

Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

#### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

#### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

#### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

#### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

### Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -

## Self-Monitoring and Self-Adapting Systems



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











#### Off-line Analysis

- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

### **Adaptation Heuristics**

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

## **Adaptation (continued)**

### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

## Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -

## Self-Monitoring and Self-Adapting Systems



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











#### Off-line Analysis

- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

### **Adaptation Heuristics**

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

## **Adaptation (continued)**

### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

## Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -

## Self-Monitoring and Self-Adapting Systems



Margo I. Seltzer

Harvard University

**Division of Engineering and Applied Sciences** 

# Assumptions

- Performance is important.
- People do not really know how to tune applications and systems.
- It would be nice to get some help from the system in tuning.
- Self-monitoring systems gather information about their own performance.

### Outline

- Self-Monitoring in VINO.
- Processing monitor data.
- Adapting to system behavior.
- Conclusions.

## **Self-Monitoring in VINO**

- Measurement thread periodically collects module statistics.
- Generate detailed profiling information.
- Capture module inputs (*traces*) and outputs (*logs*).
- In-situ simulation evaluates competing algorithms and policies.











#### Off-line Analysis

- Monitors long-term behavior.
- Identifies common usage profiles.
- Detects uncommon usage.
- Suggests thresholds to online system.
- Conducts feasibility evaluations.

#### Online Analysis

- Monitor instantaneous resource utilization.
- Maintain efficiency statistics.
- Detect dangerous conditions.

#### Self-Monitoring and Self-Adaptation

### **Online Analysis**

- Receive threshold and variance information from off-line system.
- Maintain dynamic statistics about:
  - Cache hit rates.
  - Lock contention.
  - Disk queue lengths.
  - · Load averages.
  - Context switch rates.
- Detect abnormal behavior.
- Dynamically trigger trace generation.
- Trigger adaptation heuristics.

### **Off-line Analysis**

- Use data from measurement thread to construct time series usage profile.
- Conduct variance analysis.
- Construct predicted usage profiles.
- Determine resource thresholds from predicted profiles.
- Notify online system of thresholds.
- Evaluate traces and logs; derive new algorithms.
- Simulate new algorithms, in situ.

## Self-Monitoring and Self-Adaptation

### **Adaptation Heuristics**

- Goal: decrease application latency.
- Paging
  - Collect page access trace.
  - Look for well-known patterns (linear, cyclic, strided).
  - Look for page access correlation.
  - Install better prefetching algorithm.
- Disk Wait
  - · Similar process to paging.
  - Replace read-ahead for the application(s).
- CPU Hogs
  - Examine profile output.
  - Recompile kernel modules in application context.

## **Adaptation (continued)**

### • Interrupt Latency

- Measure latency between interrupt arrival and delivery to process/thread.
- Look for excessively long intervals or high variance.
- Check (fix) scheduling priorities.

#### Lock Contention

- Measure lock wait times.
- Decrease lock granularity on highly contested items.

## Conclusions

- Self-monitoring is a generally useful idea.
- An extensible system just makes it easier.
- Automatic adaptation is a cool idea.
- Challenging to do it correctly.
- An extensible system makes it easier to experiment with this.

Self-Monitoring and Self-Adaptation -