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Abstract

The Direct Access File System (DAFS) is an emerg-
ing industrial standard for network-attached stor-
age. DAFS takes advantage of new user-level net-
work interface standards. This enables a user-level
file system structure in which client-side function-
ality for remote data access resides in a library
rather than in the kernel. This structure addresses
longstanding performance problems stemming from
weak integration of buffering layers in the network
transport, kernel-based file systems and applica-
tions. The benefits of this architecture include
lightweight, portable and asynchronous access to
network storage and improved application control
over data movement, caching and prefetching.

This paper explores the fundamental perfor-
mance characteristics of a user-level file system
structure based on DAFS. It presents experimental
results from an open-source DAFS prototype and
compares its performance to a kernel-based NFS
implementation optimized for zero-copy data trans-
fer. The results show that both systems can deliver
file access throughput in excess of 100 MB/s, sat-
urating network links with similar raw bandwidth.
Lower client overhead in the DAFS configuration
can improve application performance by up to 40%
over optimized NFS when application processing
and I/O demands are well-balanced.

1 Introduction

The performance of high-speed network stor-
age systems is often limited by client overhead,
such as memory copying, network access costs and
protocol overhead [2, 8, 20, 29]. A related source
of inefficiency stems from poor integration of ap-
plications and file system services; lack of con-
trol over kernel policies leads to problems such as

double caching, false prefetching and poor concur-
rency management [34]. As a result, databases and
other performance-critical applications often bypass
file systems in favor of raw block storage access.
This sacrifices the benefits of the file system model,
including ease of administration and safe sharing
of resources and data. These problems have also
motivated the design of radical operating system
structures to allow application control over resource
management [21, 31].

The recent emergence of commercial direct-
access transport networks creates an opportunity to
address these issues without changing operating sys-
tems in common use. These networks incorporate
two defining features: user-level networking and re-
mote direct memory access (RDMA). User-level net-
working allows safe network communication directly
from user-mode applications, removing the kernel
from the critical I/O path. RDMA allows the net-
work adapter to reduce copy overhead by accessing
application buffers directly.

The Direct Access File System (DAFS) [14] is
a new standard for network-attached storage over
direct-access transport networks. The DAFS proto-
col is based on the Network File System Version 4
protocol [32], with added protocol features for direct
data transfer using RDMA, scatter/gather list I/O,
reliable locking, command flow-control and session
recovery. DAFS is designed to enable a user-level
file system client: a DAFS client may run as an ap-
plication library above the operating system kernel,
with the kernel’s role limited to basic network device
support and memory management. This structure
can improve performance, portability and reliabil-
ity, and offer applications fully asynchronous I/O
and more direct control over data movement and
caching. Network Appliance and other network-
attached storage vendors are planning DAFS inter-
faces for their products.



This paper explores the fundamental struc-
tural and performance characteristics of network file
access using a user-level file system structure on a
direct-access transport network with RDMA. We
use DAFS as a basis for exploring these features
since it is the first fully-specified file system pro-
tocol to support them. We describe DAFS-based
client and server reference implementations for an
open-source Unix system (FreeBSD) and report ex-
perimental results, comparing DAFS to a zero-copy
NFS implementation. Our purpose is to illustrate
the benefits and tradeoffs of these techniques to pro-
vide a basis for informed choices about deployment
of DAFS-based systems and similar extensions to
other network file protocols, such as NFS.

Our experiments explore the application prop-
erties that determine how RDMA and user-level file
systems affect performance. For example, when a
workload is balanced (i.e., the application simulta-
neously saturates the CPU and network link) DAFS
delivers the most benefit compared to more tradi-
tional architectures. When workloads are limited by
the disk, DAFS and more traditional network file
systems behave comparably. Other workload fac-
tors such as metadata-intensity, I/O sizes, file sizes,
and I/O access pattern also influence performance.

An important property of the user-level file
system structure is that applications are no longer
bound by the kernel’s policies for file system buffer-
ing, caching and prefetching. The user-level file
system structure and the DAFS API allow appli-
cations full control over file system access; however,
the application can no longer benefit from shared
kernel facilities for caching and prefetching. A sec-
ondary goal of our work is to show how adaptation
libraries for specific classes of applications enable
those applications to benefit from improved control
and tighter integration with the file system, while
reducing or eliminating the burden on application
developers. We present experiments with two adap-
tation libraries for DAFS clients: Berkeley DB [28]
and the TPIE external memory I/O toolkit [37].
These adaptation libraries provide the benefits of
the user-level file system without requiring that ap-
plications be modified to use the DAFS API.

The layout of this paper is as follows. Section 2
summarizes the trends that motivated DAFS and
user-level file systems and sets our study in context
with previous work. Section 3 gives an overview of
the salient features of the DAFS specifications, and
Section 4 describes the DAFS reference implemen-
tation used in the experiments. Section 5 presents
two example adaptation libraries, and Section 6 de-

scribes zero-copy, kernel-based NFS as an alterna-
tive to DAFS. Section 7 presents experimental re-
sults. We conclude in Section 8.

2 Background and Related Work

In this section, we discuss the previous work
that lays the foundation for DAFS and provides the
context for our experimental results. We begin with
a discussion of the issues that limit performance in
network storage systems and then discuss the two
critical architectural features that we examine to at-
tack performance bottlenecks: direct-access trans-
ports and user-level file systems.

2.1 Network Storage Performance

Network storage solutions can be categorized
as Storage-Area Network (SAN)-based solutions,
which provide a block abstraction to clients, and
Network-Attached Storage (NAS)-based solutions,
which export a network file system interface. Be-
cause a SAN storage volume appears as a local disk,
the client has full control over the volume’s data
layout; client-side file systems or database software
can run unmodified [23]. However, this precludes
concurrent access to the shared volume from other
clients, unless the client software is extended to co-
ordinate its accesses with other clients [36]. In con-
trast, a NAS-based file service can control sharing
and access for individual files on a shared volume.
This approach allows safe data sharing across di-
verse clients and applications.

Communication overhead was a key factor
driving acceptance of Fibre Channel [20] as a high-
performance SAN. Fibre Channel leverages network
interface controller (NIC) support to offload trans-
port processing from the host and access I/O blocks
in host memory directly without copying. Recently,
NICs supporting the emerging iSCSI block storage
standard have entered the market as an IP-based
SAN alternative. In contrast, NAS solutions have
typically used IP-based protocols over conventional
NICs, and have paid a performance penalty. The
most-often cited causes for poor performance of net-
work file systems are (a) protocol processing in net-
work stacks; (b) memory copies [2, 15, 29, 35]; and
(c) other kernel overhead such as system calls and
context switches. Data copying, in particular, in-
curs substantial per-byte overhead in the CPU and
memory system that is not masked by advancing
processor technology.

One way to reduce network storage access over-



head is to offload some or all of the transport proto-
col processing to the NIC. Many network adapters
can compute Internet checksums as data moves to
and from host memory; this approach is relatively
simple and delivers a substantial benefit. An in-
creasing number of adapters can offload all TCP
or UDP protocol processing, but more substantial
kernel revisions are needed to use them. Neither ap-
proach by itself avoids the fundamental overheads
of data copying.

Several known techniques can remove copies
from the transport data path. Previous work has
explored copy avoidance for TCP/IP communica-
tion (Chase et al. [8] provide a summary). Brus-
toloni [5] introduced emulated copy, a scheme that
avoids copying in network I/O while preserving copy
semantics. IO-Lite [29] adds scatter/gather fea-
tures to the I/O API and relies on support from
the NIC to handle multiple client processes safely
without copying. Another approach is to implement
critical applications (e.g., Web servers) in the ker-
nel [19]. Some of the advantages can be obtained
more cleanly with combined data movement prim-
itives, e.g., sendfile, which move data from stor-
age directly to a network connection without a user
space transfer; this is useful for file transfer in com-
mon server applications.

DAFS was introduced to combine the low over-
head and flexibility of SAN products with the gen-
erality of NAS file services. The DAFS approach to
removing these overheads is to use a direct-access
transport to read and write application buffers di-
rectly. DAFS also enables implementation of the file
system client at user level for improved efficiency,
portability and application control. The next two
sections discuss these aspects of DAFS in more de-
tail. In Section 6, we discuss an alternative ap-
proach that reduces NFS overhead by eliminating
data copying.

2.2 Direct-Access Transports

Direct-access transports are characterized by
NIC support for remote direct memory access
(RDMA), user-level networking with minimal ker-
nel overhead, reliable messaging transport connec-
tions and per-connection buffering, and efficient
asynchronous event notification. The Virtual Inter-
face (VI) Architecture [12] defines a host interface
and API for NICs supporting these features.

Direct-access transports enable user-level net-
working in which the user-mode process interacts
directly with the NIC to send or receive messages
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Figure 1: User-level vs. kernel-based client file sys-
tem structure.

with minimal intervention from the operating sys-
tem kernel. The NIC device exposes an array of
connection descriptors to the system physical ad-
dress space. At connection setup time, the ker-
nel network driver maps a free connection descrip-
tor into the user process virtual address space,
giving the process direct and safe access to NIC
control registers and buffer queues in the descrip-
tor. This enables RDMA, which allows the net-
work adapter to reduce copy overhead by access-
ing application buffers directly. The combination of
user-level network access and copy avoidance has a
lengthy heritage in research systems spanning two
decades [2, 4, 6, 33, 38].

The experiments in Section 7 quantify the im-
provement in access overhead that DAFS gains from
RDMA and transport offload on direct-access NICs.

2.3 User-Level File Systems

In addition to overhead reduction, the DAFS
protocol leverages user-level networking to enable
the network file system structure depicted in the
left-hand side of Figure 1. In contrast to traditional
kernel-based network file system implementations,
as shown in the right side of Figure 1, DAFS file
clients may run in user mode as libraries linked di-
rectly with applications.

While DAFS also supports kernel-based
clients, our work focuses primarily on the properties
of the user-level file system structure. A user-level
client yields additional modest reductions in over-
head by removing system call costs. Perhaps more
importantly, it can run on any operating system,
with no special kernel support needed other than
the NIC driver itself. The client may evolve in-
dependently of the operating system, and multiple



client implementations may run on the same sys-
tem. Most importantly, this structure offers an op-
portunity to improve integration of file system func-
tions with I/O-intensive applications. In particu-
lar, it enables fully asynchronous pipelined file sys-
tem access, even on systems with inadequate kernel
support for asynchronous I/O, and it offers full ap-
plication control over caching, data movement and
prefetching.

It has long been recognized that the kernel
policies for file system caching and prefetching are
poorly matched to the needs of some important ap-
plications [34]. Migrating these OS functions into
libraries to allow improved application control and
specialization is similar in spirit to the library oper-
ating systems of Exokernel [21], protocol service de-
composition for high-speed networking [24], and re-
lated approaches. User-level file systems were con-
ceived for the SHRIMP project [4] and the Network-
Attached Secure Disks (NASD) project [18]. NFS
and other network file system protocols could sup-
port user-level clients over an RPC layer incorpo-
rating the relevant features of DAFS [7], and we
believe that our results and conclusions would ap-
ply to such a system.

Earlier work arguing against user-level file sys-
tems [39] assumed some form of kernel mediation
in the critical I/O path and did not take into ac-
count the primary sources of overhead outlined in
Section 2.1. However, the user-level structure con-
sidered in this paper does have potential disadvan-
tages. It depends on direct-access network hard-
ware, which is not yet widely deployed. Although
an application can control caching and prefetching,
it does not benefit from the common policies for
shared caching and prefetching in the kernel. Thus,
in its simplest form, this structure places more bur-
den on the application to manage data movement,
and it may be necessary to extend applications to
use a new file system API. Section 5 shows how
this power and complexity can be encapsulated in
prepackaged I/O adaptation libraries (depicted in
Figure 1) implementing APIs and policies appro-
priate for a particular class of applications. If the
adaptation API has the same syntax and seman-
tics as a pre-existing API, then it is unnecessary to
modify the applications themselves (or the operat-
ing system).

3 DAFS Architecture and Standards

The DAFS specification grew out of the DAFS
Collaborative, an industry/academic consortium

led by Network Appliance and Intel, and it is
presently undergoing standardization through the
Storage Networking Industry Association (SNIA).

The draft standard defines the DAFS proto-
col [14] as a set of request and response formats
and their semantics, and a recommended proce-
dural DAFS API [13] to access the DAFS service
from a client program. Because library-level com-
ponents may be replaced, client programs may ac-
cess a DAFS service through any convenient I/O
interface. The DAFS API is specified as a recom-
mended interface to promote portability of DAFS
client programs. The DAFS API is richer and more
complex than common file system APIs including
the standard Unix system call interface.

The next section gives an overview of the
DAFS architecture and standards, with an empha-
sis on the transport-related aspects: Sections 3.2
and 3.3 focus on DAFS support for RDMA and
asynchronous file I/O respectively.

3.1 DAFS Protocol Summary

The DAFS protocol derives from NFS Version
4 [32] (NFSv4) but diverges from it in several sig-
nificant ways. DAFS assumes a reliable network
transport and offers server-directed command flow-
control in a manner similar to block storage pro-
tocols such as iSCSI. In contrast to NFSv4, every
DAFS operation is a separate request, but DAFS
supports request chaining to allow pipelining of de-
pendent requests (e.g., a name lookup or open fol-
lowed by file read). DAFS protocol headers are or-
ganized to preserve alignment of fixed-size fields.
DAFS also defines features for reliable session re-
covery and enhanced locking primitives. To enable
the application (or an adaptation layer) to sup-
port file caching, DAFS adopts the NFSv4 mech-
anism for consistent caching based on open delega-
tions [1, 14, 32].

The DAFS specification is independent of the
underlying transport, but its features depend on
direct-access NICs. In addition, some transport-
level features (e.g., message flow-control) are de-
fined within the DAFS protocol itself, although they
could be viewed as a separate layer below the file
service protocol.

3.2 Direct-Access Data Transfer

To benefit from RDMA, DAFS supports direct
variants of key data transfer operations (read, write,
readdir, getattr, setattr). Direct operations transfer



directly to or from client-provided memory regions
using RDMA read or write operations as described
in Section 2.2.

The client must register each memory region
with the local kernel before requesting direct I/O on
the region. The DAFS API defines primitives to reg-
ister and unregister memory regions for direct I/O;
the register primitive returns a region descriptor to
designate the region for direct I/O operations. In
current implementations, registration issues a sys-
tem call to pin buffer regions in physical memory,
then loads page translations for the region into a
lookup table on the NIC so that it may interpret
incoming RDMA directives. To control buffer pin-
ning by a process for direct I/O, the operating sys-
tem should impose a resource limit similar to that
applied in the case of the 4.4BSD mlock API [26].
Buffer registration may be encapsulated in an adap-
tation library.

RDMA operations for direct I/O in the DAFS
protocol are always initiated by the server rather
than a client. For example, to request a DAFS di-
rect write, the client’s write request to the server
includes a region token for the buffer containing the
data. The server then issues an RDMA read to fetch
the data from the client, and responds to the DAFS
write request after the RDMA completes. This al-
lows the server to manage its buffers and control
the order and rate of data transfer [27].

3.3 Asynchronous I/O and Prefetching

The DAFS API supports a fully asynchronous
interface, enabling clients to pipeline I/O operations
and overlap them with application processing. A
flexible event notification mechanism delivers asyn-
chronous I/O completions: the client may create an
arbitrary number of completion groups, specify an
arbitrary completion group for each DAFS opera-
tion and poll or wait for events on any completion
group.

The asynchronous I/O primitives enable event-
driven application architectures as an alternative
to multithreading. Event-driven application struc-
tures are often more efficient and more portable
than those based on threads. Asynchronous I/O
APIs allow better application control over concur-
rency, often with lower overhead than synchronous
I/O using threads.

Many NFS implementations support a limited
form of asynchrony beneath synchronous kernel I/O
APIs. Typically, multiple processes (called I/O dae-
mons or nfsiods) issue blocking requests for sequen-

tial block read-ahead or write-behind. Unfortu-
nately, frequent nfsiod context switching adds over-
head [2]. The kernel policies only prefetch after
a run of sequential reads and may prefetch erro-
neously if future reads are not sequential.

4 DAFS Reference Implementation

We have built prototypes of a user-level DAFS
client and a kernel DAFS server implementation for
FreeBSD. Both sides of the reference implementa-
tion use protocol stubs in a DAFS SDK provided
by Network Appliance. The reference implementa-
tion currently uses a 1.25 Gb/s Giganet cLAN VI
interconnect.

4.1 User-level Client

The user-level DAFS client is based on a three-
module design, separating transport functions, flow-
control and protocol handling. It implements
an asynchronous event-driven control core for the
DAFS request/response channel protocol. The sub-
set of the DAFS API supported includes direct and
asynchronous variants of basic file access and data
transfer operations.

The client design allows full asynchrony for
single-threaded applications. All requests to the
library are non-blocking, unless the caller explic-
itly requests to wait for a pending completion. The
client polls for event completion in the context of
application threads, in explicit polling requests and
in a standard preamble/epilogue executed on ev-
ery entry and exit to the library. At these points,
it checks for received responses and may also initi-
ate pending sends if permitted by the request flow-
control window. Each thread entry into the library
advances the work of the client. One drawback of
this structure is that pending completions build up
on the client receive queues if the application does
not enter the library. However, deferring response
processing in this case does not interfere with the
activity of the client, since it is not collecting its
completions or initiating new I/O. A more general
approach was recently proposed for asynchronous
application-level networking in Exokernel [16].

4.2 Kernel Server

The kernel-based DAFS server [25] is a kernel-
loadable module for FreeBSD 4.3-RELEASE that
implements the complete DAFS specification. Us-
ing the VFS/Vnode interface, the server may export



any local file system through DAFS. The kernel-
based server also has an event-driven design and
takes advantage of efficient hardware support for
event notification and delivery in asynchronous net-
work I/O. The server is multithreaded in order to
deal with blocking conditions in disk I/O and buffer
cache locking.

5 Adaptation Libraries

Adaptation libraries are user-level I/O li-
braries that implement high-level abstractions,
caching and prefetching, and insulate applications
from the complexity of handling DAFS I/O. Adap-
tation libraries interpose between the application
and the file system interface (e.g., the DAFS API).
By introducing versions of the library for each file
system API, applications written for the library I/O
API can run over user-level or kernel-based file sys-
tems, as depicted in Figure 2.

DAFS-based adaptation libraries offer an op-
portunity to specialize file system functions for
classes of applications. For example, file caching
at the application level offers three potential ben-
efits. First, the application can access a user-
level cache with lower overhead than a kernel-based
cache accessed through the system call interface.
Second, the client can efficiently use application-
specific fetch and replacement policies. Third, in
cases where caching is an essential function of the
adaptation library, a user-level file system avoids
the problem of double caching, in which data is
cached redundantly in the kernel-level and user-
level caches.

One problem with user-level caching is that
the kernel virtual memory system may evict cached
pages if the client cache consumes more memory
than the kernel allocates to it. For this reason, each
of these adaptation libraries either pre-registers its
cache (as described in Section 3.2) or configures it
to a “safe” size. A second problem is that user-level
caches are not easily shared across multiple uncoop-
erating applications, but the need for this sharing
is less common in high-performance domains.

To illustrate the role of adaptation libraries,
we consider two examples that we enhanced for use
with DAFS: TPIE and Berkeley DB.

5.1 TPIE

TPIE [37] (Transparent Parallel I/O Environ-
ment) is a toolkit for external memory (EM) al-
gorithms. EM algorithms are structured to handle
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Figure 2: Adaptation Libraries can benefit from
user-level clients without modifying applications.

massive data problems efficiently by minimizing the
number of I/O operations. They enhance locality of
data accesses by performing I/O in large blocks and
maximizing the useful computation on each block
while it is in memory. The TPIE toolkit supports
a range of applications including Geographic Infor-
mation System (GIS) analysis programs for massive
terrain grids [3].

To support EM algorithms, TPIE implements
a dataflow-like streaming paradigm on collections
of fixed-size records. It provides abstract stream
types with high-level interfaces to “push” streams of
data records through application-defined record op-
erators. A pluggable Block Transfer Engine (BTE)
manages transfer buffering and provides an inter-
face to the underlying storage system. We intro-
duced a new BTE for the DAFS interface, allowing
us to run TPIE applications over DAFS without
modification. The BTE does read-ahead and write-
behind on data streams using DAFS asynchronous
primitives, and handles the details of block cluster-
ing and memory registration for direct I/O.

5.2 Berkeley DB

Berkeley DB (db) [28] is an open-source embed-
ded database system that provides library support
for concurrent storage and retrieval of key/value
pairs. Db manages its own buffering and caching, in-
dependent of any caching at the underlying file sys-
tem buffer cache. Db can be configured to use a spe-
cific page size (the unit of locking and I/O, usually
8KB) and buffer pool size. Running db over DAFS
avoids double caching and bypasses the standard file
system prefetching heuristics, which may degrade
performance for common db access patterns. Sec-
tion 7.4 shows the importance of these effects for db



performance.

6 Low-Overhead Kernel-Based NFS

The DAFS approach is one of several alterna-
tives to improving access performance for network
storage. In this section we consider a prominent
competing structure as a basis for the empirical
comparisons in Section 7. This approach enhances
a kernel-based NFS client to reduce overhead for
protocol processing and/or data movement. While
this does not reduce system-call costs, there is no
need to modify existing applications or even to re-
link them if the kernel API is preserved. However,
it does require new kernel support, which is a bar-
rier to fast and reliable deployment. Like DAFS,
meaningful NFS enhancements of this sort also rely
on new support in the NIC.

The most general form of copy avoidance for
file services uses header splitting and page flipping,
variants of which have been used with TCP/IP pro-
tocols for more than a decade (e.g., [5, 8, 11, 35]).
To illustrate, we briefly describe FreeBSD enhance-
ments to extend copy avoidance to read and write
operations in NFS. Most NFS implementations send
data directly from the kernel file cache without mak-
ing a copy, so a client initiating a write and a server
responding to a read can avoid copies. We focus on
the case of a client receiving a read response contain-
ing a block of data to be placed in the file cache. The
key challenge is to arrange for the NIC to deposit
the data payload—the file block—page-aligned in
one or more physical page frames. These pages may
then be inserted into the file cache by reference,
rather than by copying. It is then straightforward
to deliver the data to a user process by remapping
pages rather than by physical copy, but only if the
user’s buffers are page-grained and suitably aligned.
This also assumes that the file system block size is
an integral multiple of the page size.

To do this, the NIC first strips off any trans-
port headers and the NFS header from each mes-
sage and places the data in a separate page-aligned
buffer (header splitting). Note that if the network
MTU is smaller than the hardware page size, then
the transfer of a page of data is spread across multi-
ple packets, which can arrive at the receiver out-of-
order and/or interspersed with packets from other
flows. In order to pack the data contiguously into
pages, the NIC must do significant protocol process-
ing for NFS and its transport to decode the incom-
ing packets. NFS complicates this processing with
variable-length headers.

We modified the firmware for Alteon Tigon-
II Gigabit Ethernet adapters to perform header
splitting for NFS read response messages. This
is sufficient to implement a zero-copy NFS client.
Our modifications apply only when the transport is
UDP/IP and the network is configured for Jumbo
Frames, which allow NFS to exchange data in units
of pages. To allow larger block sizes, we altered IP
fragmentation code in the kernel to avoid splitting
page buffers across fragments of large UDP packets.
Together with other associated kernel support in
the file cache and VM system, this allows zero-copy
data exchange with NFS block-transfer sizes up to
32KB. Large NFS transfer sizes can reduce over-
head for bulk data transfer by limiting the number
of trips through the NFS protocol stack; this also
reduces transport overheads on networks that allow
large packets.

While this is not a general solution, it allows
us to assess the performance potential of optimiz-
ing a kernel-based file system rather than adopt-
ing a direct-access user-level file system architecture
like DAFS. It also approximates the performance
achievable with a kernel-based DAFS client, or an
NFS implementation over VI or some other RDMA-
capable network interface. As a practical matter,
the RDMA approach embraced in DAFS is a more
promising alternative to low-overhead NFS. Note
that page flipping NFS is much more difficult over
TCP, because the NIC must buffer and reassemble
the TCP stream to locate NFS headers appearing
at arbitrary offsets in the stream. This is possible in
NICs implementing a TCP offload engine, but im-
practical in conventional NICs such as the Tigon-II.

7 Experimental Results

This section presents performance results from
a range of benchmarks over our DAFS reference im-
plementation and two kernel-based NFS configura-
tions. The goal of the analysis is to quantify the
effects of the various architectural features we have
discussed and understand how they interact with
properties of the workload.

Our system configuration consists of Pentium
III 800MHz clients and servers with the Server-
Works LE chipset, equipped with 256MB-1GB of
SDRAM on a 133 MHz memory bus. Disks are
9GB 10000 RPM Seagate Cheetahs on a 64-bit/33
MHz PCI bus. All systems run patched versions
of FreeBSD 4.3-RELEASE. DAFS uses VI over Gi-
ganet cLAN 1000 adapters. NFS uses UDP/IP over
Gigabit Ethernet, with Alteon Tigon-II adapters.



Table 1: Baseline Network Performance.

VI/cLAN UDP/Tigon-II
Latency 30 µs 132 µs
Bandwidth 113 MB/s 120 MB/s

Table 1 shows the raw one-byte roundtrip latency
and bandwidth characteristics of these networks.
The Tigon-II has a higher latency partly due to the
datapath crossing the kernel UDP/IP stack. The
bandwidths are comparable, but not identical. In
order to best compare the systems, we present per-
formance results in Sections 7.1 and 7.2 normalized
to the maximum bandwidth achievable on the par-
ticular technology.

NFS clients and servers exchange data in units
of 4KB, 8KB, 16KB or 32KB (the NFS block I/O
transfer size is set at mount time), sent in frag-
mented UDP packets over 9000-byte MTU Jumbo
Ethernet frames to minimize data transfer over-
heads. Checksum offloading on the Tigon-II is en-
abled, minimizing checksum overheads. Interrupt
coalescing on the Tigon-II was set as high as pos-
sible without degrading the minimum one-way la-
tency of about 66µs for one-byte messages. NFS
client (nfsiod) and server (nfsd) concurrency was
tuned for best performance in all cases.

For NFS experiments with copy avoidance
(NFS-nocopy), we modified the Tigon-II firmware,
IP fragmentation code, file cache code, VM system
and Tigon-II driver for NFS/UDP header splitting
and page remapping as described in Section 6. This
configuration is the state of the art for low-overhead
data transfer over NFS. Experiments with the stan-
dard NFS implementation (NFS) use the standard
Tigon-II driver and vendor firmware.

7.1 Bandwidth and Overhead

We first explore the bandwidth and client CPU
overhead for reads with and without read-ahead.
These experiments use a 1GB server cache pre-
warmed with a 768MB dataset. For this exper-
iment, we factor out client caching as the NFS
client cache is too small to be effective and the
DAFS client does not cache. Thus these experi-
ments are designed to stress the network data trans-
fer. These results are representative of workloads
with sequential I/O on large disk arrays or asyn-
chronous random-access loads on servers with suffi-
cient disk arms to deliver data to the client at net-

work speed. None of the architectural features dis-
cussed yield much benefit for workloads and servers
that are disk-bound, as they have no effect on the
remote file system or disk system performance, as
shown in Section 7.4.

The application’s request size for each file I/O
request is denoted block size in the figures. The ideal
block size depends on the nature of the application;
large blocks are preferable for applications that do
long sequential reads, such as streaming multime-
dia, and smaller blocks are useful for nonsequential
applications, such as databases.

In the read-ahead (sequential) configurations,
the DAFS client uses the asynchronous I/O API
(Section 3.3), and NFS has kernel-based sequen-
tial read-ahead enabled. For the experiments with-
out read-ahead (random access), we tuned NFS for
best-case performance at each request size (block
size). For request sizes up to 32K, NFS is config-
ured for a matching NFS transfer size, with read-
ahead disabled. This avoids unnecessary data trans-
fer or false prefetching. For larger request sizes we
used an NFS transfer size of 32K and implicit read-
ahead up to the block size. One benefit of the user-
level file system structure is that it allows clients
to select transfer size and read-ahead policy on a
per-application basis. All DAFS experiments use a
transfer size equal to the request block size.

Random access reads with read-ahead
disabled. The left graphs in Figure 3 and Fig-
ure 4 reports bandwidth and CPU utilization, re-
spectively, for random block reads with read-ahead
disabled. All configurations achieve progressively
higher bandwidths with increasing block size, since
the wire is idle between requests. The key observa-
tion here is that with small request sizes the DAFS
configuration outperforms both NFS implementa-
tions by a factor of two to three. This is due to
lower operation latency, stemming primarily from
the lower network latency (see Table 1) but also
from the lower per-I/O overhead. This lower over-
head results from the transport protocol offload to
the direct-access NIC, including reduced system-call
and interrupt overhead possible with user-level net-
working.

With large request sizes, transfer time dom-
inates. NFS peaks at less than one-half the link
bandwidth (about 60 MB/s), limited by memory
copying overhead that saturates the client CPU.
DAFS achieves wire speed using RDMA with low
client CPU utilization, since the CPU is not in-
volved in the RDMA transfers. NFS-nocopy elimi-
nates the copy overhead with page flipping; it also
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Figure 3: Read bandwidth without (left) and with (right) read-ahead.
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Figure 4: Read client CPU utilization (%) without (left) and with (right) read-ahead.

approaches wire speed for large block sizes, but the
overhead for page flipping and kernel protocol code
consumes 50% of the client CPU at peak band-
width.

Sequential reads with read-ahead. The
right graphs in Figure 3 and Figure 4 report band-
widths and CPU utilization for a similar experiment
using sequential reads with read-ahead enabled. In
this case, all configurations reach their peak band-
width even with small block sizes. Since the band-
widths are roughly constant, the CPU utilization
figures highlight the differences in the protocols.
Again, when NFS peaks, the client CPU is satu-
rated; the overhead is relatively insensitive to block
size because it is dominated by copying overhead.

Both NFS-nocopy and DAFS avoid the byte
copy overhead and exhibit lower CPU utilization
than NFS. However, while CPU utilization drops
off with increasing block size, this drop is signif-
icant for DAFS, but noticeably less so for NFS-
nocopy. The NFS-nocopy overhead is dominated by
page flipping and transport protocol costs, both of
which are insensitive to block size changes beyond

the page size and network MTU size. In contrast,
the DAFS overhead is dominated by request initia-
tion and response handling costs in the file system
client code, since the NIC handles data transport
using RDMA. Therefore, as the number of requests
drops with the increasing block size, the client CPU
utilization drops as well.

The following experiments illustrate the im-
portance of these factors for application perfor-
mance.

7.2 TPIE Merge

This experiment combines raw sequential
I/O performance, including writes, with varying
amounts of application processing. As in the
previous experiment, we configure the system to
stress client data-transfer overheads, which domi-
nate when the server has adequate CPU and I/O
bandwidth for the application. In this case the
I/O load is spread across two servers using 600MB
memory-based file systems. Performance is limited
by the client CPU rather than the server CPU, net-
work, or disk I/O.
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Figure 5: TPIE Merge throughput for n = 8.

The benchmark is a TPIE-based sequential
record Merge program, which combines n sorted in-
put files of x y-byte records, each with a fixed-size
key (an integer), into one sorted output file. Per-
formance is reported as total throughput:

2 · n · x · y

t

(bytes)

(sec)

This experiment shows the effect of low-
overhead network I/O on real application perfor-
mance, since the merge processing competes with
I/O overhead for client CPU cycles. Varying the
merge order n and/or record size y allows us to
control the amount of CPU work the application
performs per block of data. CPU cost per record
(key comparisons) increases logarithmically with n;
CPU cost per byte decreases linearly with record
size. This is because larger records amortize the
comparison cost across a larger number of bytes,
and there are fewer records per block.

We ran the Merge program over two variants
of the TPIE library, as described in Section 5.
One variant (TPIE/DAFS) is linked with the user-
level DAFS client and accesses the servers using
DAFS. In this variant, TPIE manages the stream-
ing using asynchronous I/O, with zero-copy reads
using RDMA and zero-copy writes using inline
DAFS writes over the cLAN’s scatter/gather mes-
saging (cLAN does not support DAFS writes using
RDMA). The second variant (TPIE/NFS) is config-
ured to use the standard kernel file system interface
to access the servers over NFS. For TPIE/NFS, we
ran experiments using both standard NFS and NFS-
nocopy configurations, as in the previous section.
For the NFS configurations, we tuned read-ahead
and write-behind concurrency (nfsiods) for the best
performance in all cases. The TPIE I/O request
size was fixed to 32KB.

Figure 5 shows normalized merge throughput

results; these are averages over ten runs with a vari-
ance of less than 2% of the average. The merge or-
der is n=8. The record size varies on the x-axis,
showing the effect of changing the CPU demands
of the application. The results show that the lower
overhead of the DAFS client (noted in the previ-
ous section) leaves more CPU and memory cycles
free for the application at a given I/O rate, result-
ing in higher merge throughputs. Note that the
presence of application processing accentuates the
gap relative to the raw-bandwidth tests in the pre-
vious subsection. It is easy to see that when the
client CPU is saturated, the merge throughput is
inversely proportional to the total processing time
per block, i.e., the sum of the total per-block I/O
overhead and application processing time.

For example, on the right side of the graph,
where the application has the highest I/O demand
(due to larger records) and hence the highest I/O
overhead, DAFS outperforms NFS-nocopy by as
much as 40%, as the NFS-nocopy client consumes
up to 60% of its CPU in the kernel executing pro-
tocol code and managing I/O. Performance of the
NFS configuration is further limited by memory
copying through the system-call interface in writes.

An important point from Figure 5 is that
the relative benefit of the low-overhead DAFS con-
figuration is insignificant when the application is
compute-bound. As application processing time per
block diminishes (from left to right in Figure 5), re-
ducing I/O overhead yields progressively higher re-
turns because the I/O overhead is a progressively
larger share of total CPU time.

7.3 PostMark

PostMark [22] is a synthetic benchmark aimed
at measuring file system performance over a work-
load composed of many short-lived, relatively small
files. Such a workload is typical of mail and net-
news servers used by Internet Service Providers.
PostMark workloads are characterized by a mix of
metadata-intensive operations. The benchmark be-
gins by creating a pool of files with random sizes
within a specified range. The number of files, as
well as upper and lower bounds for file sizes, are
configurable. After creating the files, a sequence of
transactions is performed. These transactions are
chosen randomly from a file creation or deletion op-
eration paired with a file read or write. A file cre-
ation operation creates and writes random text to a
file. File deletion removes a random file from the ac-
tive set. File read reads a random file in its entirety



and file write appends a random amount of data to
a randomly chosen file. In this section, we consider
DAFS as a high-performance alternative to NFS for
deployment in mail and netnews servers [9, 10].

We compare PostMark performance over
DAFS to NFS-nocopy. We tune NFS-nocopy to ex-
hibit best-case performance for the average file size
used each time. For file sizes less than or equal to
32K, NFS uses a block size equal to the file size (to
avoid read-ahead). For larger file sizes, NFS uses
32K blocks, and read-ahead is adjusted according to
the file size. Read buffers are page-aligned to enable
page remapping in delivering data to the user pro-
cess. In all cases an FFS file system is exported us-
ing soft updates [17] to eliminate synchronous disk
I/O for metadata updates.

Our NFS-nocopy implementation is based on
NFS Version 3 [30]. It uses write-behind for file
data: writes are delayed or asynchronous depend-
ing on the size of the data written. On close, the
NFS client flushes dirty buffers to server memory
and waits for flushing to complete but does not
commit them to server disk. NFS Version 3 open-
to-close consistency dictates that cached file blocks
be re-validated with the server each time the file is
opened1.

With DAFS, the client does not cache and all
I/O requests go to the server. Writes are not syn-
chronously committed to disk, offering a data relia-
bility similar to that provided by NFS. DAFS inlines
data with the write RPC request (since the cLAN
cannot support server-initiated RDMA read opera-
tions required for direct file writes) but uses direct
I/O for file reads. In both cases, the client waits for
the RPC response.

A key factor that determines PostMark per-
formance is the cost of metadata operations (e.g.,
open, close, create, delete). Enabling soft updates
on the server-exported filesystem decouples meta-
data updates from the server disk I/O system. This
makes the client metadata operation cost sensitive
to the client-server RPC as well as to the metadata
update on the server filesystem. As the number
of files per directory increases, the update time on
the server dominates because FFS performs a linear
time lookup. Other factors affecting performance
are client caching and network I/O.

In order to better understand the PostMark

1In the NFS implementation we used, writing to a file be-

fore closing it originally resulted in an invalidation of cached

blocks in the next open of that file, as the client could not

tell who was responsible for the last write. We modified our

implementation to avoid this problem.
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Figure 6: PostMark. Effect of I/O boundedness.

performance, we measured the latency of the micro-
operations involved in each PostMark transaction.
As we saw in Table 1, the Tigon-II has significantly
higher roundtrip latency than the cLAN. As a re-
sult, there is a similar difference in the null-RPC
cost which makes the cLAN RPC three times faster
than Tigon-II RPC (47µs vs. 154µs). In addition,
all DAFS file operations translate into a single RPC
to the server. With NFS, a file create or remove
RPC is preceded by a second RPC to get the at-
tributes of the directory that contains the file. Sim-
ilarly, a file open requires an RPC to validate the
file’s cached blocks. The combination of more ex-
pensive and more frequent RPCs introduces a sig-
nificant performance differential between the two
systems.

This experiment measures the effect of increas-
ing I/O boundedness on performance. We increase
the average file size from 4KB to 64KB, maintain-
ing a small number of files (about 150) to mini-
mize the server lookup time. Each run performs
30,000 transactions, each of which is a create or
delete paired with a read operation. We report the
average of ten runs, which have a variance under
10% of the average. The client and server have
256MB and 1GB of memory, respectively. At small
file sizes, the increased cost of metadata operations
for NFS-nocopy dominates its performance. As the
I/O boundedness of the workload increases, DAFS
performance becomes dominated by network I/O
transfers and drops linearly. For large file sizes,
reads under NFS-nocopy benefit from caching, but
writes still have to go to the server to retain open-
to-close semantics.

This experiment shows that DAFS outper-
forms NFS-nocopy by more than a factor of two
for small files due largely to the lower latency of
metadata operations on the cLAN network. Part of
this difference could be alleviated by improvements
in networking technology. However, the difference
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in the number of RPCs between DAFS and NFS is
fundamental to the protocols. For larger files, the
NFS-nocopy benefit from client caching is limited
by its consistency model that requires waiting on
outstanding asynchronous writes on file close.

7.4 Berkeley DB

In this experiment, we use a synthetic work-
load composed of read-only transactions, each ac-
cessing one small record uniformly at random from
a B-tree to compare db performance over DAFS to
NFS-nocopy. The workload is single-threaded and
read-only, so there is no logging or locking. In all
experiments, after warming the db cache we per-
formed a sequence of read transactions long enough
to ensure that each record in the database is touched
twice on average. The results report throughput in
transactions per second. The unit of I/O is a 16KB
block.

We vary the size of the db working set in or-
der to change the bottleneck from local memory,
to remote memory, to remote disk I/O. We com-
pare a DAFS db client to an NFS-nocopy db client
both running on a machine with 256MB of physical
memory. In both cases the server runs on a machine
with 1GB of memory. Since we did not expect read-
ahead to help in the random access pattern consid-
ered here, we disable read-ahead for NFS-nocopy
and use a transfer size of 16K. The db user-level
cache size is set to the amount of physical memory
expected to be available for allocation by the user
process. The DAFS client uses about 36MB for
communication buffers and statically-sized struc-
tures leaving about 190MB to the db cache. To
facilitiate comparison between the systems, we con-

figure the cache identically for NFS-nocopy.

Figure 7 reports throughput with warm db
and server cache. In NFS-nocopy, reading through
the file system cache creates competition for phys-
ical memory between the user-level and file system
caches (Section 5). For database sizes up to the
size of the db cache, the user-level cache is able to
progressively use more physical memory during the
warming period, as network I/O diminishes. Perfor-
mance is determined by local memory access as db

eventually satisfies requests entirely from the local
cache.

Once the database size exceeds the client
cache, performance degrades as both systems start
accessing remote memory. NFS-nocopy perfor-
mance degrades more sharply due to two effects.
First, the double caching effect creating competi-
tion for physical memory between the user-level and
file system caches is now persistent due to increased
network I/O demands. As a result, the filesystem
cache grows and user-level cache memory is paged
out to disk causing future page faults. Second, since
the db API issues unaligned page reads from the
file system, NFS-nocopy cannot use page remap-
ping to deliver data to the user process. The DAFS
client avoids these effects by maintaining a single
client cache and doing direct block reads into db

buffers. For database sizes larger than 1GB that
cannot fit in the server cache, both systems are disk
I/O bound on the server.

8 Conclusions

This paper explores the key architectural fea-
tures of the Direct Access File System (DAFS),
a new architecture and protocol for network-
attached storage over direct-access transport net-
works. DAFS or other approaches that exploit such
networks and user-level file systems have the po-
tential to close the performance gap between full-
featured network file services and network storage
based on block access models.

The contribution of our work is to characterize
the issues that determine the effects of DAFS on ap-
plication performance, and to quantify these effects
using experimental results from a public DAFS ref-
erence implementation for an open-source Unix sys-
tem (FreeBSD). For comparison, we report results
from an experimental zero-copy NFS implementa-
tion. This allows us to evaluate the sources of the
performance improvements from DAFS (e.g., copy
overhead vs. protocol overhead) and the alterna-
tives for achieving those benefits without DAFS.



DAFS offers significant overhead reductions for
high-speed data transfer. These improvements re-
sult primarily from direct access and RDMA, the
cornerstones of the DAFS design, and secondarily
from the effect of transport offload to the network
adapter. These benefits can yield significant ap-
plication improvements. In particular, DAFS de-
livers the strongest benefit for balanced workloads
in which application processing saturates the CPU
when I/O occurs at network speed. In such a sce-
nario, DAFS improves application performance by
up to 40% over NFS-nocopy for TPIE Merge. How-
ever, many workload factors can undermine these
benefits. Direct-access transfer yields little benefit
with servers that are disk-limited, or with workloads
that are heavily compute-bound.

Our results also show that I/O adaptation li-
braries can obtain benefits from the DAFS user-
level client architecture, without the need to port
applications to a new (DAFS) API. Most impor-
tantly, adaptation libraries can leverage the addi-
tional control over concurrency (asynchrony), data
movement, buffering, prefetching and caching in
application-specific ways, without burdening appli-
cations. This creates an opportunity to address
longstanding problems related to the integration of
the application and file system for high-performance
applications.
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10 Software Availability

The DAFS and NFS-nocopy implementations
used in this paper are available from http://

www.eecs.harvard.edu/vino/fs-perf/dafs and
http://www.cs.duke.edu/ari/dafs.
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