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Abstract
We present an algorithm for building probabilis-
tic rule lists that is two orders of magnitude faster
than previous work. Rule list algorithms are
competitors for decision tree algorithms. They
are associative classifiers, in that they are built
from pre-mined association rules. They have a
logical structure that is a sequence of IF-THEN
rules, identical to a decision list or one-sided
decision tree. Instead of using greedy split-
ting and pruning like decision tree algorithms,
we aim to fully optimize over rule lists, strik-
ing a practical balance between accuracy, inter-
pretability, and computational speed. The al-
gorithm presented here uses a mixture of the-
oretical bounds (tight enough to have practical
implications as a screening or bounding pro-
cedure), computational reuse, and highly tuned
language libraries to achieve computational ef-
ficiency. Currently, for many practical problems,
this method achieves better accuracy and sparsity
than decision trees, with practical running times.
The predictions in each leaf are probabilistic.

1. Introduction
Our goal is to build a competitor for decision tree and rule
learning algorithms in terms of accuracy, interpretability,
and computational speed. Decision trees are widely used,
particularly in industry, because of their interpretability.
Their logical IF-THEN structure allows predictions to be
explained to users. However, decision tree algorithms have
the serious flaw that they are constructed using greedy split-
ting from the top down. They also use greedy pruning of
nodes. They do not globally optimize any function, instead
they are composed entirely of local optimization heuristics.
If the algorithm makes a mistake in the splitting near the
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top of the tree, it is difficult to undo it, and consequently
the trees become long and uninterpretable, unless they are
heavily pruned, in which case accuracy suffers. In general,
decision tree algorithms are computationally tractable, not
particularly accurate, and less sparse and interpretable than
they could be. This leaves users with no good alternative if
they desire an accurate yet sparse logical classifier.

Several important ingredients provide the underpinning for
our method including:

(i) A principled objective, which is the posterior distri-
bution for the Bayesian Rule List (BRL) model (see
Letham et al., 2015). We optimize this objective over
rule lists. Our algorithm is called Scalable Bayesian
Rule Lists (SBRL).

(ii) A useful statistical approximation that narrows the
search space. We assume that each rule in the rule list
contains (“captures”) a number of observations that is
bounded below. Because of this approximation, the
set of conditions defining each leaf is a frequent pat-
tern. This means the antecedents within the rule list
are all frequent patterns. All of the possible frequent
patterns can be pre-mined from the dataset using one
of the standard frequent pattern mining methods. This
leaves us with a much smaller optimization problem:
we optimize over the set of possible pre-mined an-
tecedents and their order to create the rule list.

(iii) High performance language libraries to achieve
computational efficiency. Optimization over rule lists
is done through repeated low level computations. At
every iteration, we make a change to the rule list
and need to evaluate the new rule list on the data.
High performance calculations (novel to this problem)
speed up this evaluation.

(iv) Computational reuse. When we evaluate a rule list
on the data that has been modified from a previous rule
list, we need only to change the evaluation of points
below the change in the rule list. Thus we can reuse
the computation above the change.

(v) Analytical bounds on BRL’s posterior that are tight
enough to be used in practice for screening association
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Table 1. Rule list for the Mushroom dataset from the UCI reposi-
tory (data available from Bache & Lichman, 2013). PP: the prob-
ability that the label is positive (the mushroom is edible).

RULE-LIST PP

IF BRUISES=NO,ODOR=NOT-IN-(NONE,FOUL) 0.001
ELSE IF ODOR=FOUL,GILL-ATTACHMENT=FREE, 0.001
ELSE IF GILL-SIZE=BROAD,RING-NUMBER=ONE, 0.999
ELSE IF STALK-ROOT=UNKNOWN,STALK-SURFACE-ABOVE-

RING=SMOOTH,
0.996

ELSE IF STALK-ROOT=UNKNOWN,RING-NUMBER=ONE, 0.039
ELSE IF BRUISES=NO,VEIL-COLOR=WHITE, 0.995
ELSE IF STALK-SHAPE=TAPERING,RING-NUMBER=ONE, 0.986
ELSE IF HABITAT=PATHS, 0.958

ELSE (DEFAULT RULE) 0.001

rules and providing bounds on the optimal solution.
These are provided in two theorems in this paper.

Through a series of controlled experiments, we show that
SBRL is over two orders of magnitude faster than the pre-
vious best code for this problem.

For example, Table 1 presents a rule list that we learned for
the UCI Mushroom dataset (see Bache & Lichman, 2013).
This rule list is a predictive model for whether a mushroom
is edible. It was created in about 9 seconds on a laptop and
achieves perfect out-of-sample accuracy.

2. Review of Bayesian Rule Lists
Scalable Bayesian Rule Lists maximizes the posterior dis-
tribution of the Bayesian Rule Lists algorithm. Our training
set is {(xi, yi)}ni=1 where the xi ∈ X encode features, and
yi are labels, which in our case are binary, either 0 or 1. A
Bayesian rule list has the following form:

if x obeys a1 then y ∼ Binom(θ1),
θ1 ∼ Beta(α+ N1)
else if x obeys a2 then y ∼ Binom(θ2),
θ2 ∼ Beta(α+ N2)
...
else if x obeys am then y ∼ Binom(θm),
θm ∼ Beta(α+ Nm)
else y ∼ Binom(θ0), θ0 ∼ Beta(α+ N0).

Here, the antecedents {aj}mj=1 are conditions on the x’s
that are either true or false, for instance, if x is a patient, aj
is true when x’s age is above 60 years old and x has dia-
betes, otherwise false. The vector α = [α1, α0] has a prior
parameter for each of the two labels. Values α1 and α0 are
prior parameters, in the sense that each rule’s prediction
y ∼ Binomial(θj), and θj |α ∼ Beta(α). The notation Nj

is the vector of counts, where Nj,l is the number of obser-
vations xi that satisfy condition aj but none of the previous

conditions a1, ..., aj−1, and that have label yi = l, where l
is either 1 or 0. Nj is added to the prior parameters α from
the usual derivation of the posterior for the Beta-binomial.
The default rule is at the bottom, which makes predictions
for observations that are not satisfied by any of the condi-
tions. When an observation satisfies condition aj but not
a1, ..., aj−1 we say that the observation is captured by rule
j. Formally:

Definition 1 Rule j captures observation i, denoted
Captr(i) = j, when j = argmin j′ such that aj′(xi) =
True.

Bayesian Rule Lists is an associative classification method,
in the sense that the antecedents are first mined from the
database, and then the set of rules and their order are
learned. The rule mining step is fast, and there are fast
parallel implementations available. Any frequent pattern
mining method will suffice, since the method needs only
to produce those conditions with sufficiently high support
in the database. The support of antecedent aj is denoted
supp(aj), which is the number of observations that obey
condition aj . A condition is a conjunction of expressions
“feature∈values,” e.g., age∈[40,50] and color=white. The
hard part is learning the rule list, which is what this paper
focuses on. It is an optimization over subsets of rules and
their permutations.

The likelihood for the model discussed above is:

Likelihood = p(y|x, d, α) ∝
∏m
j=0

Γ(Nj,0+α0)Γ(Nj,1+α1)
Γ(Nj,0+Nj,1+α0+α1) ,

where d denotes the rules in the list and their order, d =
(m, {aj , θj}mj=0). Intuitively, one can see that having more
of one class and less of the other class will make the likeli-
hood larger. To see this, note that if Nj,0 is large and Nj,1
is small (or vice versa) the likelihood for rule j is large.

We next discuss the prior. It has three terms, one governing
the number of rules m in the list, one governing the size cj
of each antecedent j, and one governing the choice of an-
tecedent condition aj of rule j given its size. Specifically,
cj is the cardinality of antecedent aj , also written |aj |, the
number of conjunctive clauses in antecedent aj . E.g, if a
is ‘x1=green’ and ‘x2<50’, this has cardinality 2. Nota-
tion a<j includes the antecedents before j in the rule list,
if there are any, e.g. a<4 = {a1, a2, a3}. c<j includes
the cardinalities of the antecedents before j in the rule list.
Notation A is the set of pre-mined antecedents. The prior
is:

p(d|A, λ, η) = p(m|A, λ)
∏m
j=1 p(cj |c<j ,A, η)p(aj |a<j , cj ,A).

The first term is the prior for the number of rules in the list.
Here, the number of rules m is Poisson, truncated at the
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total number of pre-selected antecedents:

p(m|A, λ) =
(λm/m!)∑|A|
j=0(λj/j!)

, m = 0, . . . , |A|,

where λ is a hyper-parameter. The second term in the prior
governs the number of conditions in each rule. The size of
rule j is cj which is Poisson, truncated to remove values
for which no rules are available with that cardinality:

p(cj |c<j ,A, η) =
(ηcj /cj !)∑

k∈Rj−1(c<j,A)(η
k/k!)

, cj ∈ Rj−1(c<j ,A),

where Rj−1(c<j ,A) is the set of cardinalities available af-
ter removing the first j−1 rules, and η is a hyperparameter.
The third term in the prior governs the choice of antecedent,
given that we have determined its size through the second
term. We have aj selected from a uniform distribution over
antecedents in A of size cj , excluding those in a<j .

p(aj |a<j , cj ,A) ∝ 1,

aj ∈ Qcj = {a ∈ A \ {a1, a2, ..., aj−1} : |a| = cj}.

As usual, the posterior is the likelihood times the prior.

p(d|x,y,A, α, λ, η) ∝ p(y|x, d, α)p(d|A, λ, η).

This is the full model, and the posterior
p(d|x,y,A, α, λ, η) is what we optimize to obtain
the best rule lists.

The hyperparameter λ is chosen by the user to be the de-
sired size of the rule list, and η is chosen as the desired
number of terms in each rule. The parameters α0 and α1

are usually chosen to be 1 to avoid favoring one class label
over another.

Given the prior parameters λ, η, and α, along with the set
of pre-mined rulesA, the algorithm must select which rules
from A to use, along with their order.

3. Representation
We use an MCMC scheme: at each time t, we choose a
neighboring rule list at random by adding, removing, or
swapping rules, starting with the basic algorithm of Letham
et al. (2015) as a starting point. However, to optimize per-
formance we use a more efficient rule list representation
that is amenable to fast computation.

Expressing computation as bit vectors: The vast major-
ity of the computational time spent constructing rule sets
lies in determining which rules capture which observations
in a particular rule ordering. The naı̈ve implementation of
these operations calls for various set operations – checking
whether a set contains an element, adding an element to a
set, and removing an element from a set. However, set op-
erations are typically slow, and hardware does little to help
with efficiency.

We convert all set operations to logical operations on bit
vectors, for which hardware support is readily available.
The bit vector representation is efficient in terms of both
memory and computation. Before beginning the algorithm,
for each rule, we compute the bit vector representing the
samples for which the rule generates a true value. For a one
million sample data set (or more precisely up to 1,048,576
observations) each rule carries with it a 128 KB vector
(since a byte consists of 8 bits), which fits comfortably in
most L2 caches.

Representing intermediate state as bit vectors: For each
rule list we consider, we maintain similarly sized vectors
for each rule in the set indicating which (unique) rule in
the set captures which observation. Representing the rules
and rule lists this way allows us to explore the rule list state
space, reusing significant computation. For example, con-
sider a rule list containing n rules. Imagine that we wish
to delete rule k from the set. The naı̈ve implementation
recomputes the “captures” vector for every rule in the set.
Our implementation updates only rules j > k, using logi-
cal operators acting upon the rule list “captures” vector for
k, and the rule’s “captures” vector for each rule j > k.
This shortens the run time of the algorithm in practice by
approximately 50%.

A fast algebra for computational reuse: Our use of
bit vectors transforms the large number of set operations
(performed in a traditional implementation) into a set of
boolean operations on bit vectors. We have custom im-
plementations (discussed in the full version of this work,
Yang et al., 2017) for the following: (i) Remove rule k uses
boolean operations on bit vectors to redistribute the obser-
vations captured by rule k to the rules below it in the list.
(ii) Insert rule k shifts the rules below k down one position,
determines which observations are captured by the new
rule, and removes those observations from the rules below
it. (iii) Swap consecutive rules updates only which observa-
tions were captured for the two swapped rules. (iv) Gener-
alized swap subroutine updates only observations captured
for all rules between the two rules to be swapped. All op-
erations use only bit vector computations.

Ablation study: Having transformed expensive set op-
erations into bit vector operations, we can now leverage
both hardware vector instructions and optimized software
libraries. We investigated four alternative implementations,
each improving efficiency from the previous one. (i) First,
we have the original python implementation here for com-
parison. (ii) Next, we retained our python implementa-
tion but converted from set operations to bit operations.
(iii) Then, we used the python gmpy library to perform
the bit operations. (iv) Finally, we moved the implementa-
tion from Python to C, represented the bit vectors as multi-
precision integers, used the GMP library, which is faster on
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Figure 1. Boxplots of log10 runtime among different implementa-
tions. From the original python code, the final code is over two
orders of magnitude faster.

large data sets, and implemented the algebra for computa-
tional reuse outlined above. To evaluate how each of these
steps improved the computation time of the algorithm, we
conducted a controlled experiment where each version of
the algorithm (corresponding to the four steps above) was
given the same data (the UCI adult dataset, divided into
three folds), same set of rules, and same number of MCMC
iterations (20,000) to run. We created boxplots for the log10

of the run time over the different folds, which are shown
in Figure 1. The final code is over two orders of magni-
tude faster than the original optimized python code (that of
Letham et al., 2015).

4. Bounds
We prove two bounds. First we provide an upper bound
on the number of rules in a maximum a posteriori rule list.
This allows us to narrow our search space to rule lists below
a certain size. Second we provide a constraint that elimi-
nates certain prefixes of rule lists. This prevents our algo-
rithm from searching in regions of the space that provably
do not contain the maximum a posteriori rule list.

4.1. Upper bound on the number of rules in the list

Given the number of features, the parameter λ for the size
of the list, and parameters α0 and α1, we can derive an
upper bound for the size of a maximum a posteriori rule
list. This formalizes how the prior on the number of rules
is strong enough to overwhelm the likelihood.

We are considering binary antecedents and binary features
(e.g., aj is true if female), so the total number of possible

Algorithm 1 Calculating bj’s
Initialization: index=0, b0 = 1
for c = 0 to

⌊
P
2

⌋
do

for j =
(
P
c

)
downto 1 do

index = index + 1
bindex = j

end for
if c+ c 6= p then

for j =
(
P
P−c

)
downto 1 do

index = index + 1
bindex = j

end for
end if

end for

antecedents of each size can be calculated directly. When
creating the upper bound, within the proof, we hypotheti-
cally exhaust antecedents from each size category in turn,
starting with the smallest sizes. We discuss this further be-
low.

Let |Qc| be the number of antecedents that remain in the
pile that have c logical conditions. The sequence of b’s that
we define next is a lower bound for the possible sequence of
|Qc|’s. In particular, b0, b1, b2, etc. represents the sequence
of sizes of rules that would provide the smallest possible
|Qc|’s. Intuitively, the sequence of b’s arises when we de-
plete the antecedents of size 1, then deplete all of size 2, etc.
The number of ways to do this is given by the bindex values,
computed as Algorithm 1, where P is the number of fea-
tures, and b = {b0, b1, ...b2P−1} is a vector of length 2P .
We will use b within the theorem below. In our notation,
rule list d is defined by the antecedents and the probabilities
on the right side of the rules, d = (m, {al, θl}ml=1).

Theorem 1 The size m∗ of any MAP rule list d∗ (with pa-
rameters λ, η, and α = (α0, α1)) obeys m∗ ≤ mmax,
where

mmax = min

{
2P − 1,max

{
m′ ∈ Z+ : λ

m′

m′! ≥
Γ(N−+α0)Γ(N++α1)

Γ(N+α0+α1)

m′∏
j=1

bj

}}
.

With parameters α0 = 1 and α1 = 1, this reduces to:

mmax = min

{
2P − 1,max

{
m′ ∈ Z+ : λ

m′

m′! ≥
Γ(N−+1)Γ(N++1)

Γ(N+2)

m′∏
j=1

bj

}}
.

The proof is in the longer version of this paper (Yang et al.,
2017). Theorem 1 tends to significantly reduce the size of
the space. Without this bound, it is possible that the search
would consider extremely long lists, without knowing that
they are provably non-optimal.
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4.2. Prefix Bound

We next provide a bound that eliminates certain regions
of the rule space from consideration. Consider a rule list
beginning with antecedents a1, .., ap. If the best possible
rule list starting with a1, .., ap cannot beat the posterior of
the best rule list we have found so far, then we know any
rule list starting with a1, .., ap is suboptimal. In that case,
we should stop exploring rule lists that start with a1, .., ap.
This is a type of branch and bound strategy, in that we
have now eliminated (bounded) the entire set of lists start-
ing with a1, .., ap. We formalize this intuition below.

Denote the rule list antecedents at iteration t by dt =
(at1, a

t
2, ..., a

t
mt , a0). The current best posterior probabil-

ity has value v∗t , that is

v∗t = max
t′≤t

Posterior(dt
′
, {(xi, yi)}ni=1).

Let us consider a rule list with antecedents d =
(a1, a2, ...am, a0). Let dp denote a prefix of length p of
the rule list d, i.e., dp = (a1, a2, ...ap), where a1, a2, ..., ap
are the same as the first p antecedents in d. We want to de-
termine whether a rule list starting with dp could be better
than the best we have seen so far.

Define Υ(dp, {(xi, yi)}ni=1) as follows:

Υ(dp, {(xi, yi)}ni=1) :=

λmax (p,λ)/(max (p,λ))!∑|A|
j=0(λj/j!)

(∏p
j=1 p(cj |c<j ,A, η) 1

|Qcj |

)
×
(∏m

j=0
Γ(Nj,0+1)Γ(Nj,1+1)

Γ(Nj,0+Nj,1+2)

)
×

Γ(1+N0−
∑p
j=1Nj,0)

Γ(2+N0−
∑p
j=1Nj,0)

Γ(1+N1−
∑p
j=1Nj,1)

Γ(2+N1−
∑p
j=1Nj,1)

.

Here, Nj,0 is the number of points captured by rule j with
label 0, and Nj,1 is the number of points captured by rule j
with label 1,

Nj,0 = |{i : Captr(i) = j and yi = 0}|,
Nj,1 = |{i : Captr(i) = j and yi = 1}|.

The result states that for a rule list with prefix dp, if the
upper bound on the posterior, Υ(dp), is not as high as the
posterior of the best rule list we have seen so far, then dp is
a bad prefix, which cannot lead to a MAP solution. It tells
us we no longer need to consider rule lists starting with dp.

Theorem 2 For rule list d = {dp, ap+1, ..., am, a0}, if

Υ(dp, {(xi, yi)}ni=1) < v∗t ,

then for α0 = 1 and α1 = 1, we have

d 6∈ argmaxd′Posterior(d′, {(xi, yi)}ni=1). (1)

Theorem 2 is implemented in our code in the following
way: for each random restart, the initial rule in the list is
checked against the bound of Theorem 2. If the condition
Υ(d1) < v∗t holds, we throw out this initial rule and choose
a new one, because that rule provably cannot be the first
rule in an optimal rule list. Theorem 2 provides a substan-
tial computational speedup in finding high quality or op-
timal solutions. In some cases, it provides a full order of
magnitude speedup. The proofs are lengthy and contained
in the longer version of this work (Yang et al., 2017).

5. Experiments
We provide a comparison of algorithms along three di-
mensions: solution quality (AUC - area under the ROC
curve), sparsity, and scalability. As baselines, we chose
popular algorithms to represent the sets of uninterpretable
methods and the set of “interpretable” methods. To rep-
resent uninterpretable methods, we chose logistic regres-
sion, SVM RBF, random forests (RF), and boosted deci-
sion trees (ADA). To represent the class of “interpretable”
algorithms, we chose CART, C4.5, RIPPER (Cohen, 1995),
CBA (Liu et al., 1998), and CMAR (Li et al., 2001). Other
works (see Letham et al., 2015; Wang & Rudin, 2015a)
have accuracy/interpretability comparisons to Bayesian
Rule Lists and Falling Rule Lists, so our main effort here
will be to study the scalability component. Implementation
details are in the full version (Yang et al., 2017).

We benchmark using publicly available datasets (see Bache
& Lichman, 2013) that have interpretable features: the Tic
Tac Toe dataset, where the goal is to determine whether the
“X” player wins; the Adult dataset, where we aim to predict
whether an individual makes over $50K peryear; the Mush-
room dataset, where the goal is to predict whether a mush-
room is edible; the Nursery dataset, where the goal is to
predict whether a child’s application to nursery school will
be in either the “very recommended” or “special priority”
categories; and the Telco customer churn dataset (see Wat-
sonAnalytics, 2015), where the goal is to predict whether a
customer will leave the service provider.

Evaluations of prediction quality, sparsity, and timing were
done using 10-fold cross validation. The prior parameters
were fixed at η = 1, and α = (1, 1). For the λ for each
dataset, we first let λ be 5 and ran SBRL once with the
above parameters. Then we fixed λ at the length of the
returned rule list for that dataset. It is possible that the
solution quality would increase if SBRL ran for a larger
number of iterations. For the purpose of providing a con-
trolled experiment, the number of iterations was fixed at
5,000 for each of the 20 chains of SBRL, which we ran in
series on a laptop. Every time SBRL started a new rule
list, we checked the initial rule in the list to see whether the
upper-bound on its posterior (by Theorem 2) was greater



Scalable Bayesian Rule Lists

Figure 2. Scatter plot of AUC against the number of leaves (spar-
sity) for Tic Tac Toe. There is a triangle for each of 10 folds, for
several settings of CART and C4.5’s parameters.

Table 2. Run Time on Adult dataset

RUN TIME LR SVM RF ADA CART C4.5 RIPPER CBA CMAR SBRL

MEAN 1.353 238.5 23.53 45.71 0.809 0.512 1005.9 2.557 3.000 17.97
MEDIAN 1.406 239.9 23.56 43.62 0.813 0.513 1005.4 2.520 2.920 18.01
STD 0.203 5.693 0.133 4.672 0.022 0.011 100.14 0.174 0.191 0.171

than the best rule list we had found so far. If not, the rule
was replaced until the condition was satisfied.

Tic Tac Toe: Each observation in this dataset is a tic tac
toe board after the game has finished. If there are 3 X’s in
a row, the label of the board is 1, otherwise 0. This should
not be a difficult learning problem since there are solutions
with perfect accuracy on the training set that generalize to
the test set. Figure 2 shows a scatter plot of AUC vs. num-
ber of leaves (sparsity), where each triangular marker rep-
resents an evaluation of one algorithm, on one fold, with
one parameter setting. We tried many different parameter
settings for CART (in blue), and many different parame-
ter settings for C4.5 (in gray), none of which were able to
achieve points on the efficient frontier defined by SBRL.
SBRL’s run time was on average 0.759 (± .02) seconds.

Adult: For the Adult dataset, results are in Figure 3, Fig-
ure 4 and Table 2. Adult contains 45,121 observations and
12 features, where each observation is an individual, and
the features are census data, including demographics, in-
come levels, and other financial information. Here, SBRL,
which was untuned and forced to be sparse, performed only
slightly worse than several of the uninterpretable methods.
Its AUC performance dominated those of the CART and
C4.5 algorithms. As the scatter plot shows, even if CART
were tuned on the test set, it would have performed at
around the same level, perhaps slightly worse than SBRL.
The timing for SBRL was competitive, at about 18 seconds,
where 14 seconds were MCMC iterations. If the chains
were computed in parallel rather than in series, it would
speed up computation further.
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Figure 3. Comparison of AUC among different methods on the
Adult dataset.

Figure 4. Scatter plots of AUC against the number of leaves for
the Adult dataset. 10 folds are included, along with results from
several different settings of CART and C4.5’s parameters. The
bottom is a zoomed-in version of the top.

Mushroom: Table 1 contains an SBRL rule list for Mush-
room; other results are in Yang et al. (2017). SBRL attains
perfect test accuracy on this dataset.

Nursery: Results from the Nursery dataset are shown in
Figure 5. A similar story holds as for the previous datasets:
SBRL is on the optimal frontier of accuracy/sparsity with-
out tuning and with reasonable run time.
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Figure 5. Scatter plot of AUC against the number of leaves (spar-
sity) for Nursery. 10 folds are included, along with results from
several different settings of CART and C4.5’s parameters.
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Figure 6. Comparison of AUC of ROC among different methods
on Telco.

Telco: Figure 6, Figure 7 and Table 3 show the results for
the Telco dataset, which contains 7043 observations and 18
features. Similar observations hold for this dataset. The
model from one of the ten folds is provided in Table 4.

6. Scalability
We used the USCensus1990 data (see Bache & Lichman,
2013) to test the scalability of SBRL on large datasets. We
used 1,000,000 observations and set SBRL’s parameter to
extract ≈1000 rules as problem (A) and about 50,000 ob-
servations with 50,000 rules as problem (B). The runtime
comparison with CART is shown in Table 5. For prob-
lem (A), the run times are similar; for (B); SBRL is slower
(2.5 hours), which is not prohibitive for important prob-
lems. One can see why CART does not perform as well
in high dimensions, as it often spends less time on harder
problems than on easier ones; details are in (Yang et al.,

Figure 7. Scatter plot of AUC against the number of leaves (spar-
sity) for Telco. 10 folds are included, along with results from
several different settings of CART and C4.5’s parameters.

Table 3. Run Time on Telco dataset

RUN TIME LR SVM RF ADA CART C4.5 RIPPER CBA CMAR SBRL

MEAN 0.267 7.468 3.703 7.839 0.168 0.250 37.14 8.028 1.679 5.239
MEDIAN 0.272 7.550 3.695 8.726 0.168 0.252 37.63 8.050 1.705 5.271
STD 0.009 0.207 0.183 0.111 0.008 0.017 3.202 0.400 0.161 0.149

2017).

7. Related Works and Discussion
Rule lists are a type of one-sided decision tree, and any de-
cision tree can be written as a rule list by enumerating the
leaves. Thus SBRL is a competitor for CART (Breiman
et al., 1984). CART is currently still popular in indus-
try. CART and other decision tree methods (also deci-
sion list methods and associative classification methods)
form trees from the top down using greedy splitting and
greedy pruning (see, e.g., Quinlan, 1983; Clark & Niblett,
1989; Cendrowska, 1987; Rivest, 1987; Quinlan, 1993; Liu
et al., 1998; Li et al., 2001; Yin & Han, 2003; Marchand &
Sokolova, 2005; Vanhoof & Depaire, 2010; Rudin et al.,
2013). Since our work does not use greedy splitting and
pruning, it is closer to Bayesian tree models (Dension et al.,
1998; Chipman et al., 2002; 2010), which are built greedily
from the top down, but then the trees change according to
an MCMC scheme, which allows for more exploration of
the search space. However even with MCMC, the chains
tend to center on local optima. It may be possible to use
our techniques to build trees, where one would mine rules
and create a globally optimal tree.

There are a series of works from the mid-1990’s onwards
on finding optimal decision trees using dynamic program-
ming and search techniques (e.g., Bennett & Blue, 1996;
Auer et al., 1995; Dobkin et al., 1996; Boros et al., 2000;
Garofalakis et al., 2000; Farhangfar et al., 2008), mainly
working with fixed depth trees. The number of trees of a
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Table 4. Example of rule list for Telco-Customer-Churn dataset
fold 1 (CV1). PP: positive probability. TA: test accuracy.

RULE-LIST PP TA

IF ( CONTRACT=ONE YEAR &STREAMING-
MOVIES=YES ),

0.20 0.82

ELSE IF ( CONTRACT=ONE YEAR ), 0.050 0.96
ELSE IF ( TENURE<1YEAR &INTERNETSER-

VICE=FIBER OPTIC ),
0.70 0.71

ELSE IF ( CONTRACT=TWO YEAR ), 0.029 0.97
ELSE IF ( INTERNETSERVICE=FIBER OPTIC &ONLINESECU-

RITY=NO ),
0.48 0.58

ELSE IF ( ONLINEBACKUP=NO &TECHSUPPORT=NO ), 0.41 0.61
ELSE ( DEFAULT ), 0.22 0.78

Table 5. Run time (in seconds) and AUC of SBRL on USCen-
sus1990 dataset. A: 1 million data points and 1 thousand rules; B:
50 thousand data points and 50 thousand rules.

RUN TIME(S) SBRL CART

(A) 2700 2000
(B) 9000 84

AUC SBRL CART

(A) 0.940 0.886
(B) 0.925 0.906

fixed depth is much larger than the number of rule lists of a
fixed depth and are therefore more difficult to optimize. Ni-
jssen & Fromont (2010) use pre-mined rules to form trees,
but in a different way than our method. There, the user pre-
mines all possible leaves, enumerating all conditions lead-
ing to that leaf. (By contrast, in associative classification,
we mine only small conjunctions, and their ordered com-
bination creates leaves.) As as result, Nijssen & Fromont
(2010) warn about issues related to running out of memory.

An extension of this work (CORELS - Angelino et al.,
2017) does not provide probabilistic predictions, but is able
to provide a certificate of optimality to a globally optimal
rule list. This indicates that SBRL is probably also achiev-
ing optimality; however, because SBRL is probabilistic,
the proof of optimality is much more difficult. To clar-
ify: finding the optimal solution for both methods should
be approximately equally difficult, but proving optimal-
ity for SBRL is much more difficult. However, there is
a clear practical benefit to having probabilistic predictions
like those of SBRL. One can post-process CORELS to have
probabilistic predictions by computing P (Y = 1|x ∈ leaf)
for each leaf, but this is not the same as optimizing likeli-
hood and obtaining these probabilities directly like SBRL.

There are several subfields that produce disjunctive normal
form (DNF) classifiers rather than rule lists, including rule
learning/induction, and associative classification, which
stemmed possibly from work in the 1960s (Michalski,
1969), and throughout the 1980’s and 90’s (Cendrowska,
1987; Clark & Niblett, 1989; Cohen, 1995). The vast ma-
jority of these techniques are not probabilistic, and aim for
covering the positive class without covering the negative
class. Rijnbeek & Kors (2010) aim to produce globally op-

timal DNF models. There is recent work on probabilistic
DNF’s that is similar to SBRL (Wang et al., 2016; 2017).

Teleo-reactive programs (Nilsson, 1994) use a rule list
structure and could benefit from learning this structure
from data.

SBRL aims to produce interpretable models. Interpretabil-
ity has been a fundamental topic in artificial intelligence for
a long time (see Rüping, 2006; Bratko, 1997; Dawes, 1979;
Vellido et al., 2012; Giraud-Carrier, 1998; Holte, 1993;
Shmueli, 2010; Huysmans et al., 2011; Freitas, 2014). Be-
cause the rule lists created by our method are designed to be
interpretable, one would probably not want to boost them
using AdaBoost to form more complicated models. This
contrasts with, for instance, Friedman & Popescu (2008),
who linearly combine pre-mined rules.

Rule lists and their variants are currently being used for
text processing (King et al., 2017), discovering treatment
regimes (Zhang et al., 2015; Lakkaraju & Rudin, 2017;
Wang & Rudin, 2015b), and creating medical risk assess-
ments (Letham et al., 2015), among other applications.

Conclusion
We finish by stating why/when one would want to use this
particular method. SBRL is not meant as a competitor for
black box classifiers such as neural networks, support vec-
tor machines, gradient boosting or random forests. It is
useful when machine learning tools are used as a decision
aid to humans, who need to understand the model in order
to trust it and make data-driven decisions. SBRL does not
use a greedy splitting/pruning procedure like decision tree
algorithms (CART, C4.5), which means that it more reli-
ably computes high quality solutions, at the possible ex-
pense of additional computation time. Many of the deci-
sion tree methods do not compute sparse or interpretable
trees, as we have seen with C4.5. Our code is a strict im-
provement over the original Bayesian Rule Lists algorithm
if one is looking for a maximum a posteriori solution. It is
faster because of careful use of low-level computations and
theoretical bounds.

Code

Code for SBRL is available at the following link:
https://github.com/Hongyuy/sbrlmod
Link to R package SBRL on CRAN: https:
//cran.r-project.org/web/packages/sbrl/
index.html
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