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Abstract
This paper presents a performance comparison of several
file system allocation policies. The file systems are
designed to provide high bandwidth between disks and
main memory by taking advantage of parallelism in an
underlying disk array, catering to large units of transfer,
and minimizing the bandwidth dedicated to the transfer
of meta data. All of the file systems described use a mul-
tiblock allocation strategy which allows both large and
small files to be allocated efficiently. Simulation results
show that these multiblock policies result in systems that
are able to utilize a large percentage of the underlying
disk bandwidth; more than 90% in sequential cases. As
general purpose systems are called upon to support more
data intensive applications such as databases and super-
computing, these policies offer an opportunity to provide
superior performance to a larger class of users.

1. Introduction

Most current file systems can be divided into two
distinct categories: fixed block systems and extent based
systems. Fixed block systems allocate files as a collec-
tion of identically sized blocks while extent based sys-
tems allocate files as a collection of a few large extents
whose sizes may vary from file to file. Traditionally,
time-sharing oriented systems (e.g. UNIX) have used
fixed block systems, while database oriented operating
systems (e.g. MVS) have chosen extent based systems.
Fixed block file systems have received much criticism
from the database community. The most frequently cited
criticisms are discontiguous allocation and excessive
amounts of meta data [STON81]. Extent based file sys-
tems are often criticized for being too brittle with regard
to fragmentation and too complicated in terms of alloca-
tion.
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IBM’s MVS system provides extent based alloca-
tion allowing users to specify extent sizes for each file
[IBM]. If the user specifies sizes wisely, the file system
allocates most files in a few large contiguous extents, and
there is little wasted space on the disk. However, if
extent sizes are chosen poorly, both external and internal
disk fragmentation can greatly reduce the efficiency of
the disk system. In addition, managing free space and
finding extents of suitable size can become increasingly
complex as free space becomes fragmented. Frequently,
background disk rearrangers must be run (during off
peak hours) to coalesce free blocks.

Fixed block systems, such as the original UNIX V7
file system [THOM78] solve the problems of keeping
allocation simple and fragmentation to a minimum, but
they do so at the expense of efficient read and write per-
formance. In this system, files are composed of some
number of 512 byte blocks. Free blocks are maintained
on a free list and allocated off the head of this list.
Unfortunately, as file systems age, logically sequential
blocks within a file get distributed across the entire disk,
and a disk seek is required to retrieve each 512 byte
block.

The BSD Fast File System (FFS) is an evolutionary
step from the simple fixed block system. Files are com-
posed of a number of fixed sized ‘‘blocks’’ and a few
smaller ‘‘fragments’’. In this way, tiny files may be
composed of fragments, thus avoiding excessive internal
fragmentation. At the same time, the larger block size
(usually on the order of 4K or 8K) allows more data to be
transferred per disk seek. Furthermore, allocation is per-
formed in a rotationally optimal fashion so that succes-
sive blocks of the same file are retrieved during a single
rotation [MCKU84].

Even on systems such as the FFS, commercial
database vendors usually choose to implement their own
file system on a raw disk partition [SYB87]. In this way,
they can guarantee physical contiguity within blocks of a
file. The drawback to such a mechanism is that it
requires a static partitioning between the database files



and all other files on the system. If either grows unex-
pectedly, this partitioning will prove unacceptable.

Another optimized UNIX file system design
presented in [STON89] is designed to provide large
transfers from an array of disks. Files are allocated to
sequential blocks within striped tracks (a track on each
disk of an array) and read-ahead and write-behind are
used to achieve full stripe reads and writes. The resulting
allocation for large files is similar to that in an extent
based system where a file is composed of a few large
contiguous extents. This is the extent based policy simu-
lated in this study.

In an attempt to merge the fixed block and extent
based policies, Koch designed a multiblock file system
using binary buddy allocation [KOCH87]. Files are com-
posed of a fixed number of extents, each of whose size is
a power of two (measured in sectors). Files grow by
doubling their size at each allocation. Periodically (daily
in the DTSS system described) a reallocation algorithm
runs. This reallocator rearranges extents to reduce both
the internal and external fragmentation. Using this com-
bination, most files are allocated in 3 extents and average
under 4% internal fragmentation. This policy (without
the reallocator) is also simulated in this study.

The goal of this study is to analyze how well dif-
ferent allocation policies perform on an array of disks
without the use of an external reallocation process. In
designing a file system for a disk array, the utility of
large blocks increases. Not only does a larger block size
provide more data transferred per disk seek, but it allows
the file system to stripe across the disks, exploiting paral-
lelism in the underlying disk system. Since we wish to
support both large and small files, the file system must
support a range of block sizes. Small blocks are required
to provide reasonable fragmentation for small files, and
large blocks or contiguous allocation are required to sup-
port high data throughput for large files. In this paper, we
compare the performance of three read optimized file
systems in terms of fragmentation and disk system
throughput. We call these read optimized file systems in
that they are optimized for reading entire files sequen-
tially from disk as opposed to write optimized file sys-
tems which use logging techniques to optimize writes to
one or more files [FINL87] [HAGG87] [HAS88]
[ROSE90].

2. The Simulation Model

These allocation policies were analyzed by means
of an event driven, stochastic workload simulator. There
are three primary components to the simulation model:
the disk system, the workload characterization and the
allocation policies. The disk system and workload char-
acterization are described in Sections 2.1 and 2.2, while
the allocation policies are described in detail in Section 4.

2.1. The Disk System

The disk system is an array of disks, viewed as a
single logical disk, with no redundancy or parity informa-
tion. Blocks are numbered so that data written in a large
contiguous unit to the logical disk will be striped across
the physical disks. When data is striped across disks,
there are two parameters which characterize the layout of
disk blocks, the stripe unit and the disk unit. The stripe
unit is the number of bytes allocated on a disk before
allocation is performed on the next disk. This unit must
be greater than or equal to the sector sizes of all the
disks. The disk unit is the minimum unit of transfer
between a disk and memory. This is the smaller of the
smallest block size supported by the file system and the
stripe unit. Disk blocks are addressed by disk units.

Each disk is described in terms of its physical lay-
out (track size, number of cylinders, number of platters)
and its performance characteristics (rotational speed and
seek parameters). The seek performance is described by
two parameters, the one track seek time and the incre-
mental seek time for each additional track. If ST is the
single track seek time and SI is the incremental seek
time, then an N track seek takes ST + N*SI ms . Table 1
contains a listing of the parameters which describe one
common disk and its default values in these simulations.

2.2. Workload Characterization

The workload is characterized in terms of file types
and their reference patterns. A simulation configuration
may consist of any number of file types, as defined by
their size characteristics, access patterns, and growth
characteristics. Table 2 summarizes those parameters
which define a file type.

For each file type, initialization consists of two
phases. In the first phase, nusers events are created, and
each is assigned a start time uniformly distributed in the
range [0, (nusers * hfreq)]. The events are maintained

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Disk Parameters

For the CDC 5 1⁄4" Wren IV Drives (94171-344)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
actual simulatediiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

N Disks NA 8
Total Capacity NA 2.8 G
Max Throughput NA 10.8 M/sec
N Platters 9 9
N Cylinders 1549 1600
Bytes/Track 24 K 24 K
1 Track Seek Time 5.5 ms 5.5 ms
Inc. Seek Time 0.0320 ms 0.0320 ms
Rotation Time 16.67 ms 16.67iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 1: Parameters and Default Values



sorted by their scheduled time. During the second phase,
the files are created. For each file a size is selected from
a normal distribution with mean i_size and deviation
i_dev. Allocation requests are issued until the allocation
length of the file is greater than or equal to this size.

The simulation runs by selecting the first event,
processing that request, and scheduling a new request.
Since each event corresponds to a file type, the type of
operation can be derived from the r_ratio, w_ratio,
e_ratio, and d_ratio. The size of the operation is deter-
mined by the rw_size, rw_dev, and t_size parameters.
After the operation is completed, an exponentially distri-
buted value with mean equal to ptime is added to the time
at which the operation completed and an event is
scheduled at that newly calculated time.

If an allocation request cannot be satisfied, a disk
full condition is logged, and the current event is
rescheduled (according to the ptime parameter as above).
If the test being run is an allocation test, the simulation
ends. For throughput simulations, two parameters are
used to maintain a level of disk utilization. The lower
bound, N, indicates how full the disk system should be
before measurements begin. The upper bound, M, indi-
cates the maximum utilization allowed during the simula-
tion. Any extend operation occurring when the disk utili-
zation is greater than M is converted to a truncate opera-
tion. In this way, the disk utilization is kept between N
and M while measurements are being taken.

A simulation may be terminated by a disk full con-
dition. It may also be terminated by two other condi-
tions, either a specified number of milliseconds have
been simulated or the throughput of the system has stabil-
ized. The throughput, measured as a percentage of the

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
File Parametersiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

nfiles Number of files created
nusers Number of parallel events
ptime Milliseconds between requests from a sin-

gle user
hfreq Milliseconds between requests from dif-

ferent users
rw_size Mean size of each read/write operation
rw_dev Standard deviation in read/write size
a_size For extent based systems, mean extent size
t_size Size of deallocate requests
i_size Mean initial file size
I_dev Deviation in the mean file size.
r_ratio Percent operations which are reads.
w_ratio Percent operations which are writes.
e_ratio Percent operations which are extends.
d_ratio Percent deallocates which are file deletes.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 2: File Parameters and Description

maximum possible sequential throughput of the disk sys-
tem, is considered stabilized when the throughput calcu-
lations for 3 consecutive 10 second intervals are within
.1% of each other.

This study uses 3 workloads to simulate a time-
sharing or software development environment (TS), a
large transaction processing environment (TP), and a
supercomputer or complex query processing environment
(SC).

The time-sharing workload is characterized by an
abundance of small files (mean size 8K bytes) which are
created, read, and deleted. Two-thirds of all requests are
to such files, while the remaining one-third are to larger
files (mean size 96K). The large files are usually read
(60% of all requests) and occasionally extended, written
or truncated (15% writes, 15% extends, 5% deletes and
5% truncates).

The transaction processing environment is charac-
terized by 10 large files (210M) representing data files or
relations, 5 small application logs (5M), and one transac-
tion log (10M). The relations are read and written ran-
domly (60% reads, 30% writes), and infrequently
extended and truncated (7% extends, 3% truncates). The
log files are usually extended (93% and 94% for applica-
tion and system logs respectively), and infrequently read
and truncated (2% and 5% read, 5% and 1% truncated).
The system log receives a slightly higher read percentage
to simulate transaction aborts.

The supercomputer environment is characterized
by 1 large file (500M), 15 medium sized files (100M),
and 10 small files (10M). The large and medium files are
all read and written in large, contiguous bursts (32K or
512K) with a predominance of reads (60% reads, 30%
writes, 8% extends, and 2% truncates). The small files
are read and written in 32K bursts, but are periodically
deleted and recreated (60% reads, 30% writes, 5%
extends, 5% deletes).

3. Evaluation Criteria

The two evaluation criteria for each policy are disk
utilization and throughput. The metrics for measuring
disk utilization are the external fragmentation (amount of
space available when a request cannot be satisfied) and
internal fragmentation (the fraction of allocated space
which does not contain data). The allocation tests are run
by performing only the extend, truncate, delete, and
create operations in the proportion expressed by the file
type parameters. As soon as the first allocation request
fails, the external and internal fragmentation are com-
puted.

The metrics for throughput are expressed as a per-
cent of the sustained sequential performance of the disk
system. For example, the configuration shown in Table 1



is capable of providing a sustained throughput of 10.8
Mbytes/sec. A throughput of 1.1 Mbytes/sec is
expressed as 10% of the maximum available capacity.

Throughput is calculated for two sets of tests, the
application performance test and the sequential perfor-
mance test. For both tests, lower and upper bounds on
disk utilization are set at 90% and 95% respectively. For
the application performance test, the application work-
loads described in Section 2.2 are applied. For the
sequential test, files are read and written in their entirety.

4. The Allocation Policies

This analysis considers three different allocation
policies. The first is a buddy system similar to that
described in [KOCH87]. The next is a restricted buddy
system which supports only a few different block sizes.
The last is the extent based policy described in
[STON89]. Each design is described in more detail,
including a discussion of the selection of the parameters
relevant to each model.

4.1. Buddy Allocation

The buddy allocation policy described in
[KOCH87] includes both an allocation process and a
background reallocation process that runs during off peak
hours. In this simulation, we consider only the allocation
and deallocation algorithm (i.e. not the background real-
location). A file is composed of some number of extents.
The size of each extent is a power of two multiple of the
sector size. Each time a new extent is required, the
extent size is chosen to double the current size of the file.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Disk Usageiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Workload Internal External
Fragmentation Fragmentation

(% allocated space) (% total space)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SC 43.1% 13.4%
TP 15.2% 9.0%
TS 18.4% 2.3%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 3a: Fragmentation for Buddy Allocation.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Throughputiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Workload Application Sequential
Performance Performance

(% max throughput) (% max throughput)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SC 88.0% 94.4%
TP 27.7% 93.9%
TS 8.4% 12.0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 3b: Performance for Buddy Allocation.

As previous work suggests [KNOW65][KNUT69], such
policies are prone to severe internal fragmentation, and
our simulation results confirm this (as shown in Table
3a). However, the small number of extents results in
very high throughput in the presence of large files as is
evidenced by the percent utilization (shown in Table 3b)
for the supercomputer workload (SC).

4.2. Restricted Buddy System

As in the buddy system, the restricted buddy sys-
tem uses the principal that a file’s block size grows as the
file’s size grows. Small files are allocated from small
blocks and don’t exhibit severe internal fragmentation.
Large files are composed of large blocks allowing large
sequential transfers between the disk system and main
memory. In addition, logically sequential disk blocks
within a file are allocated contiguously whenever possi-
ble. Therefore, even though files may start out with
small allocations, it is still possible to perform large
transfers of data with a single disk seek when these small
blocks are laid out contiguously. Finally, the disk can be
divided into regions so that blocks within a single file
may be clustered to reduce the seek time when sequential
layout is not possible.

The disk system is addressed as a linear address
space of disk units. Each block size is an integral multi-
ple of the disk unit and of all the smaller block sizes. In
order to keep allocation simple, a block of size N always
starts at an address which is an integral multiple of N. If
a system supports block sizes of 1K and 8K, the 1K
blocks located at addresses 0 through 7 are considered
buddies, together forming a block of size 8K. Whenever
possible, buddies are allocated sequentially to the same
file and are coalesced at deallocation.

The parameters which define a file system in the
restricted buddy policy are the number of block sizes, the
specific sizes, when to change block sizes (the grow pol-
icy), and whether or not to attempt to cluster allocations
for the same file. We consider four different sets of
block sizes, two different algorithms for choosing when
to increase the block size, and both clustered and
unclustered policies. The four block size configurations
are:

Number of Block Sizes Block Sizesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
2 1K, 8K
3 1K, 8K, 64K
4 1K, 8K, 64K, 1M
5 1K, 8K, 64K, 1M, 16M

For each set of block sizes, we consider both a clustered
configuration, where the disk system is broken up into
32M regions, and an unclustered configuration. The goal
in selecting regions and blocks is to select a block that is
conveniently close to related blocks (either meta data or



the previously allocated block within the same file).

The grow policy determines when we change the
size of the allocation unit and is expressed in terms of a
multiplier. If g is the grow policy multiplier and the
block sizes are ai , then the unit of allocation increases
from ai to ai +1 when the sum of the sizes of all blocks of
size ai is equal to g * ai +1. For example, a system with
block sizes 1K and 8K and a grow policy multiplier
(grow factor) of 1 will allocate eight 1K blocks before
allocating any 8K blocks. If the next larger block size
were 64K, then eight 8K blocks would be allocated
before growing the block size to 64K. Intuitively, we
expect that a smaller grow factor will suffer worse inter-
nal fragmentation (since we use bigger blocks in smaller
files), but might offer better performance (since fewer
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Figure 1a: External Fragmentation for the time-
sharing workload using restricted buddy allocation.

Internal Fragmentation
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Block Sizes
grow factor = 2 clustered

grow factor = 1 unclustered

grow factor = 1 clustered

grow factor = 2 unclustered

(b)
Figure 1b: Internal Fragmentation for the time-
sharing workload using restricted buddy allocation.

small block transfers are required). However, if the
small blocks are allocated contiguously, then the perfor-
mance should be similar.

The allocation and throughput tests were run on all
the configurations described in Section 2.2. The most
striking result is that the attempt to coalesce free space
and maintain large regions for contiguous allocation are
successful. None of the polices produce either internal or
external fragmentation greater than 6%. As expected, the
time-sharing workload which has the blend of large and
small files exhibits the greatest fragmentation (Figures 1a
and 1b), and fragmentation increases as the number of
blocks sizes and the block sizes themselves increase.
Increasing the grow factor from one to two reduces the
internal fragmentation by approximately one-third (in
Figure 1b, note the difference between each pair of adja-
cent bars). External fragmentation increases slightly as
we go to an unclustered configuration since a larger
selection of blocks are eligible for splitting (all blocks in
the disk system instead of just those in a specific region).

Figures 2a-2f show the results of the application
and sequential tests for the three workloads under each
configuration of the restricted buddy policy. As
expected, the configurations which support the larger
block sizes provide the best throughput, particularly
where large files are present (Figures 2a, 2b, 2c, and 2d).
The supercomputer application in Figure 2a shows up to
25% improvement for configurations with large blocks
while the transaction processing environment shows an
improvement of 20%. These same workloads are rela-
tively insensitive to either the grow policy or clustering.
For the five block size configuration (the rightmost on
each graph), most show slightly better performance with
an unclustered configuration. The explanation of this
phenomena lies in the movement of files between
regions. In a clustered configuration, when a change of
region is forced, the location of the next block is random
with regard to the previous allocation. In an unclustered
configuration, the attempt to keep subsequent allocations
contiguous results in the improved performance.

The time-sharing workload reflects the greatest
sensitivity to the clustering and grow policy. Uniformly,
clustering tends to aid performance, by as much as 20%
in the sequential case (in Figure 2f, the first two bars of
each set represent the clustered configuration and the
third and fourth bars represent the unclustered
configuration). Since this environment is characterized
by a greater number of smaller files, data is being read
from disk in fairly small blocks even with the larger
block sizes. As a result, the seek time has a greater
impact on performance, and the clustering policy which
reduces seek time provides better throughput.

Figure 2f indicates that the higher grow factor pro-
vides better throughput (the second and fourth bars in
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each set represent a grow factor of 2 while the first and
third bars represent a grow factor of 1). This is counter
intuitive since a higher grow factor means that more
small blocks are allocated. To understand this
phenomena, we need to analyze how the attempt to allo-
cate blocks sequentially interacts with the grow policy.
Figure 3 shows a 1M block that is subdivided into sixteen
64K blocks, each of which may be subdivided into eight
8K blocks. When the grow factor is 1, any file over 72K
requires a 64K block. However, when it is time to
acquire a 64K block, the next sequential 64K block is not
contiguous to the blocks already allocated. In contrast,
when the grow factor is two, the 64K block isn’t required
until the file is already 144K. Since most files in the
timesharing workload are smaller than this, they never
pay the penalty of performing the seek to retrieve the
64K block. Thus our grow policy and our attempts to lay
out blocks sequentially are in conflict with one another,
and the grow policy should be modified to allow con-
tiguity between different sized blocks.

Using the results of this section, we select a
configuration for comparison with the other allocation
policies. Since the larger blocks sizes did not increase
fragmentation significantly, we select the 5 block size
configuration (1K, 8K, 64K, 1M, 16M) which is the
rightmost group on each graph. Clustering had little
effect on the large file environments and improved per-
formance in the time-sharing environment, so we select a
clustered configuration. In four of the six cases, the grow
factor of 1 provided better throughput than the grow fac-
tor of 2, so we select that, with the understanding that it
will penalize sequential performance for the time-sharing
workload. This configuration is represented by the
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64K Allocations

8K Allocations

1K Allocations

Grow Factor = 2

Grow Factor = 1

64K64K64K64K

1M

Figure 3: How contiguous allocation and grow factors
interact. Because the total file length is not a multiple of
the new block size, we are required to pay a seek when
the block size grows.

leftmost bar in the rightmost group of each graph.

4.3. Extent Based Systems

In the extent based models, every file has an extent
size associated with it. Each time a file grows beyond its
current allocation, additional disk storage is allocated in
units of an extent. As in the restricted buddy policy, we
view the disk system as a linear address space. However,
in this model, an extent may begin at any address. When
an extent is freed, it is coalesced with its adjoining
extents if they are free.

The parameters which define a file system in the
extent-based system are the allocation policy and the
variance in the sizes of the extents. We consider two dif-
ferent allocation policies, first-fit and best-fit with five
different extent configurations. Each extent
configuration is characterized by the number of extent
size ranges. An extent size range is a normal distribution
with a standard deviation of 10% of the mean. For exam-
ple, an extent range around 1M with 1K disk units would
produce a normal distribution of extent sizes with mean
1M and standard deviation of 102K. The extent ranges
simulated are as follows:

Workload Number Range Means
of Rangesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

TS 1 4K
2 1K, 8K
3 1K, 8K, 1M
4 1K, 4K, 8K, 1M
5 1K, 4K, 8K, 16K, 1Miiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

TP/SC 1 512K
2 512K, 16M
3 512K, 1M, 16M
4 512K, 1M, 10M, 16M
5 10K, 512K, 1M, 10, 16M

As the number of extent ranges increases, one
expects to see increased fragmentation since we are allo-
cating a more diverse set of extent sizes, but the results
do not support this. Instead, across all extent ranges,
both internal and external fragmentation is below 4%,
independent of the number of extent ranges. One likely
explanation is that the ratio of large files to small files is
constant in these simulations. As a result, once large
extents are allocated, they do not become fragmented
later, because requests for small extents may be satisfied
by already fragmented blocks. This also explains why
best fit consistently resulted in less fragmentation.

We expect throughput to be insensitive to the
selection of best fit or first fit since in both cases, files are
read in the same size unit. Figures 4a-4f show the appli-
cation and sequential performance results for the extent
based polices and validate this intuition. In general, we
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see better performance from first fit, due to the clustering
that results from the tendency to allocate blocks toward
the ‘‘beginning’’ of the disk system.

In order to understand the small changes in perfor-
mance, we need to look at the average number of extents
per file for the different workloads and extent ranges.
These numbers are summarized in Table 4. We expected
to see the best sequential performance when the average
number of extents per file is a minimum since the fewest
seeks are performed. The supercomputer and transaction
processing workloads behave as expected (Figures 4b
and 4d) while the time-sharing workload does not exhibit
this tendency. Further inspection indicates that the ratio
of small to large files alters this result. Since most of the
files in the time-sharing environment are small, they can
be allocated in one or two 4K extents. The larger files
require 24 extents (96K files with 4K extents). However,
the larger files consume more disk space and take longer
to read and write. As a result, the time spent processing
large files is greater than the time spent processing small
files. Therefore, in the configurations where the large
files have fewer extents (12 extents in the systems that
use 8K extents for these files), the overall throughput is
higher.

In selecting the configuration to compare in Sec-
tion 5, we select the first fit allocation policy since it con-
sistently provides better performance than best fit. For the
transaction processing and supercomputer workloads
simulated, the 3 range size configuration results in the
highest sequential performance. Although it does not
offer the best performance for the timesharing workload,
it is within 10% of the best performance. This
configuration is represented by the righthand bar in the
middle group of each graph.

5. Comparison of Allocation Policies

As we’ve seen in the preceding sections, all the
allocation policies except for the buddy system yield
satisfactory fragmentation. As a result we focus on the
application and sequential performance. We compare all

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Average Number of Extents Per Fileiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Number of Extent Ranges SC TP TSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 162 267 5
2 124 13 9
3 97 12 9
4 151 14 7
5 162 108 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c

c
c
c
c
c
c
c

cc
c
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Table 4: Average number of extents per file for each
extent based configuration.

the performance numbers to 4K and 16K fixed block sys-
tems which do not bias toward automatic striping or con-
tiguous layout. The 4K system is compared with the
timesharing workload while the 16K is compared to the
transaction processing and supercomputer workloads.

Figure 5a shows the sequential performance of the
four methods (the three discussed in Section 4 and a fixed
block policy). As expected, all of the multiblock poli-
cies perform better than the fixed block policy due to the
ability to read and write very large contiguous blocks.
On the large file applications (SC and TP) we find that all
the large block policies achieve close to the maximum
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Figure 5a: Sequential Performance of the different al-
location policies.
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Figure 5b: Application Performance of the different
allocation policies.



throughput. In the time-sharing environment, none of the
policies succeed in pushing the system above 20% utili-
zation due to the presence of many small files. However,
the extent based policy can respond to this burden most
effectively since each file is limited to a small number of
extents.

In the application performance (Figure 5b), we find
similar results. However, there are two points to note.
First, in the supercomputer environment, the buddy sys-
tem performs substantially better since, for large files
(over 100M), it is using substantially larger block sizes
(64M). In the transaction processing environment, all the
policies are limited by the random reads and writes to the
large data files.

6. Conclusions

We can see that allocation policies which force
striping across disks and contiguous allocation provide
improved performance over those which do not. In the
large file environments such as supercomputer applica-
tions, this improvement is on the order of 250%. Even
for workloads like the transaction processing environ-
ment, which are dominated by small reads and writes to
large files, there is some improvement (10%). While the
large blocks do not benefit the small file environment
greatly, they do not hinder it either in terms of perfor-
mance or fragmentation. Therefore in systems with both
extremely large and extremely small files we are likely to
be able to derive this improved performance without han-
dicapping the small file efficiency.

This result suggests that time-sharing environments
could benefit significantly from these allocation tech-
niques. Such systems could then effectively compete
with larger systems designed with database or supercom-
puter applications in mind without hindering the small
file performance.

There are several more areas that warrant further
investigation. First, varying the file distributions so that
the proportion of large and small files is not constant may
affect fragmentation results. Secondly, the impact of a
RAID in the underlying disk system will reduce the small
write performance. In order to correct for this, block
sizes and extent sizes may need to be selected based on
the configuration of the RAID. In the small file environ-
ment we might want to incorporate policies from a log
structured file system to allocate blocks [ROSE90]. The
different policies may show different sensitivities to the
stripe size parameter. And as always, applying the allo-
cation policies to genuine workloads will yield a much
more convincing result.
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