographical push-caching asa way of bringing the server back into the loop. TheWorld Wide Web is an excellent example of a wide-area system that will bene�t from geographical push-caching, and we present an architecture that allows aWeb server to autonomously replicate HTML pages.1 IntroductionThe World-Wide Web [1] operates for the mostpart as a cache-less distributed system. When twoneighboring clients retrieve a document from the sameserver, the document is sent twice. This is ine�-cient, especially considering the ease with which Webbrowsers allow users to transfer large multimedia doc-uments.To combat this problem, some Web browsers havebegun to add local client caches. These prevent oneclient from transferring the same document twice.Some networks are also beginning to add Web prox-ies [8, 9] that prevent two clients on the same campusnetwork from transferring the same document twice.The problem with both these schemes is that theyare myopic. A client cache does not help a neighboringcomputer, and a campus proxy does not help a neigh-boring campus. Furthermore, these caches are usuallylimited in size. Disk might be cheap, but as the size ofmultimedia �les increases it will be impossible to cacheeverything. As a result these caches will only be ableto store the most popular items even though there isstill some demand for other, less popular items.The solution is for clients to share each other'scache space. The degree to which a �le is replicatedshould be proportional to that �le's global popularity,and clients should retrieve �les from the the nearest

cache to minimize network tra�c. The server can sat-isfy both goals by deciding when and where to cache�les. Furthermore, when the server decides where tocache a �le, it can make this decision using its knowl-edge of network topology and the �le's access historyfor even greater network bandwidth savings.2 MotivationPreliminary analysis of Web server access logs showthat a few �les on each server are responsible for mosttra�c from that server. Servers can therefore save agreat deal of bandwidth and decrease their load bymaking access to those �les more e�cient. The slightload increase due to replicating and distributing �leswill be o�set by this savings, and the client in turnwill see increased performance.Analysis also shows that the access pattern for each�le is not uniform. File requests are often clusteredgeographically which implies that judicious selectionof cache sites will provide excellent bandwidth and la-tency savings. Furthermore, we have also found strongcorrelations between geographical distance and Inter-net metrics like latency and network hops over shortdistances. This implies that geographical distance,which is easy to �gure out using the nets.unl.now �leat nic.merit.edu [10], can be used to predict networktopology, which can be hard to �gure out.3 ArchitectureThere are two components to our proposed Websystem: a modi�ed HTTP server and a replication ser-vice. The modi�ed server is responsible for trackinggeographical access information for its �les and for ac-cepting and o�ering cached replicas of other �les. Thiscan be done by modifying a proxy server, such as theCERN proxy server [8], to accept �les for replicationusing a modi�ed POST request.The replication service keeps track of modi�edHTTP servers that are willing to serve replicated �les,the amount of available free space on each server, andeach server's average load. The replication service



Figure 1: Before �le replication takes place: several clients accessing a World Wide Web �le on the east coast.works with the modi�ed server to decide where a given�le should be cached.We must minimize the amount of state that eachWeb server stores for its �les, or else we will face scal-ability problems. We therefore track geographical ac-cess information in a coarse manner. We are currentlyusing states and countries since these can easily be ob-tained from network addresses.When the demand for a �le exceeds a replicationthreshold, the server replicates it. We are using trace-driven simulation to determine reasonable values forthe replication threshold, and we expect it to be dy-namic.The replication service decides where to replicatethe �le given its access history. The goal is to pick aserver to cache the �le that will minimize the amountof bandwidth and/or expected latency used in the fu-ture. We predict this by using the �le's access history.Figure 1 and �gure 2 illustrate the replication pro-cess in action. Several clients from across the UnitedStates are accessing a �le on an east coast server. Theeast coast server replicates the �le such that networkbandwidth is minimized, and the �le ends up on a westcoast server.

The replication service maintains a list of all HTTPservers willing to replicate �les; it must choose one ofthem to cache the �le. We are considering several al-gorithms to determine the optimal cache location. Ifthe service knows the Internet's topology it can solvethe problem by �nding a good solution to the corre-sponding graph partitioning problem.If only coarse grained information is available aboutthe Internet, such as average latency between servers(available from traceroute), a better solution is toiterate over a representative sample of the availableservers, calculating bandwidth savings for each. Theservice would then replicate the �le on the server thatwould have reduced network bandwidth the most.Once the primary server gives a �le to anotherserver for caching, the primary server can forget aboutthe other server. The primary server's load will dropas clients begin to access the �le from the new server.Should the primary server's load climb high enoughthat it must replicate the �le again, the primary serverwill choose a di�erent server to cache it on since theaccess patterns will have changed. Likewise, if thenew server's load climbs high enough such that it mustreplicate the �le, it will be cached in yet another place,



Figure 2: After �le replication has taken place: the �le has been replicated onto a west coast server so as tominimize network bandwidth.because the access patterns for the new server will bevery di�erent than those for the old server.There are two issues that must still be addressed forthis scheme: �le consistency and resource discovery. Aserver may determine that its copy of a �le is out ofdate by using the get-if-modi�ed-since HTTP request.This is an e�cient way to both check consistency andto request the new �le in the event it has been modi-�ed, but it is too expensive to use every time a �le isrequested.Since weak-consistency should be acceptable for theWeb, we are using a scheme developed for the Alex[5] �le system. With the exception of dynamic pageswhich can not be cached we expect the Web to obeythe same principle as FTP: the older a �le is, the lesslikely it is to be modi�ed. Therefore, the older the �lethat an HTTP server is caching, the less frequentlythe HTTP server must poll to check if its copy is stillup-to-date. This is very e�cient compared to checkingfor every request, and the client will be able to forcea poll if it is essential to use the latest �le.As for resource location, there are several groupsworking on this problem. Until this problem is solved

we are using a technique proposed by Blaze [3], whichwe call the \1-800 technique". Clients \call" the pri-mary server to ask for the \server nearest you." This isnot elegant, but it works because latency is currentlymore critical than bandwidth. The expense of query-ing a distant server once is amortized over the manylocal requests that are thereby made possible. Even-tually there will need to be a cleaner solution so thatall dependence on the original server can be removed.Otherwise we will face scalability and reliability prob-lems.4 Other ApplicationsThroughout this paper we have referred to HTTPservers and �les. This was for the purposes of clarity,as well as to provide a focus for our research. Weexpect our results to be applicable to any wide-areadistributed system, however; not just the World WideWeb. One application for geographical push-cachingthat we have in mind is to replicate not only data �lesbut also services themselves.A good example would be Archie [6], whose loadproblems are notorious. If Archie were to be written ina machine-independent network-service scripting lan-



guage (e.g. Tcl [11]), its code could be replicated andcached just like a Web �le. This might also be theanswer to how to cache dynamic pages, such as thosegenerated by cgi-bin scripts that are used to createWeb pages on the y.5 Related WorkThere is little work on caching in large-scale dis-tributed systems outside of distributed �le systems,since only in the past few years has the attentionof the distributed systems community turned towardglobally distributed systems such as the World-WideWeb and FTP. Several groups are working on similarproblems, but most are focused on client-side caching.Only one group that we know of, at Boston University,is also working on server-initiated caching.[2]One such client-side system is included in The Har-vest system [4]. Their object caching subsystem pro-vides a hierarchically organized means for e�cientlyretrieving Internet objects such as FTP and HTML�les. The group at the University of Colorado at Boul-der has also examined the resource location problem[7] and the consistency problem [13].Blaze [3] has addressed caching in a large-scale sys-tem. His research focused on distributed �le systems,but can be applied to FTP or the Web. Finally, theAlex system [5] was designed to provide a means ofcaching FTP �les. Of these three systems, Blaze's de-sign comes closest to our own since it supports repli-cation when demand becomes too high, and because itlets clients use any nearby cache. It does not, however,provide the server with control over where replicas areplaced.6 ConclusionWe do not believe that geographical push-cachingshould replace client-initiated caching. These twotechniques address the same problem on di�erenttime-scales and are therefore complimentary. Client-initiated caching responds quickly to local changes ina �le's popularity, but can not alleviate a global risein demand. Likewise, server-initiated caching can notcope very well with sudden, localized jumps in pop-ularity, but is best suited to handling long-term �lerequest trends.We close with this reminder of why server-initiatedcaching is necessary, taken from the Web home pageof the WebLouvre [12].Note: Starting end of October 1994, we arecurrently experiencing severe network prob-lems on our 256 Kb school Internet connec-tion. Please be understanding! I am still

looking for a site willing to mirror the We-bLouvre exhibit (30 Mb in all), preferably inthe USA.References[1] T. Berners-Lee, R. Cailliau, J-F. Gro�, andB. Pollermann. World-wide web: The informa-tion universe. Electronic Networking Research,Applications and Policy, 2(1):52{58, 1992.[2] Azer Bestavros. Demand-based document dis-semination for the world-wide web. Technical Re-port 95-003, Boston University, 1995.[3] Matthew A. Blaze. Caching in large-scale dis-tributed �le systems. Technical Report TR-397-92, Princeton University, January 1993.[4] C. Mic Bowman, Peter B. Danzig, Darren R.Hardy, Udi Manber, and Mich ael F. Schwartz.Harvest: A scalable, customizable discovery andaccess system. Technical Report CU-CS-732-94,University of Colorado, Boulder, 1994.[5] Vincent Cate. Alex - A global �lesystem. InUSENIX File Systems Workshop Proceedings,pages 1{12, Ann Arbor, MI, May 21 - 22 1992.USENIX.[6] Alan Emtage and Peter Deutsch. Archie - anelectronic directory service for the internet. InProceedings of the USENIX Winter Conference.USENIX, January 1992.[7] James D. Guyton and Michael F. Schwartz. Lo-cating nearby copies of replicated internet servers.Technical Report CU-CS-762-95, University ofColorado at Boulder, 1995.[8] Ari Luotonen and Kevin Altis. World-wideweb proxies. In Computer Networks andISDN systems. First International Conferenceon the World-Wide Web, Elsevier Science BV,1994. available from 'http://www.cern.ch/ Pa-persWWW94/ luotonen.ps'.[9] Mosaic-x@ncsa.uiuc.edu. Using proxy gate-ways. World-Wide Web. available from 'http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/proxy-gateways.html'.[10] nic.merit.edu. ftp://nic.merit.edu/nsfnet/announced.networks/nets.unl.now.



[11] John K. Ousterhout. Tcl: An embeddable com-mand language. In USENIX Conference Proceed-ings, pages 133{146, Washington, D.C., January22-26 1990. USENIX.[12] Nicolas Pioch. Le weblouvre. World-Wide Web. http: //mistral.enst.fr/ pi-och/louvre/louvre.shtml.[13] Kurt Je�ery Worrell. Invalidation in Large ScaleNetwork Object Caches. PhD thesis, Universityof Colorado{Boulder, 1994.


