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Abstract— Sensor network data has both historical and real-
time value. Making historical sensor data useful, in particular,
requires storage, naming, and indexing. Sensor data presents new
challenges in these areas. Such data is location-specific but also
distributed; it is collected in a particular physical location and
may be most useful there, but it has additional value when com-
bined with other sensor data collections in a larger distributed sys-
tem. Thus, arranging location-sensitive peer-to-peer storage is one
challenge. Sensor data sets do not have obvious names, so naming
them in a globally useful fashion is another challenge. The last
challenge arises from the need to index these sensor data sets to
make them searchable. The key to sensor data identity isprove-
nance, the full history or lineage of the data. We show how prove-
nance addresses the naming and indexing issues and then present a
research agenda for constructing distributed, indexed repositories
of sensor data.

I. I NTRODUCTION

Readings and events emerging from a sensor network may
be consumed immediately or stored for later analysis. In many
cases it is useful to combine data from distinct sensor networks,
and often sensor data is still useful for historical analysis long
after it is collected.

For example, while traffic data from London’s Congestion
Zone is useful immediately to ticket non-paying drivers, it is
also useful in other ways: it could be aggregated over time
to estimate the effects of changing Zone size, or it could be
combined geographically with data from other cities to gather a
broader picture of traffic. Even deeper insight might be gained
by merging historical traffic data with historical weather data.

Other existing sensor applications that exhibit some or all
of these properties include volcano monitoring [31], city-wide
structural monitoring [22], biological field research [8], supply
chain management [17], and military sensing [26].

In this environment it becomes necessary to be able to name
and search for sensor data sets, whether in real-time or in
archival storage. Traditional approaches to indexing massive
quantities of distributed storage (e.g.,content indexes) are not
terribly useful when that content is primarily a stream of sensor
readings. Clearly, any data set must also have a description, and
the data itself may have annotations; for example, one might
mark when individual sensors were replaced with newer mod-
els having slightly different properties, or when software on the
sensor devices was upgraded. Such descriptions and annota-
tions must also be searchable.

These requirements have implications for the organization of
storage systems for sensor data. This paper discusses the re-
search challenges related to naming and indexing sensor data,

including a discussion of constructing such an index atop a dis-
tributed system. We address three questions:

• What are the right attributes to index? We reason in Sec-
tion II that sensor data must be indexed by itsprovenance
metadata: the history of how and when it came to be.

• How will people use historical sensor data? That is, what
are the applications for which we are designing? We show
in Section III that they will use data both near their source
and at a variety of sites elsewhere in the network. In par-
ticular, because sensor data islocale specific, it may be
inappropriate to store it in arbitrary (or randomly chosen)
places; instead it should be stored near the network or its
primary users.

• What storage architecture will make indexing provenance
metadata and serving locale specific clients feasible? In
Section IV, we propose a set of evaluation criteria and ex-
amine how different models for distributed storage and in-
dexing fare under our requirements.

We present our research agenda in Section V.

II. H OW TO INDEX

Before we can index anything, we must choose the granu-
larity at which to index it. We could conceivably index every
sensor reading, ortuple, individually. However, this appears in-
feasible, due to the sheer number of readings, and also not nec-
essarily useful, as individual sensor readings in isolation have
little meaning. A better solution is to indextuple sets, collec-
tions of readings grouped by some property, typically time. For
example, a tuple set might contain all the readings of a par-
ticular type over the span of one hour or one minute. To make
retrieval practical, each such tuple set must have a unique name.

A. Provenance as Name

Tuple set names could be conventional, self-describing file-
names, likevolcano vesuvius 10 11 04 . However, un-
structured strings of this kind incur several problems:

• They require a complicated naming convention, to allow
for all the possible things that could be named.

• Such naming conventions are equivalent to a hierarchical
index. Section IV-B discusses the resulting problems.

• Strict adherence to the convention is necessary because no
enforcement or cross-checking is possible.

• To be fully descriptive, these names may become arbitrar-
ily long. Without special support, handling these names
becomes difficult, both for humans and for machines.



• Because the structure of the naming convention is not ex-
posed, these names will be hard to index automatically.
They also cause problems for user-friendly query engines.

• Additional important information about the data may not
be readily expressible in the filename even under the best
possible naming conventions. In our earlier example of
sensor replacement, one might want to know when partic-
ular sensors were upgraded; this information cannot rea-
sonably be encoded in a conventional filename.

• Again because the structure is not exposed, it is difficult
to recognize the relationships among data sets. One tuple
set might be the results of passing another through some
postprocessing filter, such as image sharpening, but there
is no practical way for an indexing engine to “know” this.

The fundamental problem is that the name is trying to encode
a collection of attributes. In many areas, such identifying in-
formation is calledprovenance [2], [6], [7]. For example, in
high-energy physics, provenance metadata tracks the complete
history of a research result. The provenance for the data in
a publication describes all the various analysis and collection
steps, all the way back to the raw data collected in a particle
accelerator. In the archival community, provenance metadata
describes the history of a document, the people who assumed
responsibility for it, and, in the digital world, any format trans-
formations applied to it [29].

The provenance of a collection of data is not just a useful de-
scription. It is the single, unique identifier for that data set. In a
very real sense, this makes the provenance thenameof the data
set. For this reason, provenance should be a first class property.
Instead of encoding the name as a string, we represent it fully as
a collection of name-value pairs. Of course, traditional names
remain useful as well.

The specific details of the provenance are likely to be
application-specific or at least community-specific. Different
communities will likely develop their own standards for prove-
nance metadata. For example, the VOTable format is a domain-
specific DTD that is augmented with provenance [23].

B. Indexing Provenance

Because the complete provenance of any particular tuple set
is likely to be large, most queries will probably not be a simple
matter of looking up a name and retrieving the data; instead
users will search for data sets based on subsets of the attributes
and values found in provenance metadata. Different users will
tend to query by different attributes depending on their goals;
for example, given traffic sensor data framed as car sightings,
a commuter investigating alternate routes will likely search by
sensor location, but someone assessing the city-wide impact of
new one-way street assignments will likely search by time.

If these car sightings are amalgamated from different sen-
sor networks of different types (cameras, magnetometers, etc.)
where the raw data is postprocessed in different ways, someone
investigating anomalies in the data reporting might query based
on origin: looking up the magnetometer readings that gener-
ated some suspect sighting data, or finding tuple sets handled
by a particular postprocessing program. Such queries are often
recursive, as there may have been several steps involved with
multiple intermediate data sets, each with its own provenance.

Thus, the indexing structures in sensor data storage systems
must provide for efficient lookups in many dimensions, as well
as efficient recursive or transitive queries. Simple relational or
XML-based name-to-value schemes are not sufficient and will
not work well unless augmented with other structures.

III. W HAT TO QUERY

In this section, we consider the types of queries that a sensor
data repository should support. We begin by discussing doc-
ument versioning, as this is a familiar framework for working
with provenance metadata. We then look at the requirements
of research communities in the sciences, where provenance is-
sues are increasingly important. Finally, using these examples
as motivation, we turn to queries on sensor data provenance.

A. Document Versioning Systems

Document versioning systems are provenance management
systems. When multiple programmers are working on the same
program, they will be editing concurrently and (largely) inde-
pendently. Systems like CVS [11] allow programmers to coor-
dinate; however, they also track changes over time and record
who did what. Typical queries on such systems include:

• Show me the file as it is now, or as it was yesterday.
• Show me all changes to this file since last week.
• Show me when each line in this file was inserted.
• Find the person who removed this error code.
• Get me all files tagged “Release 1.1”.

These queries are all reasonably well supported by CVS and
similar systems. However, most document versioning systems
are file-oriented. Queries that span files in complex ways, or
involve data that has been copied from one place to another
must generally be performed manually.

B. Experimental Data in the Sciences

Research communities demand good provenance support for
their experimental data. This is necessary to support reproduc-
tion and validation of research results when large data reposi-
tories are available. For example, the Sloan Digital Sky Survey
[28] collects data on millions of astronomical objects. This data
comes from observatories across the world and is synthesized
onto a universal ‘map’ to allow queries by position. Other com-
munities, including biology [13], chemistry [10], and physics
[16], have deployed similar databases.

Furthermore, many data sets are derived from others as anal-
ysis steps are performed. The provenance of a derived data set
is the provenance of the original data plus the provenance of the
tools used to do the derivation.

Provenance is particularly important for derived data; if a
problem is found with the original data or with an analysis tool,
all downstream data is tainted and must be locatable. Other
typical queries on research data provenance include:

• Find all the raw data from which this data set was derived.
• Show me what I need to reproduce this result.
• Find an experiment that answers this question.
• I am up for tenure. Show everyone who has used my work.
• Find experiments similar to mine.



The queries in this domain tend to be more complex than those
in the document versioning system. Nearly all the queries have
some component of transitive closure, a construct not well sup-
ported by conventional query systems.

C. Sensor Queries

Sensor applications require all the same capabilities we saw
in the two previous examples, and pose new demands of their
own. Consider a sensor-enabled ambulance team [30]. EMTs
arriving at an accident or mass casualty event place sensors
(e.g.,pulse oximeters, EKGs) on the patients. These sensors
monitor vital signs in real time. The resulting data is streamed
to the ambulance, to dispatchers who route patients to medical
facilities, and ultimately also to the correct hospital emergency
room. Initially, this data is identified by patient, date/time, lo-
cation, etc. As it moves through the system, it gets processed
and filtered, and is thus enriched with additional provenance.

All of this data and metadata represents critical information,
not only about each patient, but also about the emergency care
infrastructure itself. These two aspects involve queries of con-
siderably different natures. Queries about an individual patient
might include:

• Show me everything we’ve done for this patient.
• Show me the heart rate from moment of arrival until now.
• Show me the results of oxygen treatment.
• Feed this patient’s data into our automatic diagnostic tool

and suggest the appropriate hospital or trauma center.
Examples of queries about the system might include:

• Give heart rate profiles for everyone handled by EMTX.
• Find me all patients with signs of arrhythmia.

D. Characteristics

From the above examples, we derive the following set of re-
quirements for provenance-based sensor data storage:

Storage should be near the sensors.Sensor data may be
valuable for arbitrarily long periods of time. (Weather data col-
lected by hand goes back over a hundred years and can be ex-
pected to remain valuable indefinitely.) Furthermore, sensor
networks can generate a huge volume of data: a regional traffic
sensing network that records every passing car could easily gen-
erate terabytes of data per day. Transmitting all this data long
distances over the network is unnecessarily expensive; also, the
data is often most valuable near the source. Boston traffic data
belongs in Boston, not in Singapore or even Seattle.

Data has multiple consumers. Real-time sensor data is
probably of most value to its immediate collector, but many
parties may have use for the archives. We cannot anticipate all
applications, so both access and packaging must be flexible.

Recursive queries are common.All the usage scenarios
make heavy use of transitive closure queries. These may go
both backwards, to find ultimate origins, and also forwards, to
find derived data that may be many generations downstream.

Distributed queries are common.Because raw sensor data
should be stored near the sensors, aggregating over multiple
sensor networks is inherently a distributed operation. Further-
more, aggregate data sets derived from such queries will prob-
ably be stored where they are created, so the transitive closure
queries tracing the history of data will be distributed as well.

Query needs are heterogeneous.Though application do-
mains share various characteristics, there is no reason that spe-
cific applications from different domains need commonality at
the query language or data organization level. Nonetheless, it
seems useful to share common infrastructure (network and stor-
age resources) and also to be able to perform queries across do-
mains. The traffic and weather communities might not agree
beforehand on how to store and represent their data sets, but
they may later want to query across them. This argues for the
ability to federate data and processing.

IV. D ESIGN SPACE

In this section, we first present criteria for evaluating prove-
nance index and query architectures. We then discuss several
potential models in these terms.

Scalability. The system might need to scale in many ways:
some possibilities include the number and size of tuple sets,
rate of tuple set production, number of indexes, depth of ances-
try, number of hosts, and distance across which the system is
distributed.

Reliability. Data, local or non-local, will become inaccessi-
ble if provenance metadata becomes corrupted or is lost due to
a system crash. The system must recover provenance metadata
to a state consistent with its data after a system failure.

Query Result Quality. In information retrieval terms, there
are two aspects to this:precision, the fraction of returned results
that are relevant to the query, andrecall, the fraction of relevant
results that are actually returned.

Usability. The content and structure of provenance infor-
mation depends on the application domain. The system must
support storing domain-specific provenance, and must allow
queries in whatever form is most appropriate for each domain.

Speed. Provenance metadata is accessed more frequently
than its data. The system must perform at a reasonable speed,
even on complex queries such as the transitive closures dis-
cussed previously.

Resource Consumption. The system must not impose
excessive overhead, particularly on the network. Index meta-
data must be widely accessible, and will be both updated and
accessed often. If distributed, updates may use a lot of network
bandwidth; if centralized, query traffic may instead.

These criteria are not independent. Different models (and
implementations) offer different tradeoffs among them. For ex-
ample, a system with good precision and recall will generally
be relatively slow and expensive. Similarly, increasing reliabil-
ity by distributing index information will incur additional band-
width requirements for index updates.

We now turn to the architectural models. Due to space con-
straints, we examine only the most critical criteria affecting
each model.

A. Centralized Models

In a centralized system, provenance metadata is sent to some
central data warehouse, where it is examined and indexed;
query processing is then done within the warehouse. (As dis-
cussed in Section III, the warehouse would not store actual sen-
sor data.)



This offers speed, simplicity, and ease of use. The conven-
tional wisdom is that centralized indexing cannot scale. How-
ever, the success of Google [18] and Napster [15], among oth-
ers, suggests otherwise. Centralized setups are also as likely as
any to be able to handle recursive queries and provide effective
backups.

The Trio project is a centralized database system that man-
ages not only data, but also the provenance and accuracy of the
data [32]. Bunemanet al. offer a a centralized XML database
that handles user annotations and allows tracking the path of a
single datum through various transformations [5].

For sensor data, however, a central index has three shortcom-
ings. First, query processing on real-time sensor streams is al-
ready becoming distributed [1], [24], [27]. And second, even
though Google has indexed eight billion web pages [18], it may
not be scale to the volume of updates associated with sensor
data or data aggregated over many sensor networks. Finally,
even though both data and its provenance are read-only once
collected, when the index is only loosely coupled to the actual
data there is a risk of inconsistencies creeping in: the linkage
back from the index to the data might break or end up pointing
to the wrong thing.

Nonetheless, despite these issues, the success of centralized
indexing in practice makes it a standard against which to com-
pare any other mechanism.

B. Distributed but Stable Models

If one assumes that the hosts involved are stable – permanent
participants with reasonable reliablity and availability – there
are four conventional architectures that require no centralized
installation.

The first of these is the distributed database. Distributed
databases inherently provide unified schemas [21], a useful
property. However, they have limited ability to process recur-
sive queries (e.g., transitive closure), and optimizing continu-
ous, distributed queries is still an open problem.

A second model, the federated database, uses multiple au-
tonomous database systems, each with its own specific inter-
face, transactions, concurrency, and schema [4]. A federated
system does provide the illusion of a unified schema, but the
fact that the components are truly disjoint systems may lead to
slow access.

Both of these models provide strong consistency: full trans-
action semantics. However, this may be overkill for sensor data,
given that the provenance index will be effectively append-only.

A third model, choosing availability over consistency, relies
on soft-state and a mostly stable network. Three variations
come from the scientific community. The Replica Location Ser-
vice, or RLS, provides a unified lookup service for replicas of
large data sets [9]. Its metadata lookup service is distributed,
reducing update and query load, and it relies on periodic up-
dates to keep its soft-state from becoming stale. Another ex-
ample, the Storage Resource Broker, or SRB, is an instantiation
of a simple federated database, storing metadata as name-value
pairs and dividing itself into zones for scalability [3]. Third, the
PASOA project, which examines trust relationships, includes a
protocol for managing provenance in a client-server environ-
ment [19].

These examples from the Grid do provide worldwide access
to large data sets. For RLS, much of this scaling, however,
comes from an assumption that the exact name of each data set
is known. Meanwhile, SRB’s metadata model denies transi-
tive closure, which is essential for handling provenance. Still,
these models do support locale-specific query processing: data
is stored at the producers and replicated at consumers; it is
shipped to neither a central nor an arbitrary location.

The fourth model is the filename (or URL) model: orga-
nize the material into a hierarchical namespace and then use
the hierarchy to partition the data across a distributed network
of servers. While this approach is very practical for many ap-
plications, for sensor data it is inappropriate. Hierarchical nam-
ing systems are fundamentally limited by the need to choose
a significance ordering for the attributes. This is a bad fit for
any problem where no natural ordering exists, as is typically
the case for the attributes that make up provenance metadata.
For example, astronomical data will likely be tagged with both
spatial coordinates and observation wavelength, and neither is
a more general attribute than the other. Choosing either one as
most significant will make querying on the other difficult.

C. Distributed and Unstable Models

It may not be feasible to rely on stable participants; if so,
a different class of architecture is needed. The most widely-
used mechanism in this class is the distributed hash table, or
DHT [12], [14]. However, DHTs do not appear to be a suitable
solution.

First, storing data objects by hashing a key inherently as-
sumes that the location of these objects is unimportant. This is
not the case for sensor data. The DHT-based database Pier [20]
proved slow because of poor data placement. Second, periodic
updates of distinct queriable attributes to DHTs scale to only
tens of thousands of updaters [25]. This is inadequate. Third,
getting even this much update performance would require that
all participants have good network connectivity and plenty of
processor power; this is more expensive than maintaining the
stable servers required by other architectures. Finally, support
for efficient recursive queries is so far nonexistent.

V. RESEARCHAGENDA

We have shown that provenance-aware storage is useful for
sensor network applications. With this storage come interesting
research challenges.

A Provenance-Aware Storage System, or PASS, has four fun-
damental properties distinguishing it from other storage:

• Provenance is treated as a first class object.
• Provenance can be queried.
• Nonidentical data items do not have identical provenance.
• Provenance is not lost if ancestor objects are removed.
The first goal is to construct a purely local PASS. As prove-

nance metadata is large and contains cross-references among
files, just storing and indexing offers challenges; in particular,
one needs efficient support for transitive closure queries.

Once this is done, the second goal is to allow merging collec-
tions of local PASS installations into single globally searchable
data archives. This requires distributed naming and indexing



schemes, and support for distributed queries. Designing effi-
cient distributed transitive closure techniques is likely to keep
researchers busy for years to come.

Other challenges abound. Our model does not inherently in-
volve replication, as data is locale-specific, but replication is
desirable for reliability and for query performance. Supporting
replication cheaply is an interesting problem.

Security is essential as well, as much of the data collected
in sensor networks (e.g., medical data) is private. Much of
this data is valuable even when aggregated to preserve privacy.
What degree of aggregation is necessary? How does one rep-
resent the provenance of such aggregates? How do regulatory
moves like HIPAA affect the situation? And how do we provide
strong guarantees that privacy policies will be enforced?

Relatedly, sometimes one wants to abstract provenance away.
For example, one probably wants to know what compiler com-
piled the program that did a particular analysis step; compilers
are subject to optimizer bugs that can invalidate results. But for
most purposes, it is far more useful for this information to be
reported as “gcc 3.3.3” rather than as a detailed record of gcc’s
own provenance and change history. How does one identify
these abstractions and take advantage of them?

VI. CONCLUSION

Sensor data alone, decoupled from its origins, will only be
useful for the most prosaic applications. Instead, it must be
tightly bound to searchable information about the sensors that
produced it and any programs that processed it. Building suit-
able indexes on thisprovenanceis a challenging problem.

Given reasonable assumptions about (1) the physical loca-
tions of where data comes from and goes to, and (2) the arrival
rate of new tuples, no existing storage/query model offers a sat-
isfying fit. A new architecture must be developed.

Constructing a distributed provenance-aware storage system
requires solving both of these problems.
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