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ABSTRACT
The explosion of graph data in social and biological net-
works, recommendation systems, provenance databases, etc.
makes graph storage and processing of paramount impor-
tance. We present a performance introspection framework
for graph databases, PIG, which provides both a toolset
and methodology for understanding graph database perfor-
mance. PIG consists of a hierarchical collection of bench-
marks that compose to produce performance models; the
models provide a way to illuminate the strengths and weak-
nesses of a particular implementation. The suite has three
layers of benchmarks: primitive operations, composite access
patterns, and graph algorithms. While the framework could
be used to compare different graph database systems, its
primary goal is to help explain the observed performance of
a particular system. Such introspection allows one to evalu-
ate the degree to which systems exploit their knowledge of
graph access patterns. We present both the PIG methodol-
ogy and infrastructure and then demonstrate its efficacy by
analyzing the popular Neo4j and DEX graph databases.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Measurement
techniques, Modeling techniques

General Terms
Measurement, Performance

Keywords
graphs; databases; performance introspection

1. INTRODUCTION
The explosion in social networking over the past five years

has produced interest and demand for systems that store
and query large graphs. However, the importance of graph
data is not limited to social networking: telecommunications
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companies have been studying phone and network graphs for
years; biologists study protein interactions and neural path-
ways, frequently represented as graphs; marketing profes-
sionals mine data about relationships between people, the
media they use, and the products they buy. Often these
data are too large to manipulate exclusively in main memory
without large compute clusters. As these applications have
grown in importance, so has interest in graph databases.

We use the term graph database to embody two charac-
teristics: First, a graph database is a storage system whose
native representation of data is in terms of objects (ver-
tices) and inter-object relationships (edges). Second, a graph
database supports single-object access via indexed lookup or
iteration. That is, in addition to enabling whole-graph anal-
ysis, we require that a graph database be able to efficiently
answer queries about the attributes and relationships of spe-
cific elements. Although graph representations are flexible
enough to embed virtually any data set, in practice they are
most useful for applications with “graph-like” queries. For
example, in social networking, finding the relationship dis-
tance between two people is a shortest path query; listing
all your friends is a neighborhood query; and testing the six
degrees of separation hypothesis [11, 17] compares the re-
sults of a 6-hop neighborhood query to the original graph.
These queries arise in many disciplines, and the algorithms
underlying them are well studied by graph theorists.

This combination of large data and complex analyses drives
the need for high-performance graph storage and query. In
this context graph database performance tools are valuable
for both researchers and end-users. Analysis tools should
help researchers identify what costs aggregate, amortize, and
dominate system performance and where it is possible to
significantly improve performance. Such tools should also
help users deconstruct and expose performance relationships
between low-level database operations and higher-level ac-
cess patterns, such that they can estimate performance for
their own data sets and queries. For example, shortest-path-
finding via breadth-first search is composed of operations
such as per-vertex marking and neighborhood retrieval. The
extent to which a graph database exploits shortest-path-like
access patterns can be characterized in part by how much it
amortizes the costs of these aggregate operations. In turn,
shortest-path-like access patterns are a building block that
partially determines the performance of many complex anal-
yses, such as betweenness centrality.

These observations lead to our introspection approach,
providing an analytical framework in which to relate primi-
tive database operations (microbenchmarks) to graph algo-



rithms (macrobenchmarks). Performance Introspection for
Graphs (PIG) is a suite of benchmarks and a model of inter-
benchmark performance relationships.

We demonstrate the use of PIG by analyzing DEX and
Neo4j, the industry-standard graph databases. We reveal,
for example, the performance boost due to Neo4j’s object
cache on small graphs and DEX’s ability to perform fast
inserts due to a feature that allows its users to enable weaker
durability guarantees. We also find that properties are not
first-class citizens and that k-hop neighborhood retrievals
are not well amortized.

The rest of this paper is structured as follows. The next
section discusses existing work on graph benchmarking. Sec-
tion 3 explains our framework, and Section 4 presents the
PIG specification. We provide implementation details in Sec-
tion 5, examples of PIG in use on the Neo4j and DEX graph
databases in Section 6, and conclude in Section 7.

2. BACKGROUND
PIG is based on the property graph model [18], in which a

graph is a set of edges and vertices in which each element is
uniquely identifiable and has an collection of key/value pairs
called properties (or attributes). Each edge has a label that
identifies the type of relationship it represents. While many
graph analyses focus exclusively on structure, today’s appli-
cations also require attributes. For example, in a social net-
work, vertices might represent people with different names,
ages, etc., and also different entity types such as organiza-
tions or articles. A database implementation that supports
efficient selection of vertices by these properties will perform
better than one that does not.

Our methodology is inspired by work in deconstructing
operating system performance [8]. That work presented a
composable micro-benchmark suite that proved invaluable
in illustrating critical efficiencies and bottlenecks in different
operating systems on different platforms. Our goal here is
to apply a similar methodology to understand the behavior,
strengths, and weaknesses of today’s graph databases, and
provide guidance about how to approach development of a
next generation graph database.

This work is also informed by earlier graph processing
benchmarks. These benchmarks, such as the HPC Scalable
Graph Analysis Benchmark suite [3, 6, 9], Graph500 [2], and
BG [1] produce end-to-end latency results and are comple-
mentary to PIG. PIG provides a framework designed to ex-
plain why a system performs as it does on these other bench-
marks. LDBC [13], an EU project whose goal is to develop a
realistic industry-standard graph benchmark and provide an
independent authority for evaluating graph databases, and
PBBS [19], a set of benchmarks for evaluating and com-
paring parallel systems (not just graph databases), are two
more recent benchmarks under development. Neither is re-
leased, but like BG and Graph500 both appear to focus on
applications rather than a framework for understanding the
resulting behavior, so we expect our efforts to be synergistic.

3. METHODOLOGY
We begin our discussion by defining different levels of the

framework, identifying the operations at each level, and dis-
cussing how the operations on one level relate to those on
another. Then we discuss workloads including graph size and
the underlying structural model describing each graph.

3.1 Benchmark Structure
In their simplest form, graph algorithms are usually de-

scribed in terms of imperative, primitive per-element “get”
and “set” operations. At a higher level, there are complex
analytical operations such as centrality measurements [10],
clustering coefficients [20], and substructure finding. Such
metrics may be easy to describe declaratively, but imple-
menting them efficiently is a subject of considerable research.
These are the “representative”, demanding queries that ex-
isting benchmarks measure but do not decompose.

In between low-level database operations and high-level
algorithms exists an extensive set of intermediate “oper-
ations” emerging from the graph literature. For example,
Khops is the retrieval of a vertex’s neighborhood within k
traversals. Many higher-level analyses can be described and
implemented in terms of Khops, such as triangle finding,
which is equivalent to finding vertices that are both 1 and 2-
hop neighbors of the same vertex. The local clustering coef-
ficient (LCC) is the ratio of a vertex’s triangles to the size of
its 2-hop neighborhood, and the average LCC across all ver-
tices partially characterizes small-world networks [12]. Sim-
ilarly, power-law graphs exhibit exponential growth in the
size of their Khop neighborhoods (the “hop-plot exponent”).
Thus, the ability of a graph database to handle Khops access
patterns predicts its performance on higher-level analyses.

In summary, graph data access patterns divide into three
approximate levels: Micro-operations: Low-level database API
operations, such as GetVertex/Edge or SetProperty ; Graph
operations: Intermediate “operations” that aggregate API
calls, such as Get(Khop)Neighbors or Ingest ; and Algorithms
that express fundamental concepts in graph algorithms, but
are often not part of a graph API, such as FindShortest-
Path, ComputeClusteringCoefficient. Figure 1 presents the
three layers of PIG, the relationships between them, and
how several applications can be composed from them.

Measurements from each layer are designed to be useful
in and of themselves as well as to model performance of the
layers above. This lets us identify a system’s precise points
of success and failure in the access pattern hierarchy. For ex-
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Figure 1: PIG Structure. The components at each
layer compose into a model relating their perfor-
mance to those in the level directly above it. Dis-
crepancies between the model and measured perfor-
mance identify strengths and weaknesses of a sys-
tem. The filled ellipses show the operations sup-
ported by the benchmark.



Symbol Description Model

Micro Operations
Rj∈v,e,p Get vertex, edge, property primitive
Wj∈v,e,p Set vertex, edge, property primitive
Tj∈i,o,b Traverse the first incoming/outgoing/either edge Re + Rv

T p
j∈i,o,b Traverse the incoming/outgoing/either edge conditioned on an edge property n(Re + Rv + Rp)

T l
j∈i,o,b Traverse the incoming/outgoing/either edge with label l n(Re + Rv)

Graph Operations
Nj∈i,o,b Get all neighbors via incoming, outgoing, both edges n(Rv + Re)
N l

j∈i,o,b Get all neighbors via incoming, outgoing, both edges with label l n(Rv + Re)
Np

j∈i,o,b Get all neighbors via incoming, outgoing, both edges with property p n(Rv + Re + Rp)

Kk
j∈i,o,b Get all Khop neighbors via incoming, outgoing, both edges NjK

Kkl
j∈i,o,b Get all Khop neighbors via incoming, outgoing, both edges with label l N l

jK

Kkp
j∈i,o,b Get all Khop neighbors via incoming, outgoing, both edges with property p Np

j K
S Insert subgraph with i vertices, j edges, and k vertex and l edge properties iWv + jWe + (k + l)Wp

Algorithms

SP Find the shortest path from source to destination Kk
b

CC Compute the local clustering coefficient K2
b

Table 1: Benchmark Model. We use these equations for modeling operations at the two higher levels of the
benchmark. In the formulas in the Model column, n indicates the number of neighbors a vertex has and K
indicates the number of invocations of GetNeighbors.

ample, if a database performs poorly on microbenchmarks
but “mysteriously” well on complex queries, PIG’s frame-
work should help identify precisely where amortization oc-
curs. Throughout the text, we explain how we model various
operations, but a summary of the entire model is in Table 1.

3.2 Graph Models
PIG comes with three types of graph workloads (Table 2):

Barabasi graphs [17], Kronecker graphs [14], and real-world
graphs from the SNAP [4] web site. Barabasi graphs rep-
resent traditional small-world, unpartitionable graphs. The
Kronecker model is representative of natural graphs, and the
SNAP data sets ground everything in real data.

For the Barabasi and Kronecker graphs, we use a range
of graph sizes (in vertices): one thousand, one million, two
million, and (Barabasi only) ten million. These sizes are de-
signed to map to typical database operating points: in the
database buffer cache, outside the cache, but in-memory,
and out of memory. We configure a system to use a 1 GB
cache, intending that the 1000 and 1 million vertex datasets
fit in the database’s cache, the 2M vertex datasets exceed

Name
Vertices Edges Neo4j Dex
in 1000s in 1000s Size Size

Barabasi Graphs
Small 1 5 1.1 MB 1.2 MB
Medium 1 1,000 5,000 877 MB 723 MB
Medium 2 2,000 10,000 1.8 GB 1.4 GB
Large 10,000 50,000 8.7 GB 7.2 GB

Kronecker Graphs
Small 1 3 0.8 MB 0.9 MB
Medium 1 1,049 7,054 1.2 GB 0.9 GB
Medium 2 2,097 15,519 2.5 GB 2.0 GB

Amazon Graphs
amazon0302 262 1,235 128 MB 138 MB
amazon0312 401 3,200 239 MB 250 MB

Table 2: Database Sizes and Characteristics

the cache, but fit in memory, and the 10M vertex dataset
far exceeds memory. In actuality, the graphs do not fall so
neatly in these buckets, because the systems we study use
fairly different representations. We generated all Barabasi
graphs with m = 5 (five edges per vertex) and the stochas-
tic Kronecker graphs from a 2× 2 seed matrix.

The PIG graph generator can generate typed properties,
distributed according to one of many distributions. We gen-
erated three properties for each vertex; one property has in-
teger values uniformly distributed between 18 and 65 (e.g.,
ages), the second has unique integer values, and the third
has approximately 100,000 string values between 15 and 20
characters long, uniformly distributed.

For edges, we generated both labels (types) and a prop-
erty. The property is an integer between 0 and 10,000 de-
scribed by a truncated normal distribution. In the graphs
marked 1el, we assigned every edge in the graph the same
edge label. In the graphs marked 2el, we generated two labels
distributed uniformly across the edges.

We selected the Amazon0302 and Amazon0312 graphs from
the SNAP collection, representing the product co-purchasing
network, because they were relatively large (262,111 and
400,727 vertices respectively) but cacheable, and they had
both graphical structure and properties. We imported only
the title, category, and sales-rank properties, even though
the original dataset comes with more properties.

4. PIG SPECIFICATION
PIG consists of a set of test components and a web-based

visualization tool. The latter enables comparisons between
different graphs and databases and between measured and
modeled performance. The components record both timings
and operational data needed to relate results across layers.

The following discussion presents PIG according to its
structure (Figure 1) rather than the order in which the in-
dividual benchmarks execute. The “Applications” layer in
this figure illustrates how a user might evaluate application
performance using PIG results, but we do not include such



applications in the framework. Thus, PIG has three layers:
Micro-Operations, Graph Operations, and Algorithms.

4.1 Level 1: Micro-Operations

4.1.1 Reads
PIG’s basic read operations retrieve individual elements

from the database: a vertex, an edge, or a property. The
test components are: GetVertex, GetEdge, GetVertexProp-
erty, and GetEdgeProperty. We test both integer and string
vertex properties, measuring each independently. We time
these operations in a loop of statistically significant size that
gets elements either by ID or by an indexed property value.

Traversal is the retrieval of one vertex from another via
an edge. In theory, traversal should be the aggregate of one
GetEdge and one GetVertex. However, we expect databases
will amortize traversal with respect to random Get oper-
ations, because it is the fundamental expression of graph
locality and an essential operation for graph algorithms (in
fact, the HPC-SGAB benchmark measures all performance
in terms of “traversals per second”). In a directed database,
it is also important to measure how reverse traversal com-
pares to forward and whether it amortizes Get operations
similarly.

PIG tests six traversals: for each of incoming, outgoing,
or either edges, we measure retrieval time for the vertex of
the first edge, either unconditionally or conditionally based
upon the edge label (i.e., a relation type such as friend).

4.1.2 Writes
Our fundamental write operations mirror our fundamental

read operations: AddVertex, AddEdge, SetEdgeProperty and
SetVertexProperty. (There is nothing analogous to traver-
sal.) At the next level, we use these fundamental operations
to evaluate bulk and incremental graph ingest.

4.2 Level 2: Graph Operations
Level two components express fundamental graph opera-

tions and can be modeled from the microbenchmark results.

4.2.1 Reads
The common use for traversal is neighborhood exploration:

visiting a vertex’s neighbors and evaluating them to direct
further traversal. We query for neighboring nodes via in-
coming, outgoing, or either edges, and we repeat each test
conditioned and not conditioned on an edge label. This is
represented in Figure 1 by GetNeighbors and its conditional
variants. We model each neighborhood query by counting
the number of vertices accessed and multiplying by the sum
of corresponding GetEdge and GetVertex time.

Khop retrieval generalizes the GetNeighbors query, retriev-
ing sequential neighborhoods from a starting vertex to col-
lect all vertices k or fewer edges away from the point of ori-
gin. GetKhopNeighbors is a common component of cluster-
ing and power-law analysis algorithms. We model GetKhop-
Neighbors as a linear function of GetNeighbors queries. The
extent to which a database amortizes GetKhopNeighbors
over random retrieval can be interpreted as a measure of
the extent to which it takes local vertex clustering into con-
sideration in its layout and cache.

4.2.2 Writes
PIG analyzes two forms of data ingest: bulk and incremen-

tal. Bulk ingest represents the initial loading of a dataset into

the database’s persistent storage from a canonical external
representation (e.g., CSV). Incremental ingest represents the
addition of vertices and/or edges to an existing graph using
individual AddVertex and AddEdge operations. Unsurpris-
ingly, this piecewise insertion is too slow for large graphs,
and systems generally provide a mechanism for bulk ingest.
In both cases, it is instructive to express the cost of ingest as
a function of the cost of incrementally inserting nodes and
edges to expose the efficiency of a system’s bulk ingest.

We measure bulk ingest time on the first 90% of an input
file, and then measure incremental ingest on the remaining
10% using per-object operations. We model incremental in-
gest as a function of AddVertex, AddEdge, and SetProperty.

4.3 Level 3: Algorithms
Many graph database queries are instances of well-known

graph algorithms. Currently, PIG benchmarks two.

4.3.1 Shortest Paths
Dijkstra’s algorithm is a stateful breadth-first search that

finds the shortest path between a source vertex and all other
vertices in the graph. If we wish to find the shortest path
between two particular nodes, then we use Dijkstra’s algo-
rithm, terminating as soon as we locate the target vertex.
The basic algorithm is quadratic in the number of vertices,
but with a Fibonacci heap can be reduced to running time
O(|E|+|V |log|V |) for graphs with non-negative weights. For
simplicity, our benchmark does not consider edge weighs and
thus uses the basic algorithm.

Some databases provide their own implementation of the
shortest path finding routine, sometimes using algorithms
other than Dijkstra’s. We use our implementation of the
Dijkstra’s algorithm for the purposes of this paper in order
to evaluate the “cleverness” of the core graph database, not
the “cleverness” of the choice of the algorithm.

In theory, Dijkstra’s algorithm is a heterogeneous mix of
SetVertexProperty and Get(Cond)Neighborhood operations,
assuming that we use properties to keep track of which ver-
tices we visited. Unfortunately, this simple implementation
is impractical. None of the systems we have analyzed to date
support transient properties, and clearing all the marked
vertices between iterations of the benchmark proved pro-
hibitively expensive. Instead, we maintain marking informa-
tion in heap storage.

The extension of shortest path to single-source shortest
path is straightforward. We expect that the performance of
both will be dominated by the length of the (longest) path.
At the current time, we include only a simple shortest path
algorithm and do not support variants such as single-source
shortest path or all-pairs shortest path.

4.3.2 Clustering Coefficient
The degree to which nodes in a graph tend to cluster

together is its clustering coefficient. There are both local
and global metrics of clustering. The global clustering co-
efficient is three times the fraction of triplets (sets of three
vertices connected by at least 2 edges) that form triangles.
The local clustering coefficient for a given vertex expresses
what fraction of the possible edges in the vertex’s neighbor-
hood exist (i.e., the number of edges among a vertex and all
its neighbors over the number of edges required to form a
clique among a vertex and its neighbors). Our last algorith-
mic benchmark computes the local clustering coefficients.



We model clustering coefficient as a 2-hop neighborhood
query: one hop to locate the neighbors and another to iden-
tify edges among neighbors.

5. IMPLEMENTATION
We began development of PIG using the graphdb-bench

benchmark authoring framework [5], but we have since di-
verged from the original codebase extensively. During PIG
development, we tested it on several databases: DEX [15],
Neo4j [16], MySQL and Berkeley DB. These databases have
highly heterogeneous data models and ensured that the bench-
mark was suitable to a wide range of implementations. The
diversity of systems also forced us to think carefully about
how to produce a fair, “apples-to-apples” comparison. In
the interest of space we present results only for DEX and
Neo4j, because these are the industry-standard dedicated
graph databases.

We provide a reference implementation for each bench-
mark in the Blueprints [7] graph model API, which provides
a standard access method to graph data stores from Java,
similar in purpose to the relational JDBC. The API encap-
sulates the database backend in an object-oriented wrapper
of standard graph elements (e.g., Graph, Vertex, Edge).

PIG can thus use any graph database that provides a
Blueprints driver plus a few PIG-specific routines that are
currently not specified by Blueprints, such as a method to re-
turn the total number of vertices in a graph and a method to
select a vertex uniformly at random. Our implementations
of these functions for DEX and Neo4j were each approxi-
mately 150 lines of code. However, we recommend that each
benchmarked database implement the benchmarks in its na-
tive API to obtain the most accurate results, not affected
by Blueprints’ overhead. We implemented all benchmarks
in DEX’s and Neo4j’s native APIs.

5.1 Configuring the Databases
We configured each database to use a total of 1 GB for

all of its caches. This was straightforward for DEX; its API
allows specifying the total cache size, and it decides how
best to divide this space. Neo4j’s API requires choosing the
size of each of its caches individually. We allocated 75% of
the memory to the buffer caches, splitting it proportionally
between the node, relationship, property, string, and array
stores based on their relative file sizes. (We used the de-
faults for the initial ingest.) We gave the remaining 25% to
the garbage collection resistant (GCR) object cache, split-
ting it so that it can hold the same fraction of nodes and
relationships.

On advice from the DEX team, we configured DEX to ma-
terialize neighbors, so that a vertex’s edges and the neigh-
boring vertices are co-located in the persistent storage. The
rest of the database configuration is left in its default state.
Most notably, this means in the case of DEX that it is tuned
for performance at the cost of relaxed durability.

5.2 Running the Benchmarks
The benchmark begins by opening the database and ini-

tializing all operations, which usually involves selecting ran-
dom nodes, edges, and/or property values. We use a uniform
distribution in most cases, but we also have the ability to
sample nodes proportionally to their degree. The next steps
are to warm the file system’s buffer cache by reading all
the database files and to warm (and pollute) the database’s

caches by scanning all objects in the database. This ensures
that the caches are warm and do not necessarily contain all
objects touched during the initialization. Finally, we run all
operations.

We run each operation enough times to warm up the
Java code paths (so that we measure the performance with
“JITed”, not interpreted, bytecode), and then again enough
times to get a statistically significant result. We only report
the statistics for this second run. For each operation, we
capture and log its execution time, memory overhead, time
spent inside Java’s garbage collector, and its self-reported
statistics, such as the number of retrieved neighborhoods
and vertices, and the number of unique vertices.

6. USING PIG
We used a single system for all benchmarking: Intel Core

i3 3 GHz equipped with 4 GB RAM, running Ubuntu 12.04
and OpenJDK Java 6. We ran our benchmark on the Neo4j
1.8 and DEX 4.6.0 graph databases. For all tests, we allo-
cated 1 GB of Java heap and 1 GB of database cache.

In the results below, our goal is to illustrate the analytical
power of the benchmark. While we do sometimes compare
results from Neo4j and DEX, we do so to highlight key is-
sues that the benchmark uncovers and not to recommend
one system over the other. As we shall see, the default con-
figurations for the two databases target different workloads,
and an evaluation designed to select a database would un-
doubtedly choose to configure the systems differently.

6.1 Level 1: Micro-Operations
We begin by examining the primitive operations of a graph

database. As these operations are at the lowest level of the
framework, we do not have models for their performance,
but PIG reveals details of the underlying implementations
that are not necessarily apparent when examining high-level
application results. In the interest of space, we present only
a subset of the results here, selecting those that provide the
greatest insight. We observed very little difference between
graphs using one edge label and those using two, so we show
results only for the single edge-label graphs.

6.1.1 Get/Add Edge/Vertex
We begin by examining the read performance of Neo4j

and DEX on the GetEdge and GetVertex micro-operations
in Figure 2. We typically think of a database as operat-
ing in one of three regimes (in-cache, in-memory, on-disk).
Neo4j maintains an object cache in the Java heap, producing
a fourth performance regime illustrated by the particularly
low latency results for 1K graphs and the 1M Barabasi; the
Kronecker graphs most clearly illustrate three of the four
operating points with the 10M graph providing the fourth
point. As DEX does not have this additional cache, its per-
formance corresponds more closely to the expected three-
level hierarchy; the 1M and 2M graphs both fit in memory,
while the 1K fits in cache and the 10M exceeds memory.

While Neo4j’s GetVertex latency more than doubles when
we fall out of memory (transitioning from the 1M to the
10M case), DEX’s latency increases only by 50%, because
its latency in the 1M case is already more than twice that of
Neo4j, so the disk penalty is proportionally less. The results
for GetEdge are more significant. DEX’s latency increases by
approximately a factor of four when it falls out of memory.
Neo4j’s latency increases by a factor of almost 50 as the
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Figure 2: Get Edge/Vertex Microbenchmarks.
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Figure 3: Get Edge/Vertex Property Microbenchmarks. We get the age property for vertices and the time
property for Edges.

database becomes I/O-bound. This does not happen in the
GetVertex case, because the vertex store is quite small (only
86 MB in the 10M case), relative to the edge store (4.6 GB).

The GetVertex and GetEdge benchmarks highlight the
caching behavior of the systems as well as the relative sizes
of the vertex and edge stores.

6.1.2 Get/Set Vertex/Edge Property
We also omit the Amazon datasets from this discussion

for brevity; they show similar patterns as those discussed
below. Figure 3 shows GetVertexProperty results for age (in-
teger) property and the GetEdgeProperty for the time (in-
teger) property. (The benchmark also generates results for
the name property, but we omit it here in the interest of
space.) Comparing these results to those in Figure 2, we can
see that the latencies for these operations are significantly
higher than those for vertices and edges. Although both sys-
tems implement property graphs, the performance suggests
that they do not treat properties as “first class” objects. In
Neo4j, getting a property in small graphs is up to six times
more expensive than getting a vertex or an edge. We have
omitted the results for getting edge properties for the 10M
graph, because when the database falls out of the cache,
Neo4j’s latency grows by three orders of magnitude. Neo4j
links attributes off of the objects they describe, so in the
out-of-memory case, retrieving an edge attribute is likely to
incur disk I/Os for both the edge and then the property,
and these are not explicitly placed near each other on disk.
In contrast, DEX shows much more stable performance ac-
cessing properties, especially vertex properties. While still
slower than retrieving vertices and edges, property retrieval
is of the same order of magnitude, and scales only slightly
with the database size.

The GetVertexProperty and GetEdgeProperty benchmarks
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reveal that properties are not of the same stature as edges
or vertices in either system, but that DEX provides a signif-
icantly more scalable solution. Conversations with Neo4j de-
velopers confirmed that Neo4j’s design emphasizes in-memory
performance over on-disk performance. The PIG results clearly
illustrate this design decision.

6.1.3 Traversal
Our last read micro-operation is traversal. We intended

traversal to be a primitive operation, measured by retriev-
ing the first neighbor of a vertex. However, this produced
a time significantly greater than what we expected based
on GetVertex and GetEdge times. Instead, we found that
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Figure 5: Add Edge Microbenchmark Results. The first two graphs show Neo4j’s ACID AddEdge results while
the second two graphs show DEX’s non-transactional additions

retrieving the first neighbor performed nearly identically to
retrieving all the neighbors. The results were similar across
graph types and databases, so we present Figure 4, which
depicts DEX performance on the 1K, 1M, and 2M Barabasi
graphs as an example. We hypothesized that the database
was retrieving all (or a sufficiently large number of) neigh-
bors before returning the first. We tested this hypothesis by
comparing the GetFirstNeighbor and GetAllNeighbors times
(the first and second bars). The third bar in each set shows
the time we model based upon the GetVertex and GetEdge
times. The models are fairly close except for the 1K graphs,
where the fixed overhead of assembling the Java objects
dominates.

The traversal benchmark and accompanying analysis cor-
rectly reveal that traverse is not a primitive operation in
either database. Therefore, in higher level benchmarks, we
model traversal as the sum of GetVertex and GetEdge times,
because there is no way to isolate and measure a single tra-
verse operation.

6.1.4 Add Vertex/Edge
The AddVertex and AddEdge results tell an entirely dif-

ferent story from the corresponding Get results. First, in
all the systems and across all graph sizes, AddVertex is
a constant time operation (producing exceedingly boring
graphs, which are omitted here). Second, Neo4j’s AddVertex
is nearly two orders of magnitude slower than its GetVertex.
The first point demonstrates the node-centric orientation of
both databases; adding a vertex simply appends an entry to
the node store. The second point highlights Neo4j’s support
for ACID transactions. Although PIG wraps many (100,000)
operations in a transaction, persistence is expensive. As we
did not configure DEX to guarantee durability, its AddVer-
tex performance is approximately the same as the in-cache
time for GetVertex ; the new vertex is placed directly in the
cache.

The AddEdge results in Figure 5 tells a different story
yet. Once again, we see that Neo4j’s transactional proper-
ties introduce significant overhead. However, DEX’s perfor-
mance significantly drops when it falls out of memory (the
rightmost graph in the figure). DEX uses a compressed rep-
resentation for a vertex’s neighbors, so adding an edge re-
quires uncompressing and recompressing neighborhoods for
the vertices on either end of the edge. This is particularly
burdensome for the 10M graph, where it is likely that each
retrieval of a neighborhood requires an I/O.

The AddVertex and AddEdge microbenchmarks highlight
important features in both system: Neo4j’s ACID properties

and DEX’s compressed edge representation.

6.1.5 Set Edge/Vertex Property
The performance of Neo4j’s SetProperty closely mirrors

its AddVertex and AddEdge performance, displaying both
the four operating points and its ACID guarantees. DEX
SetProperty performance closely mirrors its AddEdge per-
formance.

6.1.6 Summary
Taking all the microbenchmarks together, a picture of

each system emerges. As it was designed to do, Neo4j per-
forms exceptionally well when reading in-memory graphs
(i.e., performing graph analysis), but its performance is brit-
tle when the graph far exceeds memory. Its ACID transac-
tions introduce high write times. In contrast, DEX provides
low and stable write times in all cases except when per-
forming read-modify-write operations on compressed neigh-
borhood sets in the out-of-memory case. We expect to see
benefits to the compressed neighborhood representation as
we move into the next level of benchmarks.

6.2 Level 2: Graph Operations
Having examined an extensive set of graphs in the previ-

ous section and examined some implementation differences
between the two systems, we now focus on characteristics
that can be illuminated through PIG’s analytical framework.

6.2.1 GetAllNeighbors
While Figure 4 presented the average cost of retrieving a

vertex’s neighbors, we expect that the time should, in fact,
depend on the number of neighbors. However, as neighbor-
hood traversal is such a fundamental operation, we also ex-
pect that a good implementation will make an effort to clus-
ter neighbors, so that retrieving a neighborhood takes less
time than retrieving the same number of vertices randomly.
Thus, we hope that the actual GetNeighbors performance
exceeds that of what we model based on random vertex and
edge retrieval. The degree to which these numbers diverge
demonstrates a database’s “cleverness” of implementation.

Figure 6 shows Neo4j’s actual and modeled performance
of GetNeighbors as a function of the number of neighbors.
The story is quite interesting – for both small (1K) and
large graphs (10M), performance is relatively independent
of neighborhood size, and as the graph grows from purely
in-cache to just in-memory, we see the relationship break
down. If PIG is doing its job, this should reveal important
properties of the database implementation, and it does. For
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Figure 6: Get Neighbors Actual and Predicted performance as a function of the number of neighbors. The
graphs correspond to the 1K, 1M, 2M, and 10M Barabasi graphs. The predictions are based on the sum of
the GetVertex and GetEdge times the number of neighbors.
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Figure 7: Neo4j GetKhopNeighbors Actual versus Predicted time versus the number of GetNeighbor invoca-
tions. Our predictions are based on the average measured cost of a GetNeighbors query times the number of
such queries.

tiny graphs that fit entirely in Neo4j’s heap, performance
is dominated by the fixed cost of initializing Neo4j’s traver-
sal data structures. Once initialized, the incremental cost of
adding additional vertices to the neighborhood is minimal.
This behavior is readily apparent from the comparison. At
the other extreme (10M), we see that the actual performance
is much better than what we model. Our model is based on
retrieving random vertices and edges, which consequently
expects multiple I/Os per neighborhood. However, in prac-
tice, the edges adjacent to the same vertex are often placed
close together. This is can be an artifact of database ingest,
as it is quite common for such edges to be stored together
in the source data file as well, or a result of the database’s
on-disk representation. If we zoom in on the measured re-
sults, we see a small dependency on the neighborhood size,
but this is dwarfed by the fact that fewer I/Os are necessary
than if neighbors were randomly distributed.

In the mid-size region (1M and 2M) we see mild effects
of the on-disk clustering. At 1M, the model predicts actual
performance; as the graph grows and parts are evicted from
memory, actual performance is better than the modeled per-
formance, because neighborhoods cluster on-disk better than
random vertices and edges.

PIG’s comparative analysis helps us uncover important
features of Neo4j’s implementation and supports PIG’s de-
cision to model even higher-level algorithms in terms of these
intermediate operations, rather than the primitive ones an-
alyzed in the previous section.

6.2.2 Khop Traversal
As we move from simple neighborhood queries to Khop

queries, we expect the number of nodes we visit to grow
exponentially. The benchmark lets us compare Khop perfor-
mance to predictions based on the total number of neighbor-
hoods and vertices accessed, the number of unique vertices
visited, and K, the number of hops outward. As expected,
average time scales exponentially in K, but for each value of

K, there is a large spread, because a Khop query can return
dramatically different numbers of vertices, depending on the
vertex from which it is launched. Although we examined all
the relationships, we found that modeling Khops as a func-
tion of the number of GetNeighbors invocations works well.
Figure 7 shows results for Neo4j; DEX has similar behavior.

Unlike immediate neighborhood queries, modeling Khops
on GetNeighbors is a fairly accurate predictor of Khops per-
formance, even for out-of-memory graphs. This, too, is a
useful result: what it shows is that Neo4j’s on-disk layout
scheme doesn’t significantly amortize placement costs be-
yond a vertex’s immediate neighbors. Using PIG, a database
designer might determine this to be the root cause of dis-
appointing performance on a more complex Khops- based
algorithm, and consider it evidence of a need for future re-
search in on-disk layout schemes for K >= 2.

6.2.3 Ingest
Figure 8 presents the ingest results for Neo4j and DEX

on medium (1M and 2M) Barabasi graphs (the other graphs
exhibit a similar behavior and are thus omitted in the in-
terest of space), comparing them to the model based on the
individual costs of the AddVertex, AddEdge, and SetProp-
erty operations. The bulk load ingests 90% of the graph and
the incremental ingest the remaining 10%. Both systems at
all database sizes demonstrate significant efficiency for bulk
ingest, though it ranges from a factor of three (for DEX at
1M and 2M) to a factor of 17 (for Neo4j at 2M). At best, we
might expect that the actual incremental ingest performance
might exceed what we model for a naive implementation by
similar factors.

This is an excellent example of how PIG’s modeling of-
fers insights not readily available through simple end to end
measurements. Without modeling, all we might see is that
DEX outperforms Neo4j significantly on ingest. However,
we know that Neo4j’s transactional guarantees are the ma-
jor source of that difference. And the modeling also shows
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Figure 9: Predicting Amazon shortest path perfor-
mance using the GetKhopNeighbors Barabasi pre-
diction, which is itself based upon GetNeighbors
benchmark results. The top two graphs use the 1K
Barabasi graph results to predict the Amazon0302
data set and the bottom two use the 1M Barabasi
to predict the Amazon0312 data set.

that DEX does not amortize its insertion costs as much:
Its bulk load is only a factor of three better than its incre-
mental load, and its incremental load is only twice that of
the naive model at 1M and 2M sizes. In contrast, Neo4j’s
bulk ingest is always an order of magnitude faster than its
incremental ingest, and its incremental ingest is five to ten
times better than its modeled ingest. The former is due to
the fact that Neo4j disables transactions during bulk ingest,
but the latter speaks to the cost of DEX’s compressed edge
representation. The Ingest results provide insight into each
systems bulk ingest efficiency and the degree to which each
system amortizes repeated operations.

6.2.4 Level 3: Algorithms
PIG currently has native implementations only for Short-

est Path and Local Clustering Coefficient. We started with

these because they should be easily modeled, and because
they are ubiquitous in graph analysis. We model local clus-
tering coefficient computation as GetKhopNeighbors for K =
2. On both systems, the results for GetKhopNeighbors at
K = 2 perfectly predicts the results for ComputeCluster-
ingCoefficient. ShortestPath is a bounded Khops query, so
we expect its performance to mirror that of GetKhopNeigh-
bors for the “right” K for each query. In practice, GetKhop-
Neighbors for K = LengthOfShortestPathFound perfectly
models ShortestPath. As with Khops before, this implies the
databases do not significantly amortize shortest path access
patterns (beyond what already occurs in GetNeighbors).

We wrap up our discussion of PIG with an experiment
simulating how an end-user might find it useful. Imagine
that Amazon wanted to know how each of DEX and Neo4j
might perform shortest path queries on its data. Rather than
installing and running the two systems, such a user might
want to use PIG results for a graph with similar character-
istics to model that they might get. In this case, Table 2
suggests that the Amazon0302 data set is best modeled by
a 1K Barabasi graph and the Amazon0312 data set is best
modeled by the 1M Barabasi graph. We might then ask, how
well we model Amazon’s shortest path performance using
PIG results from the Barabasi graphs. Rather than simply
using the Barabasi shortest path results (which seemed like
cheating and produced outstanding results), we decided to
model Amazon’s workload using graph primitives – in this
case GetKhopNeighbors.

Figure 9 shows the results of using the Barabasi GetKhop-
Neighbors to model ShortestPath for each of the Amazon
datasets. On each plot, the line shows the modeled per-
formance, based on the appropriate Barabasi graph, and
the scatter plot shows what we got when we ran shortest
path on the Amazon data sets. The results are surprisingly
good. Although Amazon0302 is 128 times larger than the 1K
graph, because most of it fits in the Neo4j object cache, the
model predicts its performance well. Similarly, even though
Amazon0312 is about one-third the size of the 1M Barabasi
graph, because it is a workload largely captured in the buffer
cache, its performance is easily predicted by measurements
in that operating regime. Both the modeled and actual re-
sults indicate that Neo4j provides better performance in one
of the datasets, and DEX in the other.

7. CONCLUSION
In our efforts to develop and analyze PIG results, we

learned a great deal about all the systems we’ve studied. Our
conclusions fall into three categories: guidelines for features
that are missing in both DEX and Neo4j but that would be
useful in a next generation system, comments about the two
systems we examined, and experience using PIG.

Neither DEX nor Neo4j appear to treat properties in the
same “first-class” way that they treat vertices and edges. In
our own work, we find that indices and queries on properties
are common and that better performing indices would be
beneficial. Similarly, it would have been both simpler and
more aesthetically pleasing to use transient properties for
marking vertices in ShortestPath. Maintaining mark infor-
mation in the heap does not scale, but proved necessary;
marking via SetVertexProperty was slow and clearing the
resulting marks afterwards was extremely (unacceptably)
slow. While both systems do amortize the cost of individual
vertex operations when performing Khop queries, it appears



that there is still room for better co-location of related ver-
tices and edges, when the data set falls out of memory. This
is a challenging problem, because most natural graphs do not
form neat, disjoint clusters; it should be possible to exploit
knowledge of known access patterns, as relational databases
do in constructing and selecting indices.

Both systems provide efficient bulk ingest, but also effec-
tively amortize the cost of individual AddVertex and AddEdge
operations on incremental ingest. Neo4j’s transactional se-
mantics add overhead for insertions, but protect from data
corruption in the presence of failure. In exchange, DEX fore-
goes such guarantees, but provides better and more scalable
write performance.

PIG proved invaluable in developing intuition and under-
standing about the two systems. We frequently made hy-
potheses, based on results and then confirmed those hy-
potheses with the system developers. We do not yet have
extensive experience using PIG to model application perfor-
mance, but it has been critical in driving the design of the
next generation graph database we are developing.

8. AVAILABILITY
PIG is open source and available for free under a BSD

license from the following website:

https://code.google.com/p/pig-bench/

To extend PIG to a new database one must implement a
small 8-method interface corresponding to low-level graph
operations. The implementations for DEX and Neo4j are
about 150 lines of code each, not counting comments. We
also recommend, but do not require, to reimplement each
benchmarked operation in the database’s own native API
instead of using the reference Blueprints implementation in
order to get more accurate results.
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