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Most performance analysis today uses either
microbenchmarks or standard macrobenchmarks (e.g.,
SPEC, LADDIS, the Andrew benchmark). However, the
results of such benchmarks provide little information to
indicate how well a particular system will handle a
particular application. Such results are, at best, useless
and, at worst, misleading. In this paper, we argue for an
application-directed approach to benchmarking, using
performance metrics that reflect the expected behavior of
a particular application across a range of hardware or
software platforms. We present three different approaches
to application-specific measurement, one using vectors
that characterize both the underlying system and an
application, one using trace-driven techniques, and a
hybrid approach. We argue that such techniques should
become the new standard.

1 Introduction

According to David Patterson, “For better or worse,
benchmarks shape a field” [13]. If this is indeed the case,
then bad benchmarks will lead us astray. And, in fact, we
have seen evidence that the industry’s obsession with
benchmarking can be misleading [11].

As researchers, our goals for benchmarking and
performance analysis are twofold. We strive to understand
why systems perform as they do, and we seek to compare
competing ideas, designs, and implementations. In order
for this second goal to be met, it is essential that the
benchmarks enable meaningful comparisons; raw
benchmark numbers are useless to other researchers and
customers unless those raw numbers map into some useful
work. In this paper, we present techniques that provide
more meaningful benchmark results.

The primary reason that today’s benchmark results
lack meaning is that they are not designed to address any
particular user’s performance problem. Instead, they are
intended to quantify some fundamental aspect of the
performance of a system, whether it be hardware or
software. Although suchmicrobenchmarkscan be useful
in understanding the end-to-end behavior of a system, in
isolation they are frequently uninformative about overall

system performance—primarily because that performan
is highly workload-dependent [17].

The goal of this paper is to demonstrate the need f
application-specific benchmarking and suggest thr
different methodologies that researchers can apply
provide this type of benchmarking.

The rest of this paper is structured as follows. Sectio
2 describes some of the most commonly used benchma
emphasizing how they are unable to answer simp
questions. Section 3 presents a trivial case study th
demonstrates where conventional measurements
down. Section 4 presents our taxonomy of applicatio
specific benchmarking techniques, and Section
concludes.

2 Benchmarks and Answers

Let us assume that benchmarks are designed
answer questions. From a consumer’s point of view, t
most commonly asked question is, “What machine (
software system) will best support my workload?” Th
question may be asked in any one of a number of domai
CPU or overall system performance, file system
performance, or application performance.

Consider the task of purchasing “the fastest P
available.” How can one determine which machine to bu
The first option is to limit oneself to a particular
architecture (e.g., an Intel-based PC) and select the sys
with the greatest megahertz rating. At first glance, th
requires no benchmarks and yields the fastest machi
The reality is not this simple. There are a plethora
questions left unanswered: Should the machine be
Pentium II or Pentium Pro? Which cache size should
have? How much memory should it have? Which dis
should be used? Which is the best Ethernet controlle
This approach rapidly boils down to a random selection
components.

A second approach is to look for the machine with th
best SPEC rating. If the intended application domain
this machine is software development on UNIX, this ma
in fact, be a reasonable criterion. However, let us assu
that the machine will be used with a GUI-based operatin
system (e.g., Windows). SPECmarks do not necessa
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reflect anything meaningful about the performance of such
systems [4][5]. If the machine is destined to be a Web
server, the right answer may be different yet. The bottom
line is that “fastest machine” is context-sensitive; it
depends on the use to which the machine will be applied.
Even collections of system microbenchmarks [2][10],
which are useful for comparing the behavior of low-level
primitives, do not provide an indication of which aspects
of the system’s behavior are important for a particular
application.

Let us consider a second, and potentially simpler task,
“Find the fastest file server.” There are a number of
standard file system benchmarks such as Bonnie [1],
IOStone [12], and the Andrew File System Benchmark
[7], as well as some that are designed particularly for
remote file service, such as LADDIS [19] and SPEC SFS
[16]. Unfortunately, while Bonnie reveals a great deal
about the underlying disk system, it does little to measure
file system performance. IOstone tries to depict file system
behavior more realistically, but its file system model bears
little relationship to reality [18]. Andrew was designed to
measure file system scalability, but does little to reveal the
behavior of the underlying system itself [7]. SPEC SFS is
a well-specified scalable benchmark. However, its
operation mix is designed to “closely match today’s real-
world NFS workloads” [16]. This seems to imply a single
“real-world NFS workload.” Furthermore, it does nothing
to tell us about workloads that are not NFS-based.

Today’s benchmarks are not designed to describe the
performance of any particular application. If our goal is to
produce performance numbers that are meaningful in the
context of real applications, then we need a better set of
tools.

3 A Case Study

In this section, we present a simple example that
demonstrates how some of today’s benchmark results can
be uninformative. Our system domain is file systems and
our application domain is netnews. Netnews has a unique,
identifiable access pattern, but one that is not captured by
traditional benchmarks. A file server hosting news will
have an abundance of small files in very large directories
(directories typically contain hundreds or thousands of
files). The steady-state behavior of a news file system is
that millions of files are created and deleted each week,
while users simultaneously read, in a seemingly random
fashion, from the file system [17].

An examination of netnews access patterns and
performance bottlenecks revealed that updating the access
time of each news article every time it was read was
problematic [6]. As the access time is not critical to the
application’s behavior, an acceptable performance

optimization is to modify the file system to omit this
update. In this section, we will attempt to use standa
benchmarks to reveal the value of this modification. W
will compare two file systems: the Fast File System (FF
and NewsFS (FFS modified to omit the access tim
update). We chose three commonly used file syste
benchmarks: the Andrew File System benchmark [7
Bonnie [1], and IOStone [12]. Table 1 presents the resu
of these three benchmarks

Unfortunately, the results for these commo
benchmarks are nearly indistinguishable, which could le
someone to conclude that the modified file system is
little use. We then constructed a benchmark designed
model a news workload. The benchmark reads 8192 16K
files, simulating users reading news articles. These resu
are shown in Table 2.

Not surprisingly, these results indicate that NewsFS
a win in this situation. This simple example demonstrat
our principle: in order to effectively evaluate file system
(or any system) performance, a benchmark must reflect
intended workload.

4 What to do

As we saw in the last section, a relatively commo
and somewhat simple workload is not well-served by an

FFS  NewsFS

Andrew (sec) 8 (0.64) 8 (0.64)

Bonnie
per-char read
(KB/s)

9740 (41) 9758 (36)

IOStone
(IOStones/s)

1,969,402
(311016)

1,979,093
(363677)

Table 1: Standard Benchmark Results.These results
are the arithmetic means of ten iterations with standa
deviations given in parentheses. The two file systems a
practically indistinguishable from one another.

FFS  NewsFS

16KB file read
(MB/s)

4.516 (0.034) 6.073 (0.028)

Table 2: News Benchmark Results.These results are
the arithmetic means of ten iterations with standa
deviations given in parentheses. By simulating th
application in question, this benchmark is able to reve
a significant difference between the two file systems.
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of today’s standard benchmarks. We are not the first to
observe this particular problem, and in fact, Karl Swartz
developed a benchmark specific to Net News [17].
However, it is both impractical and unnecessary to design
a new benchmark for every new application. Instead, we
prefer to develop a benchmarking methodology that can be
applied to any application and across several different
domains.

We have developed three approaches to application-
specific benchmarking:vector-based, trace-driven,and
hybrid. Each methodology addresses a different set of
benchmarking requirements and constraints. The vector-
based approach characterizes an underlying system (e.g.,
an operating system, or JVM) by a set of
microbenchmarks that describe the behavior of the
fundamental primitives of the system. The results of these
microbenchmarks constitute the system vector. We then
characterize an application by another vector that
quantifies the way that the application makes use of the
various primitives supported by the system. The dot-
product of these two vectors yields a relevant performance
metric. In our trace-based methodology, we preprocess
traces of actual usage, producing user and activity profiles
that can stochastically generate loads representative of the
activity applied to the system. The hybrid approach uses a
combination of vector-based and trace-based analysis. The
following sections describe the three approaches in more
detail.

4.1 Vector-Based Methodology

The fundamental principle behind vector-based
performance analysis is the observation that in a typical
computer system, each different primitive operation,
whether at the application, operating system, or hardware
level, takes a different amount of time to complete.
Traditional benchmarking techniques ignore this fact and
attempt to represent the overall performance of a computer
system or subsystem as a scalar quantity. However, for
many modern applications, this representation proves
inadequate, as an application’s performance may be highly
dependent on a specific subset of the functionality
provided by the system.

As their name suggests, vector-based techniques
address this problem by representing the performance of
underlying system abstractions as a vector quantity. Each
component of this system characterization vector
represents the performance of one underlying primitive,
and is obtained by running an appropriate
microbenchmark.

To obtain a meaningful result, the system vector is
combined with a second vector that represents the demand
an application places on each underlying primitive. Each

component represents the application’s utilization of th
corresponding primitive, either as a frequency (e.g., t
number of times a system call is used) or another quant
(e.g., the number of bytes transferred through a certa
pathway). The application’s performance on a give
underlying system can be calculated by taking the d
product of the two vectors: the time due to eac
component is the time that its primitive operation takes
execute, multiplied by the demand placed upon th
primitive. Assuming that the vectors represent a thorou
cross-section of the abstractions used, the total execut
time should be the sum of these components.

This approach is similar to theabstract machine
model presented by Saavedra-Barrera [14], where t
underlying system is viewed as an abstract Fortr
machine and each program is decomposed into
collection of Fortran abstract operations calledAbOps.
The machine characterizer obtains a machine
performance vector, whereas theprogram analyzer
produces an application vector. The linear combination
the two vectors gives the predicted running time. Th
approach requires extensive compiler support f
obtaining the accurate number ofAbOpsand is highly
sensitive to compiler optimization and hardwar
architecture [15]. The techniques are limited t
programming languages with extremely regular synta
Our model is more general in the sense that it can
applied to any system that consists of a well-defined A
between the application and the underlying platform [3].

Brown’s analysis of Apache web server performanc
demonstrates this approach [3] in the operating syste
domain. First, using the hBench benchmarking suite [2
he measured the performance of a number of operat
system abstractions on the NetBSD operating syste
Then, using system call tracing facilities, he characteriz
Apache’s usage of operating system primitives as it serv
a single HTTP request. The components of the tw
resulting vectors did not match exactly as the metho
used to derive them were quite different. However, it wa
possible to transform the application vector using a chan
of basis so that each component was either matched w
an appropriate microbenchmark or approximated by
related one. The results, though preliminary, we
excellent; by multiplying the application vector by the
system characterization vectors of multiple platform
(both Intel and Sparc-based platforms, including on
multiprocessor), the results produced a correct orderi
and a close approximation to the absolute performance
all of the systems.

More recently, we have begun to apply this techniqu
to a collection of standard UNIX utilities (e.g., ls, tar). We
enhanced hBench to include a few simple file syste
microbenchmarks and using this extended suite, we c
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produce encouraging predictions. To date, our predictions
always rank the different systems correctly (e.g., machine
#1 performs better than machine #2) and the relative
performance of the systems is reasonably well-predicted
(e.g., we predict that machine 1 outperforms machine 2 by
a ratio of 5:1 while the actual ratio is 6:1), but the absolute
time predictions are still not as accurate as we would like
(e.g., we predict a running time of 0.018 seconds and the
actual running time is 0.055 seconds). Of the three metrics
(relative ranking, relative performance, absolute
performance), we are most interested in obtaining accurate
results for relative performance, so we find these
preliminary results encouraging.

A second domain in which vector-based analysis
appears promising is in the evaluation of Java Virtual
Machines (JVMs). In this case, we also use a
microbenchmark suite to characterize the performance of
the machine’s primitives. We then use application profiling
to quantify an application’s use of these primitives. Each
process produces a vector, and once again, the dot-product
of the two vectors gives an indication of application-
specific performance.

JVMs introduce an additional complexity: garbage
collection. As the garbage collector runs asynchronously
with respect to the application, its impact is
nondeterministic. Our strategy is to characterize the
performance of the garbage collector as a function of the
activity induced by an application and add this to the dot-
product result. More formally, let be the JVM
performance vector, be the application performance
vector, and be the function that computes the
garbage collection overhead as a function of the
application vector. Then, our application-specific
performance metric is:

4.2 Trace-Based Methodology

For certain applications, performance is dependent,
not only on the application itself, but on the particular
stream of requests submitted to that application. Examples
of applications in this category include Web servers, Web
proxies, and database servers. In such cases, a simple
vector-based approach is not sufficient. Instead, we use a
trace-based benchmarking methodology, retaining the
ability to tailor the benchmark to a particular workload.

Rather than characterizing the underlying system and
application, we characterize the trace, and use the
characterization to generate a stochastic workload that can
be executed as a benchmark. Consider the case of a Web
server. Different Web sites have dramatically different
access patterns [8], and evaluating a server’s performance
is best done in the context of the expected load on a site. A
Web server’s workload has two major components: the set

of files that comprise the site and the access pattern of
users visiting that site. Our Web server benchmarkin
methodology consists of processing Web server log
creating a set of files to mimic the site and creating a set
user profiles that describe the access patterns of differ
sets of users [9]. Using the file set and user set, t
benchmark generates a series of requests to the W
server, producing a load that is closely representative
the original load on the server. The load is parameteriz
in terms of files and users, allowing us to scale the load
reflect growth patterns or changes in the user commun
and to run “what-if” experiments.

We are applying a similar methodology to evaluatin
proxy caches. The overall structure of the benchmark
the same, with a bit of additional complexity. The
benchmark environment must also simulate the W
servers from which the proxy obtains pages. Whe
processing the trace, we create characterizations of
loads placed on these external servers, including th
response time distribution, and then use the
characterizations to model servers during the benchm
run.

This trace-based methodology has a number
advantages beyond offering site-specific benchmarkin
First, while it is simplest to use actual traces to crea
workload characterizations, it is not essential. One c
construct a characterization manually to mimic a
anticipated server load. This manual characterization c
then be used to drive the benchmark workload generat
producing performance results for a not-yet-existe
workload. Second, the stochastic workload generation to
has the capability to analyze a collection of logs that ha
accumulated over time. Using the pattern of access
present in the existing logs, we can generate predic
future access patterns to facilitate capacity plannin
Third, logs gathered on one machine can genera
characterizations that can be used to test other hardwa
software configurations. Fourth, log files are ofte
considered proprietary to the organizations on who
servers they were produced, so such logs are rarely m
available to the research community. However, the file s
and user set characterizations, while enabling t
generation of representative loads, are sufficien
anonymized that they can be freely distributed witho
revealing corporate secrets. This freedom will enab
researchers to evaluate the performance and Web beha
of sites that are traditionally unavailable for such analys

While more complex than the vector-base
methodology described in Section 4.1, our trace-bas
methodology provides a flexible framework in which to
analyze workload-dependent applications. The resulti
benchmark is specific to an application/workloa
combination; the ability to modify trace characterization

v
a

gc a( )

v a⋅ gc a( )+
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(i.e., “turn the knobs” to parameterize a workload)
provides flexibility to specify workloads that do not yet
exist.

4.3 Hybrid Methodology

The hybrid methodology combines the two
approaches outlined in the previous sections. This
methodology, which arose from our attempts to apply
vector-based analysis to file systems, provides the best of
both worlds.

At first glance, the analysis of file system
performance seems to demand a trace-based approach.
How else could we capture the importance of locality of
reference in an application’s request stream?
Unfortunately, a purely trace-based approach does not
provide the insight into the underlying behavior of the
system that we see when using vector-based analysis. With
the vector-based approach, a researcher can determine the
components of the system that have the greatest effect on
the application’s performance by comparing the products
of the corresponding elements of the system and
application vectors. This highlights the areas where further
optimization would be most beneficial.

While we can characterize the behavior of the file
system via a microbenchmark suite, the interaction of
successive requests in the various file system caches
makes a simple characterization of an application
impossible. The performance of any individual file system
request will typically depend on the previous items in the
request stream. A pathname lookup, for example, will
perform differently depending on whether the desired
translation is in the name cache. To capture the
performance of a sequence of requests, we use a simulator
to convert an application trace into an application vector.

First we use microbenchmarks to create a system-
vector, which includes elements for the sizes of the various
caches in the file system (the buffer cache, the name cache,
and the metadata cache). We then use an application trace
as input to a cache simulator (parameterized by the
appropriate values from the performance vector), deriving
the mix of operations that comprise the application vector.

The simulation pass simulates the caching behavior of
the system and categorizes the application’s accesses into
access patterns that have specific meanings in terms of the
file system microbenchmarks (e.g., whether the targets of
two successive requests are the same file or files in the
same directory.) This simulation pass can be viewed as an
application-specific change of basis (as discussed in
Section 4.1), where the application is specified by the trace
of its file system activity.

To illustrate this process more clearly, assume we
have a trace of a workload. A naive approach might work

as follows. Process the trace generating an applicat
vector that identifies the number of each type of operati
(read, write, create, etc.). Then multiply the applicatio
vector by a system vector derived from microbenchma
results. Unfortunately, the results of such a process are
accurate, as it assumes the performance of each opera
is independent of the other operations in the trace.
reality, file systems are typically optimized for commo
sequences of operations, using techniques such as cac
and clustered disk layout.

Using the hybrid approach, we first send the trac
through our simulator to produce an application vector th
identifies the number of each type of operation. Th
processed vector takes into account the cache behavio
the target system and also generates a more detailed lis
operations. For example, instead of simply reporting th
number of read operations, we report the number
logically sequential read operations that hit in the cach
the number of logically sequential read operations th
went to disk, the number of random reads to cache, and
number of random reads to disk. As each of the
operations has a significantly different performanc
profile, decomposing the class of read operations
essential for accurately predicting performance.

The result of the simulation pass is the quantificatio
of the detailed set of operations, such as the four types
read operations mentioned above. This is the applicat
vector that we then multiply by the system vector to yiel
an application-specific performance metric.

5 Conclusion

In this paper, we have argued that system performan
should be measured in the context of a particul
application, and we have presented three relat
methodologies that enable such measuremen
Performance results that are not connected to re
workloads provide little value to end-users an
researchers. However, the application-directe
benchmarking techniques we have presented prov
researchers with the tools to understand the behavior
systems and to work on improving those aspects th
actually matter to real users.
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