
Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

Self-Monitoring and
Self-Adapting Systems

Margo I. Seltzer

Harvard University

Division of Engineering and Applied Sciences

EV IR

T A S

Self-Monitoring and Self-Adaptation

Assumptions
• Performance is important.

• People do not really know how to tune
applications and systems.

• It would be nice to get some help from
the system in tuning.

• Self-monitoring systems gather
information about their own
performance.

Self-Monitoring and Self-Adaptation

Outline
• Self-Monitoring in VINO.

• Processing monitor data.

• Adapting to system behavior.

• Conclusions.

Self-Monitoring and Self-Adaptation

Self-Monitoring in VINO
• Measurement thread periodically collects

module statistics.

• Generate detailed profiling information.

• Capture module inputs (traces) and
outputs (logs).

• In-situ simulation evaluates competing
algorithms and policies.

Self-Monitoring and Self-Adaptation

Measurement Thread

VINO kernel

file
system

txn
system

lock
system

other
systemsother
systemsother
systemsother
systems

measurement
thread
(graft)

get_stats

output data

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cachegraft points

Self-Monitoring and Self-Adaptation

Generating Traces and Logs
incoming requests

outputs

Buffer Cache

record
parameters

pass-
through

Self-Monitoring and Self-Adaptation

In-Situ Simulation

incoming requests

outputs

Buffer CacheBuffer Cache
Simulator

simulation results

real

pass
parameters
to simulator

and

Self-Monitoring and Self-Adaptation

What do we do with Data?
• Off-line Analysis

• Monitors long-term behavior.

• Identifies common usage profiles.

• Detects uncommon usage.

• Suggests thresholds to online system.

• Conducts feasibility evaluations.

• Online Analysis
• Monitor instantaneous resource utilization.

• Maintain efficiency statistics.

• Detect dangerous conditions.

Self-Monitoring and Self-Adaptation

Off-line Analysis
• Use data from measurement thread to

construct time series usage profile.

• Conduct variance analysis.

• Construct predicted usage profiles.

• Determine resource thresholds from
predicted profiles.

• Notify online system of thresholds.

• Evaluate traces and logs; derive new
algorithms.

• Simulate new algorithms, in situ.

Self-Monitoring and Self-Adaptation

Online Analysis
• Receive threshold and variance

information from off-line system.

• Maintain dynamic statistics about:
• Cache hit rates.

• Lock contention.

• Disk queue lengths.

• Load averages.

• Context switch rates.

• Detect abnormal behavior.

• Dynamically trigger trace generation.

• Trigger adaptation heuristics.

Self-Monitoring and Self-Adaptation

Adaptation Heuristics
• Goal: decrease application latency.

• Paging
• Collect page access trace.

• Look for well-known patterns (linear, cyclic, strided).

• Look for page access correlation.

• Install better prefetching algorithm.

• Disk Wait
• Similar process to paging.

• Replace read-ahead for the application(s).

• CPU Hogs
• Examine profile output.

• Recompile kernel modules in application context.

Self-Monitoring and Self-Adaptation

Adaptation (continued)
• Interrupt Latency

• Measure latency between interrupt arrival and delivery
to process/thread.

• Look for excessively long intervals or high variance.

• Check (fix) scheduling priorities.

• Lock Contention
• Measure lock wait times.

• Decrease lock granularity on highly contested items.

Self-Monitoring and Self-Adaptation

Conclusions
• Self-monitoring is a generally useful

idea.

• An extensible system just makes it
easier.

• Automatic adaptation is a cool idea.

• Challenging to do it correctly.

• An extensible system makes it easier to
experiment with this.

