
1

Symbiotic Systems Software:
Fast Operating Systems for Fast Applications

Margo Seltzer, Christopher Small, and Michael D. Smith
{margo,chris,smith}@eecs.harvard.edu

Abstract

Historically, advances in compiler technology have
been driven by the characteristics of applications, par-
ticularly those that comprise the SPEC benchmark
suite. To achieve high performance, many of the most
promising compilation techniques rely on accurate
profile information to direct the optimization and
instruction scheduling process. Prior studies have
shown that for these applications it is possible to gen-
erate representative data sets that are suitable for pro-
file-based compilation algorithms. Though we would
like to apply sophisticated compiler techniques to
operating systems (and eventually other multi-
threaded software systems such as database manage-
ment systems), we are presented with two significant
problems. First, the process of profiling the operating
system is more difficult than profiling an application,
because of the complexity of the operating system and
the interaction between the operating system and its
applications. Second, even when one can profile the
operating system, there seems to be no general agree-
ment of what constitutes a representative data set for
such a large and complex system. This implies that
the optimization of the operating system in isolation is
not the correct approach. A better approach for
improving the combined system and application per-
formance is to allow the compiler tosymbiotically
optimize the operating system in the context of the
applications that use it. This paper proposes a struc-
turing of the compiler and operating system so that it
is possible to perform this type of symbiotic, cross-
address space compile-time optimization.

1 Introduction

There has been tremendous progress in compile-time
optimization in the past 15 years. Performance gains
are achieved by reducing the number of cycles
required to execute a piece of code. This is done by
removing unnecessary instructions and by tailoring
the instruction schedule to better manage the available
hardware resources. Recently, sophisticated optimiza-
tions such as blocking [Lam91], global instruction
scheduling [Hwu93, Lown93], code layout [Pett90],

procedure inlining [Chang91], and partial-redundancy
elimination [Brig94] have been shown to improve
application performance by 20-300%. The bulk of
these studies has focused on applications such as the
SPEC benchmarks, where the majority of the execu-
tion time is spent in user-level code. Yet, there is noth-
ing intrinsic to these sophisticated compiler
techniques that makes them applicable only to user-
level code.

The key to these optimization techniques is an in-
depth understanding of the way in which the code
being optimized is used, because optimizations such
as these can, in fact, degrade performance if
improperly applied. For example, the aggressive
movement of instructions across basic block
boundaries results in the production of compensation
code, the duplication of code to maintain program
semantics [Fish81]. Instruction scheduling is NP-
complete, and hence the global movement of code is
driven by heuristics that optimize a particular path
through the code, possibly at the expense of the
performance of other paths. The heuristics assume
that the optimized path has a much higher probability
of execution than other paths, and so, the
transformation will result in an overall performance
win. If the assumption is incorrect, performance
suffers. One can make similar arguments for the other
optimization techniques mentioned above.

A compiler can attain a rudimentary
understanding of program behavior through static
analysis of common program structures, such as loop
structures. Though excellent work has been done in
program-based analysis for generation of program
execution characteristics (such as branch bias
[Ball93]), these methods do not yet approach the
accuracy of profile-based analysis. Through profile
information generated by representative training data
sets, the compiler can quite accurately predict the
behavior of a program [Fish92], at least for
applications like those found in SPEC. In other words,
profiling the behavior of the application with one data
set provides a good indication of how best to optimize
the application for other data sets. Though there exist

Published inProc. of the Workshop on Compiler Support
for System Software, Tuczon, AZ, February 1996.

2

many powerful tools for profiling applications, we
unfortunately lack good tools for profiling the
operating system. Early tools required specialized
hardware [Nagle92], and only recently have more
general tools become available [Sriv94][Rose95].
Even with these tools, accurate profiling of the
operating system is very difficult because of its
intrinsic operation and its existing structure.

Application profiling is typically implemented by
instrumenting the application code, causingtime
dilation, where the instrumented code runs more
slowly, relative to external events, than the
uninstrumented code. Time dilation is not usually a
problem for user-level tracing because most
applications are insensitive to the timing of external
events. However, theraison d’être of an operating
system is to respond to external events. Its execution
path is determined by synchronous requests (from
applications) and asynchronous requests (from disks,
timers, and networks). Because instrumentation alters
this execution path, it becomes extremely difficult to
gather meaningful data. Instrumentation perturbs the
behavior of the operating system functions that we are
trying to measure.

It is difficult to interpret data from a profiled
kernel, because kernel code is invoked by multiple
applications. This sharing obscures the
correspondence between kernel behavior and the
application that causes it. We can insert additional
instrumentation into the kernel to keep track of which
process is responsible for each invocation of a traced
kernel function, but this increases the perturbation of
kernel code, and increases problems such as time
dilation.

Even with a detailed operating system simulator,
such as SimOS [Rose95], it is unclear that a
representative workload exists. The application mix,
i.e. the precise interleaving of those applications, and
the timing of external events all determine what an
operating system does and when it has to do it. The
activities in the operating system therefore may vary
significantly from the execution of one application to
the next.

The one glimmer of hope for overcoming these
obstacles results from the observation that we do not
need to find a representative workload for all
applications. If the overall system goal is to achieve
the best application performance, the correct
decisions for optimizing the kernel can only be made
in the context of a particular application. This implies

that the best approach is one where we design the
operating system and compiler in parallel. This
approach mirrors the efforts in compilation and
instruction set design during the development of
RISC. Previous to this development, compilers and
architectures were designed in isolation, as is done
with compilers and operating systems today. RISC
proponents found that the cooperative design of the
compiler and the instruction set architecture led to
systems that exhibited superior application
performance.

We believe that this same approach should be
applied to the development of system and application
software. Applications and operating systems should
not be optimized in isolation, but instead
symbiotically (and possibly continuously). To
maximize the performance of an application, it is
necessary to optimize the operating system in the
context of that application. We propose to construct
an operating system, compilation tools, and profiling
tools that allow us to determine which sections of the
operating system contribute to the performance
characteristics of an application, and specialize and
optimize them to benefit that application.

The rest of this paper is organized as follows.
Section 2 discusses some opportunities for compiler
optimization in the operating system. Section 3
discusses operating system architectures and how
well these architectures are suited to aggressive
compiler optimization. Section 4 outlines the
approach we are taking to symbiotic compiler and
system software development, and Section 5
concludes.

2 Compile-time Opportunities

By maintaining the context of an application when
execution moves into the operating system, many
existing optimizations become much more fruitful.
Assuming we can compile systems in the context of
an application, some opportunities for performance
improvements are listed below.

• Constant propagation across procedure calls has
been shown useful within a single address space
[Hall95]. Similar benefits can be derived across a
system call boundary. For example, when
establishing a network connection, the application
specifies a socket type that dictates the code
sequence that will be executed in the kernel. This
socket type information remains constant
throughout the life of the socket, yet the operating

3

system repeatedly branches on its value. Once we
are able to perform constant propagation from the
application to the operating system, these branches
will be removed. This idea is not new. Value-
specific optimizations take advantage of this
property to improve performance, but rely on run-
time code generation [Kepp91]. A static approach
has the potential to avoid the cost of dynamic code
generation and to enable more aggressive
optimization.

• Global instruction scheduling is a well-known
technique for optimizing a highly probable code
path. When all paths are equally likely, a good
scheduler becomes much more conservative in its
code motion. Preliminary research hints that an
application is likely to exercise the same code paths
through the operating system. Therefore a global
instruction scheduler can optimize the kernel for a
particular application well. However, we also find
that different applications are likely to exercise
different code paths. Without using the application
context for kernel optimization, the opportunity for
aggressive instruction scheduling is lost. The
Synthesis kernel [Pu88] and Synthetix [Pu95]
demonstrated that tailoring operating system code
to a particular application or instance of the
application does, in fact, improve performance.

• Code layout [Pett90] is a compile-time technique
for placing code to reduce branch penalties and to
avoid instruction cache conflicts. This technique
relies on there being few temporal relationships
between basic blocks. In an operating system,
temporal relationships change with each
application, but each application has few temporal
dependencies. Once again, if different applications
can be associated with differently laid out kernel
modules, each will observe improved performance.
Torrellas et. al. [Torr95] show that code layout is
beneficial for improving instruction cache
behavior.

• Other compiler techniques, such asprocedure
inlining [Chang91] andglobal register allocation
[Wall86] can all take advantage of a global view of
the entire computation.

We have listed just a few of the more obvious
opportunities. These and even more sophisticated
optimizations are possible because they are applied in
reference to a particular application’s use of the
operating system, and because they are performed at
compile time. Unlike code-tailoring methods that rely

on run-time code generation, our approach structures
the operating system so that these optimizations can
be performed at compile-time, which allows use of
more global information and more sophisticated
optimizations.

In the next section, we discuss how different
operating system architectures enable these sorts of
compiler optimizations to differing levels.

3 Relationship to New OS Architectures

The current trend in operating systems research con-
siders how best to structure the operating system to
provide flexibility and improved application perfor-
mance. However, little attention is being given to how
best to exploit the compiler in achieving this
improved performance. Many of the proposed operat-
ing system models enable the use of sophisticated
compiler optimization to differing degrees.

In a conventional operating system, applications
run in an address space separate from the operating
system. Applications and the kernel are compiled
separately and any optimization information (e.g.
register usage, branch prediction buffers) known in
one domain is lost when the other domain is entered.
This structure provides little opportunity for
optimizing the operating system for any particular
application.

The Scout system addresses this problem by
tailoring the operating system to the target
application(s) it will run [Montz94]. By selecting the
target application at compile time, Scout can optimize
the operating system for a particular workload, and, in
all likelihood, achieve better global optimization than
is possible by a general purpose operating system.
This improved optimization path is not attainable
without constraints; the constraint of such statically
configured systems is that they are optimized for a
single workload or class of applications. This is
suitable for dedicated processing nodes, but not
acceptable for the machines on a user’s desk or multi-
purpose machines, such as our central server, which
acts as a compute server, file server, network gateway,
mail gateway, and Kerberos server.

Other research systems (e.g. SPIN, Exokernel,
and VINO) present more flexible boundaries between
applications and the operating system, and provide the
potential for application/OS optimization. SPIN
[Bers95] allows user-level servers to be downloaded
into the operating system’s address space, removing

4

the potentially expensive calls that cross address
space boundaries. The Exokernel [Engl95] moves
code the other direction: operating system
functionality is provided in libraries that are linked
directly into the application. VINO [Small94] sits
between the two, allowing the instantiation of kernel
objects in applications as well as permitting
applications to download functions into the kernel.
Unlike SPIN, VINO is based on a fine-grain
extensibility model in which any designated kernel
function can be replaced by an application-specific
one.

Each of these extensible architectures provides
different opportunities for compiler optimization. In
the Exokernel model, applications and the operating
system libraries are loaded into the same address
space. Although multiple applications can use the
same library, it is possible to compile a version of the
library specialized for a particular application.
Similarly, one might apply load-time optimizations
when the application is linked with its associated
operating system library.

In the SPIN model, entire servers (called
spindles) are downloaded into the kernel to avoid the
many address space crossings that occur in micro-
kernel based architectures. The in-kernel servers
exhibit some of the same problems that operating
systems exhibit, in terms of behaving consistently
across training sets. Because a server must typically
cater to the needs of a wide range of applications, it is
not clear how to create a representative training set so
that the server can best be optimized. On the other
hand, because each server is compiled and linked into
the kernel separately (as compared with a monolithic
kernel, which typically compiles and links its
subsystems together statically), one might argue that
each server can be optimized for the task it performs,
along the lines of Scout. In either case, the address
space boundary that separate spindles from the
applications that use them impose a barrier to
optimization.

The VINO kernel is structured as a set of
component classes, which define its behavior, and
instances of these classes, which make up the running
kernel.

VINO kernel functionality can be reused by
applications in two ways. First, an application can
instantiate a kernel class at user-level, linking the
kernel code into its address space. This code becomes
part of the application’s address space, and can be

optimized just like any other application code.
Second, the running kernel is comprised of a set of
objects; an application can override the
implementation of a method on one of its kernel
objects by downloading andgrafting a new
implementation of the function into the kernel.
Typically, systems that allow code to be dynamically
linked into the running kernel compile the code
isolated from both the application and the operating
system. However, in VINO, we are able to compile
grafts in the context of both the application and the
kernel.

Our primary motivation for supporting grafting is
to allow applications to extend or modify the
semantics of a kernel operation; for example, an
application may wish to override the default VM page
eviction algorithm with one that is designed
specifically for its use. However, grafting can also be
used to supportsymbiotic optimization: the standard
implementation of a kernel operation can be re-
compiled in the context of a particular application,
and grafted into the kernel for that application’s use.
Like the Synthesis kernel, specific versions of kernel
operations can be specialized for a particular
application; unlike Synthesis, the architecture of
VINO is designed to allowany kernel operation to be
symbiotically optimized and grafted into the kernel at
run-time.

As we discussed above, without good profiling
information, it is difficult to determine how best to
apply optimizations. One barrier to gathering good
profiling data is that normally a piece of kernel code is
invoked by multiple applications; profiling
information gathered on this code must be separated
and allocated to each application. VINO’s
architectural support for application-specific grafting
allows us to create and run different profiled versions
of a piece of kernel code for each invoking
application.

4 The Plan

We are exploring symbiotic optimization of
applications and operating systems in the context of
the HUBE/SUIF compilation project and the VINO
kernel project.

SUIF is a research compiler system distributed by
Stanford [SUIF94]. The HUBE project at Harvard is
enhancing SUIF through the implementation of code
generators, scalar optimizations, register allocation
passes, and code placement algorithms. We are

5

currently conducting research in the areas of global
instruction scheduling algorithms, branch prediction
schemes, alternative memory operations, and
instruction-set architecture extensions for multimedia.
These optimizations are often driven by profile
information.

VINO, as described above, is a new operating
system architecture. Its fine-grain extensibility model
is conducive to evaluating the utility of symbiotic
compilation.

To explore the potential benefit of cross-domain
optimization, we have selected three application
domains to analyze: database management, video
display, and scientific visualization. In each domain,
we have selected representative applications to target.
For each application, we are conducting extensive
performance analysis to help us understand its
performance, its demands on the operating system,
and the potential for optimization.

Finally, we believe that we can apply what we
learn about symbiotic optimization of applications
and operating systems to symbiotic optimization of
other complex, multi-threaded software systems such
as database servers.

5 Summary

Much work has been done in the areas of
compilation, code optimization, profiling, and
operating systems restructuring for flexibility and
extensibility. By bringing these tools together, we can
analyze and optimize an application and portions of
the operating systemas a single system, rather than as
separate programs.

By considering an application’s user and kernel-
level behavior as a unit, we can apply today’s
sophisticated compile-time optimization techniques to
achieve better performance from our system software.
Our approach achieves this goal by giving us control
over all three pieces of the problem: application,
compiler, and operating system.

References

[Ball93] T. Ball and J. Larus, “Branch Prediction for
Free,” Proceedings of the ACM SIGPLAN ‘93
Conference on Programming Language Design
and Implementation, pp. 300-313 (June 1993).

[Bers95] B. Bershad, S. Savage, P. Pardyak, E. Sirer,
M. Fiuczynski, D. Becker., S. Eggers, and C.
Chambers, “Extensibility, Safety, and
Performance in the SPIN Operating System,”
Proceedings of the 15th Symposium on
Operating Systems Principles, pp. 267–284
(December 1995).

[Brig94] P. Briggs and K. D. Cooper, “Effective
Partial Redundancy Elimination”,Proceedings
of the SIGPLAN ‘94 Conference on
Programming Language Design and
Implementation,SIGPLAN Notices 29(6), pp.
159-170 (June 1994).

[Chang91] P. Chang, S. Mahlke, and W. Hwu. “Using
Profile Information to Assist Classic Code
Optimizations,” Software Practice and
Experience, 21(12), pp. 1301-1321 (December
1991).

[Engl95] D. Engler, M. F. Kaashoek, and J. O’Toole,
“Exokernel: An Operating System Architecture
for Application-Level Resource Management,”
Proc 15th Symposium on Operating Systems
Principles,pp. 251–266 (December 1995).

[Fish81] J. Fisher, “Trace Scheduling: A Technique
for Global Microcode Compaction,”Trans. on
Computers, C-30(7) pp. 478-490 (July 1981).

[Fish92] J. Fisher and S. Freudenberger, “Predicting
Conditional Branch Directions From Previous
Runs of a Program,”Proceedings of the 5th
Annual Intl. Conference on Architectural
Support for Programming Language and
Operating Systems pp. 85–97 (October 1992).

[Hall95] M. Hall, B. Murphy and S. Amarasinghe.
“Interprocedural Analysis for Parallelization:
Design and Experience,”Proceedings of the
Seventh SIAM Conference on Parallel
Processing for Scientific Computing(February
1995).

[Hwu1993] W. Hwu, S. Mahlke, W. Chen, P. Chang,
N. Warter, R. Bringmann, R. Ouellette, R. Hank,
T. Kiyohara, G. Haab, J. Holm, and D. Lavery.
“The Superblock: An Effective Technique for
VLIW and Superscalar Compilation,”The
Journal of Supercomputing, Kluwer Academic
Publishers, pp. 229-248 (1993).

[Kepp91] D. Keppel, S. Eggers, and R. Henry, “A
Case for Runtime Code Generation”, University

6

of Washington Technical Report UW-CSE 91-
11-04 (1991).

[Lam91] M. S. Lam, E. Rothberg and M. E. Wolf.
Proceedings of the 4th International Conference
on Architectural Support for Programming
Languages and Operating Systems pp. 63–74
(April 1991).

[Lown93] P. Lowney et al., “The Multiflow Trace
Scheduling Compiler,” The Journal of
Supercomputing, 7, pp. 51-142 (1993).

[Montz94] A. Montz, D. Mosberger, S. O’Malley, L.
Peterson, T. Proebsting, and J. Hartman, “Scout:
A Communications-oriented Operating
System”. Technical Report 94-20, Department
of Computer Science, University of Arizona,
June 1994.

[Nagle92] D. Nagle, R. Uhlig, and T. Mudge,
“Monster: A Tool for Analyzing the Interaction
Between Operating Systems and Computer
Architectures,” Technical Report, University of
Michigan, Ann Arbor, MI (May 1992).

[Pett90] K. Pettis and R. Hansen, “Profile Guided
Code Positioning,”Proceedings of the ACM
SIGPLAN ‘90 Conference on Programming
Language Design and Implementation, pp. 16-
27 (June 1990).

[Pu88] C. Pu, H. Massalin, and J. Ioannidis, ``The
Synthesis Kernel,”Computing Systems 1, 1, pp.
11-32 (Winter 1988).

[Pu95] C. Pu, T. Autrey, A. Black, C. Consel, C.
Cowan, J. Inouye, L. Kethana, J. Walpole, K.
Zhang, “Optimistic Incremental Specialization:
Streamlining a Commercial Operating System,”
Proc 15th Symposium on Operating Systems
Principles,pp. 314–324 (December 1995).

[Rose95] M. Rosenblum, S. Herod, M. Witchel, A.
Gupta, “Fast and Accurate Multiprocessor
Simulation: The SimOS Approach,”IEEE
Parallel and Distributed Technology (3), 4 (Fall
1995).

[Small94] C. Small and M. Seltzer, “Structuring the
Kernel as a Toolkit of Extensible, Reusable
Components”, Proceedings of the 4th
International Workshop on Object-Orientation
in Operating Systems, pp. 134–137(August
1995).

[Sriv94] A. Srivastava and A. Eustace, “ATOM: A
System for Building Customized Program
Analysis Tools,”Proceedings of the SIGPLAN
‘94 Conference on Programming Language
Design and Implementation (June 1994).

[SUIF94] Stanford SUIF Compiler Group, “SUIF: A
Parallelizing and Optimizing Research
Compiler,” Technical Report CSL-TR-94-620,
Computer Systems Laboratory, Stanford
University (May 1994).

[Torr95] Torrellas, J., Xia, C., Daigle, R., “Optimizing
Instruction ache Performance for Operating
System Intensive Workdloads,” Proceedings of
the First Symposium on High-Performance
Computer Architecture, pp. 360–369 (January
1995).

[Wall86] D. Wall, “Global Register Allocation at Link
Time,” Research Report 86/3, Digital Western
Research Laboratory, Digital Equipment, Palo
Alto, CA (October 1986)

.

