
Passive NFS Tracing of Email and Research Workloads

Daniel Ellard, Jonathan Ledlie, Pia Malkani, Margo Seltzer�
ellard,jonathan,malkani,margo � @eecs.harvard.edu

Division of Engineering and Applied Sciences, Harvard University

Abstract
We present an analysis of a pair of NFS traces of con-

temporary email and research workloads. We show that
although the research workload resembles previously-
studied workloads, the email workload is quite different.
We also perform several new analyses that demonstrate
the periodic nature of file system activity, the effect of
out-of-order NFS calls, and the strong relationship be-
tween the name of a file and its size, lifetime, and access
pattern.

1 Introduction
Trace-based analyses have guided and motivated con-

temporary file system design for the past two decades.
The original analysis of the 4.2BSD file system [9] moti-
vated many of the design decisions of the log-structured
file system (LFS) [13]. The revisitation of the original
BSD study [1] confirmed the community’s earlier results
and further drove file system design and evaluation to-
wards the support of distributed file systems as well as
computer science engineering and research workloads.
In the late 1990’s, our repertoire of trace-based studies
was expanded to include the increasingly dominant desk-
top systems of Microsoft [12, 15] and new workloads
such as WWW servers [12]. It is clear from the litera-
ture of trace-based studies that there are many interest-
ing and important workloads to consider when designing
a file system, and that new workloads emerge as new ap-
plications and uses for file systems appear. We believe
that as the community of computer users has expanded
and evolved there has been a fundamental change in the
workloads seen by file servers, and that the research com-
munity must find ways to observe and measure these new
workloads.

In this paper, we present an analysis of two contem-
porary NFS workloads: EECS, a CS research workload,
and CAMPUS, the central computing facility for our uni-
versity. Both of these systems exhibit new characteristics
that future file system designs might be able to exploit.

The EECS workload extends the pattern of research
workloads of earlier studies, but ventures into new ter-
ritory – the EECS workload is dominated by metadata
requests and has a read/write ratio of less than 1.0.

The CAMPUS workload is almost entirely email, and
is dominated by reading. Nearly all of the active files on
CAMPUS fall into one of four categories – mailbox files,
lock files, scratch files used by mail clients, and configu-
ration files. Each category of file has a predictable size,
lifespan, and access pattern. Virtually all files on CAM-
PUS can be correctly categorized by their filename, and
therefore filenames might provide useful hints to the file
system about each file.

The contributions of this work are:

� A large set of anonymized traces from both techni-
cal/research and email workloads

� An analysis of these new traces and comparison to
prior traces

� New techniques for analyzing NFS traces, including
a new method for quantifying workload sequential-
ity and understanding its impact on file servers

� Evidence that many properties of a file are predicted
by its name

� Tools to gather new anonymized NFS traces

The rest of this paper is organized as follows. Sec-
tion 2 describes our tracing software and the trace
anonymization process. In Section 3, we give an
overview of the systems we studied and the traces we
gathered. We discuss the advantages and challenges of
gathering file system traces from NFS environments in
Section 4. In Section 5, we describe our new traces and
compare them to the results of previous trace-based stud-
ies, highlighting the similarities and differences. In Sec-
tion 6, we discuss the new analyses and findings revealed
by our traces, and in Section 7, we summarize our find-
ings and discuss directions for future research.

2 Our Tracing Software
Our traces were collected by attaching a computer run-

ning our NFS packet snooping software (based on an
extensively modified version of tcpdump) to a mirror
port on the network switch hosting the servers under
study. Our tracing software can handle any combination
of NFSv2 and NFSv3, TCP or UDP transport, gigabit



Ethernet, and jumbo frames. Unlike other tracing tools,
we also support some forms of TCP packet coalescing
and automatic anonymization of the traces. Our software
is also open-source, easy to configure, runs unattended,
and is portable across different flavors of UNIX.

The output of our tracing software is either a time-
stamped literal record for each NFS call and response
observed over the network or an anonymized version
of these records. The anonymization process replaces
all UIDs, GIDs, and IP addresses in the traces with ar-
bitrary but consistent values. Filenames and paths are
anonymized by pathname components: directories are
anonymized individually, so that if two paths have a com-
mon prefix path, their anonymized forms will share a
common prefix as well. In addition, filename suffixes are
anonymized separately from the rest of the filename, so
all files that share the same suffix will have anonymized
names that end in the anonymized form of that suffix.

The anonymization process is configurable – the map-
ping for the anonymization of any value can be over-
ridden. For example, in the anonymization of our own
data, we disable the anonymization of many common file
and directory names (such as CVS, .inbox and .pin-
erc) or components (such as lock) and specific UIDs
(such as root and daemon). We also treat several suf-
fixes and prefixes (such as #, ,v and ˜) specially, to
preserve the relationship between the anonymized form
of filenames containing these suffixes or prefixes and
the anonymized form of the filenames without them.
It is also possible to configure the anonymizer to omit
all filename, UID, GID, and IP information entirely.
This makes some analyses impossible, but still provides
a great deal of useful information to file system re-
searchers.

Our anonymization approach is vulnerable to a
known-text attack by an adversary who has detailed
knowledge about the system being traced. For example,
an attacker who knows exactly when a particular user
accessed a particular file can find the user’s anonymized
UID and GID and the anonymized filename. Similarly, a
chosen-text attack on the system while it is being traced
can be used to find the anonymized form of any filename
that the attacker can create. Both of these attacks require
direct access to or real-time information about the sys-
tem being traced. An insider can exploit his or her ability
to use the file system to gain knowledge about the other
users of the system, but an outsider who does not have
this leverage cannot reverse the anonymization process.
We do not use hashing or any other deterministic method
to do the anonymization, because that would allow an at-
tacker to perform a known-text attack without access to
the traced system, and it would also allow direct compar-
ison of filenames and other information between traces

gathered at different sites.

3 Traced Systems
In order to examine new workloads and place our work

in the context of previous studies, we gathered two sets of
traces. The EECS trace is reminiscent of the frequently
studied computer science departmental workload. The
CAMPUS workload is from our university’s central com-
puting center and is almost entirely email. The two work-
loads are summarized in Table 1.

3.1 The EECS System

The main EECS NFS server is a Network Appliance
Filer that serves as the primary home directory server
for our computer science department. The workload is a
mix of research, software development, and course work.
EECS users can directly mount their home directories
onto their workstations via NFS, Samba, or other proto-
cols. In the EECS system, all non-NFS file access proto-
cols are routed through an intermediate host, which con-
verts these protocols to NFS but prevents us from directly
identifying the source of the resulting activity.

Although there is no standard EECS client, a typical
client is a UNIX or Windows NT machine with more
than 128MB RAM and local copies of system software
and most utilities. Most of the EECS clients use NFSv3,
but many use NFSv2. All EECS clients use UDP to com-
municate with the server. The EECS server is used pri-
marily for home directories and shared project and data
files. Unlike what we will see in the CAMPUS workload,
the EECS traces do not contain any email traffic. In the
EECS system, email and WWW service is provided by
other servers, and user inboxes are stored on a separate
server.

There are no user quotas on the EECS system. The
aggregate disk capacity of the EECS client machines is
much larger than the capacity of the EECS server. Much
of the research data used in the EECS environment is
stored on other servers; the only items stored on the
EECS server are home directories, data that need to be
shared, or data that users want to have backed up. The
traces do not include any backup activity.

3.2 The CAMPUS System

CAMPUS is a collection of machines serving the com-
puting needs for the bulk of the administration, college,
and graduate school of the University. It handles email
and web service for the majority of the students, faculty,
and administrators, and has approximately 10,000 active
user accounts.

CAMPUS storage is distributed over three NFS
servers hosting a total of fourteen 53GB disk arrays.
Each NFS server has several network interfaces and they



CAMPUS EECS
Storage for the campus SMTP, POP and login servers Storage for the EECS department home directories
Most NFS calls are for data Most NFS calls are for metadata
Reads outnumber writes by a factor of 3.0 Writes outnumber reads by a factor of 1.4
Peak load periods highly correlated with day of week and
time of day

Unpredictable interactive load, but predictable background
activity

20% of the files accessed, and 95+% of the data read and
written comes from mailboxes

No mailboxes, some mail lock and temporary files

50% of files accessed are mailbox locks A large number of locks for mail and other applications
Most blocks live for at least ten minutes Most blocks die in less than one second
Almost all blocks die due to overwriting Blocks die due to a mix of overwriting and file deletion

Table 1: Characteristics of CAMPUS and EECS.

are configured, via gated, to appear as fourteen virtual
hosts, one per disk array. Because all NFS traffic to a par-
ticular disk array uses an IP address unique to that disk
array, we can monitor traffic to the individual arrays.

The connection between the CAMPUS clients and
servers is a gigabit Ethernet using jumbo (9000 byte)
frames. All clients use the NFSv3 over TCP.

Each of the fourteen disk arrays contains the home di-
rectories for a subset of the CAMPUS users. Users are
given a default quota of 50MB for their home directories.
Users are distributed among the disk arrays according to
the first letters of their login names. We gathered long-
term traces for two arrays and short-term traces for seven
others. We computed summary statistics and general us-
age patterns for all nine of the traced arrays and found
them to be similar. We chose to use the array named
home02 for our in-depth analysis.

The central email, WWW, general login, and CS
course servers mount the disk arrays via different net-
works. Our traces capture only the NFS traffic between
the email and general login servers and the disk arrays;
we do not capture the NFS traffic generated by serving
personal home pages or by students working on CS as-
signments. Statistics provided by CAMPUS sysadmins
confirm that the subnet that carries the email and general-
purpose login traffic represents the vast majority of the
total CAMPUS traffic. The CAMPUS traces do not in-
clude backup activity.

Unlike many other systems, mail spools are not kept
in dedicated partitions; users’ inboxes are located in-
side their home directories. However, the activity of the
CAMPUS system is so dominated by email that in some
sense the file systems used for home directories can be
considered to be dedicated email partitions. Most users
of the CAMPUS system access mail remotely via a POP
or SMTP server from their PC or Macintosh. Our traces
do not include this POP and SMTP mail delivery activ-
ity as such, but do contain records of the NFS traffic this
activity generates.

3.3 Data Used

We gathered several months of traces on both systems
and then computed summary statistics for the entire trace
period and additional analyses for the months of 10/2001
and 11/2001. We observed that the workload for CAM-
PUS is quite consistent over the entire trace period (once
the school schedule, including weekends and holidays, is
taken into account). The EECS workload shows consid-
erably more variation from day to day and week to week,
but the variance falls within reasonable limits.

For the analyses in this paper, we selected the one-
week period of October 21 through October 27, 2001.
This week was chosen because it is “typical” in the sense
that it is in the middle of the semester and contains no
holidays or other unusual events, and because our data
for this week contain no gaps. For the EECS system,
although each week varies from the others, and none of
the weeks appear “average”, this week is no more atypi-
cal than any other. Each table and graph is labeled with
the subset of the data used.

Table 2 shows the summary statistics for the average
daily activity of our traces, for both a three month subset
and the one week subset used for our in-depth analyses,
and compares them to the same statistics from the Baker
and Roselli traces [1, 12]. Note that the RES, INS, and
NT traces are kernel-level traces of local file systems,
and do not show the effect of client-side caching. The
Sprite traces, on the other hand, use a different form of
client-side caching than NFS.

CAMPUS is an order of magnitude busier than any of
the other systems, particularly in terms of the amount of
data read and written.

4 Trace Analysis via NFS
Passive NFS tracing is an old idea, and has been

used in many trace studies and file system experiments
[2, 3, 5, 7, 8]. The technique of passive tracing on a
broadcast network evolved in parallel with broadcast net-



CAMPUS EECS CAMPUS EECS INS RES NT Sprite
9/1-11/30 9/1-11/30 10/21-10/27 10/21-10/27

Year of Trace 2001 2001 2001 2001 2000 2000 2000 1991
Days 91 91 7 7 31 31 31 8
Total ops (millions) 29.9 2.30 26.7 4.44 8.30 3.20 3.87 0.432
Data read (GB) 135.7 2.27 119.6 5.10 3.05 1.70 4.04 5.36
Read ops (millions) 19.29 0.35 17.29 0.461 2.32 0.303 1.27 0.207
Data written (GB) 45.0 2.94 44.57 9.086 0.542 0.455 0.639 1.16
Write ops (millions) 5.93 0.438 5.73 0.667 0.15 0.071 0.231 0.057
Read/Write bytes ratio 3.01 0.77 2.68 0.56 5.6 3.7 6.3 4.6
Read/Write ops ratio 3.25 0.80 3.01 0.69 15.4 4.27 4.49 3.61

Table 2: A summary of average daily activity during the trace periods. The subset from 10/21 through 10/27 is used
for most of our analyses. The INS, RES, NT, and Sprite numbers are from the Roselli and Baker trace studies. INS is
an instructional workload, RES is a research workload, and NT is a Windows NT desktop workload.

works such as Ethernet and client/server protocols such
as RPC. NFS trace studies began to appear in the litera-
ture soon after NFS clients appeared on computer science
department networks [7], but they received relatively lit-
tle attention compared to kernel-based trace studies or
studies of other distributed file systems. This changed,
however, as NFS became ubiquitous and better tracing
tools and methodologies for analyzing NFS traces were
devised [2, 8].

Passive NFS tracing is attractive from a research per-
spective because NFS is a portable and widespread pro-
tocol, used in a broad variety of real-world contexts,
and so its analysis is applicable to many interesting real-
world problems. Unfortunately, we have found that even
while computing has become pervasive, it has become
increasingly difficult to gather meaningful traces of pro-
duction servers outside of research labs.

The primary difficulty in gathering traces from pro-
duction servers is a combination of social, ethical, and
legal issues. Detailed file system traces can reveal sen-
sitive information about the activities of organizations or
individual users, and the administrators of these systems
have justifiable concerns about protecting the privacy of
their users. During our data collection, we contacted sev-
eral commercial ISPs in an effort to gather traces from
their sites, and although several of the administrators
of these ISPs expressed interest, none of them would
permit us to gather traces because of privacy concerns.
To address this concern, we added an anonymization
step to our tracing procedure, as described in Section 2.
This step transforms the traces in such a way that user-
specific information such as UIDs or filenames is not re-
vealed, while preserving the information necessary for
almost any analysis. We hope that the existence of this
anonymizer and the value of our findings will convince
ISPs to permit tracing, allow these traces to be shared
among the research community, and thereby invigorate
contemporary file system design.

A second obstacle to gathering traces is that system
administrators are understandably unwilling to modify
their systems to allow direct instrumentation because of
the risk associated with loading new, non-production,
and potentially buggy kernel patches into their critical
systems as well as the concern about the additional load
it might place on their systems. Passive NFS tracing ad-
dresses this concern perfectly; capturing and recording
NFS packets from the network requires no changes to the
clients or servers and does not introduce any new load on
the system.

Despite the decline in the number of new NFS trace
studies in recent years, we believe that the technique of
passive NFS tracing in tandem with trace anonymization
is more important now than ever, because it may allow re-
searchers to trace systems that would otherwise be com-
pletely inaccessible.

4.1 Difficulties of Analyzing NFS Traces

As mentioned in earlier NFS trace studies, the analysis
of passive NFS traces presents several challenges, partic-
ularly when trying to relate these analyses to those done
on kernel-based traces [8]. This subsection provides an
overview of the challenges of comparing NFS traces with
kernel-based traces:

� Details of the underlying file system are hidden.
� The NFS interface is different from the canonical

FS interface.� Client-side caching skews the observed workload.
� Some NFS calls and responses are lost.
� NFS calls may be reordered en route.

Just as the idea of passive NFS tracing is not new,
methods for dealing with most of these problems are
not new, and have been described at length elsewhere
[2, 5, 7, 8], and we will discuss these methods only



briefly. The problem of reordered calls, however, is
something we have not seen addressed in the literature,
and so we will discuss our approach in detail in Section
4.2.

4.1.1 The Underlying File System is Hidden

Much information about the underlying server file sys-
tem is not revealed by any analysis of the messages be-
tween NFS clients and servers. For example, it is im-
possible to learn much about files or directories that are
never accessed via NFS, or any information about the ac-
tual on-disk layout of the files and directories. It is also
impossible to reconstruct the complete file system hier-
archy a priori – but as shown in earlier studies [2, 8], it
is possible to reconstruct the active parts of the hierarchy
on-the-fly by learning the relationship between directo-
ries and their contents as revealed by lookup calls and
responses. This method is effective for our traces; af-
ter processing several minutes of traces, the probability
is very small that we will encounter a file or directory
whose parent directory has not already been seen.

Another problem with tracing at this level is that little
information about the internal state of the server (such as
the state and contents of its cache) is revealed. Because
we are interested in characterizing the server workload,
which is independent of the internal state of the NFS
server, this does not impede our analyses.

4.1.2 The NFS Interface

Analyses that depend on specific details of the file sys-
tem interface cannot be done on NFS traces. For exam-
ple, some analyses require knowledge of file open and
close system calls, but neither of these calls exists in
NFS. Methods for augmenting a trace with virtual open
and close events are described in related work [2, 8].
We describe our approach for finding runs in Section 4.2.

4.1.3 The Effect of Client-Side Caching

The effect of client-side caching is an obstacle to infer-
ring the actual client workload from the workload ob-
served by an NFS server. In order to reduce the latency
of client operations, NFS allows clients to cache data and
metadata in a weakly consistent manner. This means
that some client operations are absorbed by the client
cache and never reach the server, or are observed only
as getattr calls when the client checks whether the
data in its cache is still valid.

The strategies employed by some clients can also have
the effect that some I/O operations seen by the server

might not correspond to actual calls by the client applica-
tion, but instead are the effect of the client-side operating
system performing read-ahead in an attempt to warm its
cache with data it anticipates will be requested soon.

The effect of client-side caching and methods to infer
actual client workload from the server traffic have been
studied extensively [2, 3, 5], but still present new chal-
lenges in heterogeneous networks because NFS allows
considerable flexibility in how caching is implemented
and in the degree of consistency provided to different ob-
servers of the file system.

Because our research is primarily concerned with
server workloads, which are strongly shaped by client-
side caching, we do not want to remove the effects of
client-side caching and therefore make no attempt to con-
trol for them. This implies that direct comparisons of
operation counts and the volume of data read and written
between our NFS traces and traces from local file sys-
tems should show that the NFS traces contain relatively
more metadata traffic (to validate the cache contents) but
less data actually read (if the cache is often valid).

4.1.4 Lost NFS Calls/Responses

On the CAMPUS system our monitor consisted of a sin-
gle gigabit Ethernet port on a fully-switched gigabit net-
work. During bursts of heavy activity, the monitor port
simply did not have the bandwidth to forward all of the
network traffic. This problem was compounded by the
fact that it is impossible to decode an NFS response with-
out seeing the call, so losing a call effectively results in
losing both the call and its response. By analyzing the
call stream for unexpected holes, and by counting the
number of call and responses messages that had no corre-
sponding response or call, we estimate that during period
of heavy activity, we lost as many as 10% of the packets
through the switch, and for short bursts the percentage
could have been even higher. In contrast, on EECS the
monitor port was as fast as the port to the server, so we
did not observe this problem.

4.1.5 Reordered NFS Calls

Some analyses, such as determining whether a set of ac-
cesses are sequential or random, are sensitive to the order
of calls. Out-of-order calls occur when NFS calls are de-
livered to the server in a different order than they were
issued by the application. This reordering is largely an
artifact of the conventional NFS architecture, in which
separate processes, called nfsiods, issue the actual net-
work calls. Although a client’s calls are dispatched to the
nfsiods in order, the process scheduler determines the
order in which the nfsiods run.



To confirm and measure this effect, we performed an
experiment using our own clients and server on an iso-
lated network. When the client ran only one nfsiod,
no call reorderings occurred, but as additional nfsiods
were added, call reordering became more frequent. In
the most extreme case as many as 10% of the packets
were reordered, and some calls were delayed by as much
as 1 second, although no network errors or packet losses
were observed. This effect is more common when UDP
is used as the RPC transport, but can also occur with TCP.

4.2 Detecting Runs in NFS

Earlier trace studies [1, 9, 12, 15] describe workloads
in terms of sequential runs. The notion of a sequential
run is important to the heuristics that file systems use
to efficiently process a stream of requests to a file. For
example, FFS prefetches blocks when an access pattern
appears sequential and does not when it appears non-
sequential. Determining a client’s underlying access pat-
tern is an important part of optimizing file system access.

In order to compare our traces to earlier studies, we
needed a method to divide NFS records into runs on a
file. When we applied the conventional analysis of con-
sidering all consecutive accesses to a single file as a se-
quential run, we obtained a much higher percentage of
random accesses than previous work had led us to ex-
pect. We determined that the apparent randomness was
due to two factors: the reordering of requests introduced
by multiple client-side nfsiod processes and the omis-
sion of a small percentage of NFS records from our logs.
Because of these factors, the conventional methods are
ineffective for NFS analysis.

Previous studies define a run as the series of accesses
to a file between each open and subsequent close, and
an access as either a single read or write. Because open
and close do not exist in NFS, we use the following
methodology to create runs:

1. We associate a list of accesses with each file, adding
a record to this list whenever we see a read or
write to the file in the trace.

2. We then convert this list into a collection of one or
more runs.

(a) If the last item referenced the end-of-file, be-
gin a new run.

(b) If the last item in a list is old (e.g., older than
30 seconds) begin a new run.

(c) Else, add the current item to the current run.

Using this mechanism, a series of accesses can be split
into one or more runs. We also evaluated other meth-
ods to break lists of accesses into runs. For example, a
break might occur when a gap of several seconds occurs

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50

Pe
rc

en
t o

f A
cc

es
se

s 
Sw

ap
pe

d

Reorder Window Size (milliseconds)

CAMPUS
EECS

Figure 1: The effect of different window sizes on the per-
centage of swapped accesses. The sorting window size
chosen for each host is shown with a circle: for EECS,
5ms is sufficient, but for CAMPUS 10ms is better.

between two accesses or when a large backwards seek
occurs. We found that these other methods produced in-
consistent results.

After splitting accesses into runs, we separately de-
termined each run’s access pattern. Informally, a run
is sequential if each request begins where the previ-
ous one left off, for all requests. In NFS terms, a run
is sequential if, for all accesses in the run, offset ���
offset ���	��
 count ���� , where � is the index of the cur-
rent access in a run and count ���� is the number of bytes
accessed in the previous access. Offsets and counts are
rounded up to blocksizes of 8k. For example if a series
of offset(counts) was 0k(8k), 8k(8k), 16k(7k), 24k(8k),
we would consider this series to be sequential despite the
missing 1k between the third and fourth requests. If a run
has the qualities of being sequential and also accesses the
file from offset 0 through to eof, it is called entire. If it is
not sequential, the run is called random. A run is called
“read” if it contains only read requests, “write” if is con-
tains only writes, and “read-write” if it contains one or
more of each.

If we do nothing to compensate for the reordering that
occurs due to nfsiod scheduling, we observe an un-
naturally large percentage of random accesses. In order
to avoid this phenomenon, we partially sort requests in
ascending order within a small temporal window, which
we call a reorder window. For each request, we look
ahead � milliseconds to see if a nearby request should be
swapped with the current request, and swap them if they
are out of order. We show the results of using differing
reorder window sizes on a subset of the data (Wednesday
10/24/2001, 9am-12pm) in Figure 1.

Note that we want to use the minimum sorting win-
dow that removes the reordering effect of the nfsiods
but does not mask true client randomness – with an infi-



nite sorting window, any workload that visits every block
of a file in any order will appear sequential. Both work-
loads show a great improvement in observed sequential-
ity with a sorting window of only a few milliseconds and
then exhibit a knee, after which larger sorting windows
give much smaller gains in the observed sequentiality.
Empirically, the results from this analysis suggested that
we should use a window size of ����� milliseconds for
EECS and ������� milliseconds for CAMPUS. For the re-
mainder of this paper, the sequentiality analysis includes
this sorting step, unless otherwise noted.

5 Comparison With Previous Traces
In this section, we place our traces in the context of

several often-cited traces from earlier studies. We exam-
ine run patterns and block and file lifetimes. In Section
6, we discuss analyses specific to our traces.

5.1 Run Patterns

Most previous studies categorize workloads by their
level of sequentiality, because many file system layout
optimizations rely upon some degree of sequentiality.

The rightmost columns of Table 3 compare EECS and
CAMPUS to three historical traces, using the heuristic
described in Section 4.2 to find the runs in our traces.
Both EECS and CAMPUS have significantly different
run patterns than earlier traces. Both workloads contain a
much higher percentage of write runs (especially EECS,
where write operations already outnumber read opera-
tions in the overall operation count). We initially be-
lieved that much of the EECS write activity is due to late
night batch jobs, but examining only peak hours revealed
essentially the same percentages. Peak hour analysis for
CAMPUS also yields the same percentages shown in Ta-
ble 3. In EECS, we believe that the dominance of write
traffic is because most client machines are used by one
user and that user’s files experience little cache invalida-
tion. In CAMPUS, the read-write imbalance has a dif-
ferent cause: most writes are short appends to mailbox
files, and most reads are long reads of mailbox and other
mail-related files.

Note that the classification of “random” and “sequen-
tial” used in Table 3 follows the heuristics used by many
file systems, which categorize all non-sequential access
patterns as random. Therefore highly regular access pat-
terns, such as stride access patterns or reverse scans,
would be overlooked by this classification. A visual
inspection of the non-sequential access patterns in our
traces did not reveal a significant number of accesses that
had any discernible pattern other than sequential sub-
accesses separated by seeks.

Figure 2 illustrates the file size-based access patterns
of EECS and CAMPUS. EECS is similar to previously

0

10

20

30

40

50

60

70

80

90

100

1k 10k 100k 1M 10M 100M

Pe
rc

en
t o

f B
yt

es
 A

cc
es

se
d

File size in bytes (log)

CAMPUS

Total
Entire
Sequential
Random

0

10

20

30

40

50

60

70

80

90

100

1k 10k 100k 1M 10M 100M

Pe
rc

en
t o

f B
yt

es
 A

cc
es

se
d

File size in bytes (log)

EECS

Total
Entire
Sequential
Random

Figure 2: Percentage of bytes accessed randomly, se-
quentially, or in their entirety verses the total bytes ac-
cessed. Each run is categorized according to its access
pattern and then all of the bytes accessed in this run are
added to the subtotal for this category. These runs are
computed by the heuristic described in Section 4.2.

analyzed file systems where a large percentage of ac-
cesses come from files smaller than 1M. Almost 60% of
bytes are accessed randomly, which is about the same as
Roselli’s NT workload but much larger than most other
workloads. Again like the NT workload, long files read
in their entirety constitute 30% of the total in EECS.
CAMPUS is similarly dominated by random and entire
runs, although as discussed in Section 6.4 most of these
runs that are categorized as “random” do contain long,
completely sequential sub-runs, and should be consid-
ered highly sequential.

The vast majority of CAMPUS bytes transferred come
from files larger than 1M. This is unlike almost all of the
previous work on run analysis, except for the two outlier
traces of the Baker study [1].

Previous analysis, Roselli in particular, showed that
the majority of bytes from files over 100k are accessed
randomly. As mentioned in Section 4.2, our data indi-
cates that “random” is too strong a term and too coarse
a measurement. In our traces, most runs that would be
categorized as random in the entire/sequential/random



Access Pattern CAMPUS EECS NT Sprite BSD CAMPUS EECS
Raw Processed

Reads (% total) 53.1 16.6 73.8 83.5 64.5 53.1 16.5
Entire (% read) 47.7 53.9 64.6 72.5 67.1 57.6 57.2
Sequential (% read) 29.3 36.8 7.1 25.4 24.0 33.9 39.0
Random (% read) 23.0 9.3 28.3 2.1 8.9 8.6 3.8
Writes (% total) 43.8 82.3 23.5 15.4 27.5 43.9 82.3
Entire (% write) 37.2 19.6 41.6 67.0 82.5 37.8 19.6
Sequential (% write) 52.3 76.2 57.1 28.9 17.2 53.2 78.3
Random (% write) 10.5 4.1 1.3 4.0 0.3 9.0 2.1
Read-Write (% total) 3.1 1.1 2.7 1.1 7.9 3.0 1.1
Entire (% r-w) 1.4 4.4 15.9 0.1 NA 3.5 5.8
Sequential (% r-w) 0.9 1.8 0.3 0.0 NA 2.1 7.3
Random (% r-w) 97.8 93.9 83.8 99.9 75.1 94.3 86.8

Table 3: File access patterns using entire/sequential/random categorization. The leftmost two columns show CAM-
PUS and EECS traces divided into runs according to the sorting mechanism described in Section 4.2, but otherwise
unaltered. The rightmost two columns show the CAMPUS and EECS traces divided into runs using the complete
methodology presented in Section 4.2. to account for request reordering produced by nfsiods and prevent small
seeks (of less than 10 8k blocks) from changing a run from sequential to random. In both this presentation and that
in section 6.4, singleton runs are either sequential (if they access only part of the file) or entire (if they access the
entire file). The third, fourth, and fifth columns show the results from Roselli’s NT, the Sprite, and the BSD studies,
respectively.

taxonomy are actually composed primarily of sequential
sub-runs separated by short seeks. We present a new met-
ric for run sequentiality in Section 6.4.

5.2 File and Block Lifetimes

The distribution of block and file lifetimes is a work-
load characterization that can be exploited by the file sys-
tem. If blocks do not live long, it may be possible to keep
them in memory and avoid ever writing them to disk. If
the block lifetimes are bimodal, then once a block lives
sufficiently long, it might be beneficial to optimize its
on-disk layout under the assumption that the block will
live for a long time and the cost of reorganization can be
amortized across many future accesses.

We used Roselli’s “create-based” method [12] to cal-
culate block lifetime statistics. We processed our data in
two separate phases. In Phase 1, we record both block
births and deaths. In Phase 2, the end margin of Roselli,
we record only block deaths. To remove sampling bias
for blocks born early in the first phase, we remove any
death records for blocks with lifespans longer than the
length of the second phase. All blocks whose lifetimes
exceed the length of Phase 2 are considered end surplus.

5.2.1 Analysis

We ran a set of five 24-hour block life analyses on CAM-
PUS and EECS for the weekdays in our trace period.
The first phase of each test began at 9am and ran for

24 hours with a 24-hour end margin. We chose a 24-
hour end margin because shorter margins did not capture
the relatively high percentage of deaths that occur be-
tween 18 hours and 24 hours. Longer tests agree with
earlier observations that a block that lives for a day is
likely to live for a relatively long time. The daily end
surplus ranges between 2.1% and 5.9% for CAMPUS
and between 3.5% and 9.5% for EECS. Logically, this
daily surplus must eventually be balanced by deletions
(via periodic purges when disk quotas are reached or the
file system fills up, or more gradual and steady deletion),
because otherwise CAMPUS and EECS would be filled
in a matter of weeks. We have not investigated this phe-
nomenon, however.

5.2.2 Summary of Block Births and Deaths

The summary statistics for block deaths and births are
shown in Table 4. Both CAMPUS and EECS exhibit
similar trends with respect to block births. In both sys-
tems, most births are due to actual data writes, as op-
posed to preallocation of space (e.g., using lseek to
lengthen a file). In fact, the number of file extensions
is mildly exaggerated, because writes that follow an
lseek past the end-of-file are interpreted as extension
writes to all the newly created blocks; that is, not only
the blocks explicitly written, but all unwritten blocks
between the previous end-of-file and the new block are
counted as extensions. In the future it might be useful



CAMPUS EECS
Total Births (millions) 28.4 9.8
Due to Writes 99.9 % 75.5 %
Due to Extension � 0.1 % 24.5 %
Total Deaths (millions) 27.5 9.2
Due to Overwrites 99.1 % 42.4 %
Due to Truncates 0.6 % 5.8 %
Due to File Deletion 0.3 % 51.8 %

Table 4: Daily block life statistics for 10/22-10/26/2001.
Note that only the block deaths that occur within 24
hours of the block birth are reported here, and so the to-
tal number of blocks that are born and die within this five
day period is higher than the Total Deaths figure.

to distinguish between these cases. Even with this over-
counting, however, relatively few blocks are created via
file extensions, particularly on CAMPUS.

Earlier studies found that most blocks die due to over-
writing. In the Roselli trace results [12], the percentage
of blocks that die due to overwriting is always greater
than 50% and often between 85%-99%. Our results fol-
low this pattern, but show an important difference be-
tween CAMPUS and EECS. On CAMPUS, more than
99% of the blocks die due to overwrites. For CAMPUS
almost all the bytes written are to mailboxes, which are
never deleted but are overwritten frequently.

The distribution is more varied on EECS. There are
considerably fewer overwrites on EECS than CAMPUS,
and many more removes. This is due to the research-
oriented workload on EECS: tasks such as compiling
programs, using source control tools, and manipulating
data can create and delete many temporary files. There
are also approximately 10,000 deletes per day of small
files with names of the form “Applet * Extern”,
which are files created by UNIX window managers. Web
browser caches and email composition files make up
most of the rest of the deleted files.

On CAMPUS, more than 96% of the files created
and deleted during the course of a day are zero-length
lock files. For EECS, lock files account for only 8% of
the files created and deleted each day. Since these are
zero-length files, however, they do not consume any data
blocks, and so this does not have an effect on the block
lifetime statistics.

5.2.3 The Lifespan of Blocks

The lifespan of a block is defined as its time-of-death mi-
nus its time-of-birth. Figure 3 illustrates that the two sys-
tems are quite different. For EECS, over half the blocks
die in less than a second and relatively few blocks live for
an entire day; this is similar to the results of the NT study

0
10
20
30
40
50
60
70
80
90

100

1 sec 30 sec 5 min 1 hour 1 day

C
um

m
ul

at
iv

e 
Pe

rc
en

ta
ge

 o
f B

lo
ck

s

Block Lifetime (log)

Cummulative Histogram of Block Lifetimes

CAMPUS
EECS

Figure 3: The cumulative distribution of block lifetimes
for each day 10/22-10/26/2001.

by Vogels [15]. Most of the blocks that die in less than
one second on EECS belong to log or index files that are
written frequently and in an unbuffered manner.

On CAMPUS, blocks tend to live longer; about half
live longer than 10-15 minutes. These results are more
reminiscent of the results of Baker [1] than they are of
the more recent studies by Vogels [15] and Roselli [12],
although the curve of our distributions is similar.

On CAMPUS, blocks live longer because many are
born due to mail delivery (at the end of the mailbox) or
saving the mailbox before exiting an email client, and
blocks die when mail messages are removed from the
mailbox, a process that most email clients do in a batch
operation. Thus we expect many blocks to live for ap-
proximately the same length of time as an average email
session. Although we do not know this length, our data
suggest mail-reading session times typically range be-
tween fifteen minutes and an hour.

In comparison with Roselli’s block lifetime analysis
results [12], we see that our results are quite different.
The only similarity we observed was the fact that both
our CAMPUS trace and Roselli’s RES trace have a knee
at approximately the 10-minute mark. However after this
10-minute mark, CAMPUS has a more gradual increase
of block lifetimes, whereas for RES the change is abrupt.
On CAMPUS, few blocks live for less than a second. Ap-
proximately 50% and 20% die within a second for EECS
and Roselli traces, respectively. The end surplus, those
blocks that live longer than a day, is about 5%-7% for
both CAMPUS and EECS. For Roselli, this percentage
varies between 10%-30% for non-NT traces and is about
70% for the NT traces.

6 New Findings
In this section, we discuss observations specific to our

traces and to the EECS and CAMPUS workloads.



6.1 Characterizations of EECS and CAMPUS

EECS and CAMPUS differ on a fundamental level.
EECS is dominated by writing and by metadata queries,
particularly client queries about whether their cached
copies of the EECS data are still valid. The CAMPUS
workload, in contrast, is dominated by reading and writ-
ing large files and by creating and deleting lock files.

CAMPUS is utterly dominated by email and the daily
rhythms of user activity. EECS is similar to the research
workloads already documented in the literature, but has
a lower read/write ratio.

We observe that applications frequently use the file
system for ephemeral data storage and for locking. These
operations can impose a significant load on file systems,
especially when these temporary, cache, or lock files are
actually hosted on a different machine than the applica-
tion. Either file system designers should be sure that sys-
tems can identify and handle these cases efficiently, or
application designers should be encouraged to use more
suitable metaphors for locking and temporary storage.

Our results also provide more evidence that, as shown
in previous studies, delayed writes can substantially re-
duce the amount of actual writing done by the file sys-
tem, because many blocks do not live long enough to
be written. This is particularly true for data blocks on
EECS. We also believe that this will be true for the meta-
data blocks on CAMPUS because of the incessant cre-
ation and deletion of short-lived zero-length lock files.

6.1.1 The EECS Workload - Research

The EECS workload is predominantly file attribute calls
(lookup, getattr, and access). Most of these
calls occur because clients are simply checking to see
whether a file has been updated or whether they can
use a cached copy. Unlike CAMPUS, which is read-
oriented, the overall EECS read/write ratio is 0.69, but
varies widely over time, with periods of heavy read activ-
ity. This is illustrated in Figure 4. Note that the average
hourly read/write ratio shown in Table 5 is skewed by pe-
riods of relative inactivity that are dominated by reading,
and hence the hourly average is quite different from the
overall average.

Somewhat perversely, much of the EECS workload is
caching web pages viewed by users running on client
workstations. By default, these browser caches are cre-
ated in a subdirectory of the user’s home directory, so
they are “cached” on the central file server instead of
locally on each machine. Similarly, many of the most
frequently created and deleted files on EECS are files
created by the window managers and desktop applica-
tions of some users (for example, Applet files created

by GNOME).
Aside from the central storage of the web pages and

Applet files, if our EECS workload is an instance of
the “typical departmental server,” then not much has
changed in the past fifteen years. Our traffic patterns
resemble the model postulated by Ousterhout et al.[9],
which predicted that as cache sizes grow, most reads will
be serviced from cache and write performance will be-
come the bottleneck. This prediction was the motivation
for several new developments in file system design, such
as LFS [13]. Ousterhout’s conjecture that we may even-
tually be able to replace rewritable media such as mag-
netic disks with less expensive and write-only storage de-
vices (tested successfully for the Venti system [11]) does
not appear to hold for EECS or CAMPUS because even
though cache sizes have increased since 1985, the size of
file systems and the amount of data accessed by applica-
tions has also grown.

We speculate that the NFSv4 lease and delegation
mechanisms [10] could eliminate a large fraction of the
NFS calls generated by the EECS workload by removing
many of the situations where a client is contacting the
server simply to confirm that its cached copy of a file is
up-to-date.

6.1.2 The CAMPUS Workload - Email

On CAMPUS, email is the dominant cause of traffic.
During the peak load hours, about 20% of the unique
files referenced are user inboxes, and another 50% are
lock files used to control concurrent access to these in-
boxes. Many CAMPUS users use email applications that
access additional configuration files, put incoming email
into other mailboxes, and create temporary files to hold
messages during composition. We do not identify each
of these kinds of files here, but we have observed that
a large fraction of the remaining accessed files are also
related to email use.

These numbers and our analysis of the traces support
the hypothesis that most CAMPUS users do little else
on the system besides use email. A typical user ses-
sion involves logging in (accessing .cshrc and pos-
sibly .login) and starting an email client. The email
client typically reads a configuration file, creates a lock-
file for the mailbox, and then scans the mailbox file. Dur-
ing a mail session, mail applications may rescan the mail-
box several times. Composing email messages may, de-
pending on the mail program, create temporary files in
home directories, and viewing or extracting attachments
may also create files. Quitting the mail client causes
some or all of the mailbox file to be rewritten.

Even more dominant is the contribution of email to
the total quantity of data movement. For both the total



0

0.5

1

1.5

2

2.5

Sun Mon Tue Wed Thu Fri Sat

O
pe

ra
tio

ns
 p

er
 H

ou
r (

in
 m

ill
io

ns
)

Days of the week 10/21/2001 - 10/28/2001

Hourly Operation Counts

CAMPUS
EECS

0
2
4
6
8

10
12
14
16
18
20

Sun Mon Tue Wed Thu Fri Sat

R
ea

d/
W

ri
te

 R
at

io

Days of the week 10/21/2001 - 10/28/2001

Hourly Read:Write Ratios

CAMPUS
EECS

Figure 4: Variation of the hourly total operation count
and read/write ratios for the week of 10/21/2001.

number of read and write operations and the total volume
of data transferred, more than 95% of the data read and
written involve a user’s primary inbox.

One of the causes of the large read load on CAMPUS
is an unfortunate interaction between NFS’s file-based
caching model and the flat-file inbox and mail clients
used on CAMPUS. Delivering a message to an inbox up-
dates the modification time on the entire file, even though
only a small number of blocks might actually have been
changed. For a typical inbox on CAMPUS this results in
the invalidation and immediate re-reading of, on average,
more than 2 megabytes of data in the client cache. This
component of the workload represents the majority of all
reads on CAMPUS. We speculate that if client caching of
mailboxes was done on a block or message basis instead
of a file basis, the amount of data read per day would
shrink to a fraction of the current size.

6.2 Variance of the Workloads due to Time

Like Vogels [15], we observe extremely large variance
of load characterization statistics over time. We also ob-
serve, however, that much of this variance can be ex-
plained by high-level changes in the workload over time.
This correlation has been observed in many trace studies,
but its effects are usually ignored.

The most notable change in our traces is the difference
between peak and off-peak hours, where peak hours are

All Hours
CAMPUS EECS

Total Ops (1000s) 1113 (48%) 185.1 (86%)
Data Read (MB) 4989 (45%) 212.3 (165%)
Read Ops (1000s) 719 (48%) 19.7 (110%)
Data Written (MB) 1856 (58%) 378.5 (246%)
Write Ops (1000s) 239 (58%) 28.6 (201%)
R/W Op Ratio 3.27 (48%) 3.16 (242%)

Peak Hours Only
CAMPUS EECS

Total Ops (1000s) 1699 (7.6%) 267 (68%)
Data Read (MB) 7153 (6.1%) 268 (146%)
Read Ops (1000s) 1088 (7.1%) 29.2 (77%)
Data Written (MB) 2934 (12%) 439 (228%)
Write Ops (1000s) 377 (12%) 341 (158%)
R/W Op Ratio 2.46 (10%) 1.13 (106%)

Table 5: Average hourly activity. The All Hours columns
are for the entire week of 10/21-10/27/2001. The
peak hours are the hours 9am-6pm, Monday 10/22/2001
through Friday 10/26/2001. The numbers in parentheses
are the standard deviations of the hourly averages, ex-
pressed as a percentage of the average.

9am-6pm on weekdays. Figure 4 illustrates the cyclical
pattern of the CAMPUS load. It also portrays the consis-
tent read/write ratio during peak hours and its tendency
to spike during off-peak hours, when a few accesses can
skew the ratio. Table 5 quantifies the reduction in nor-
malized variance during peak hours, conveying that time
is a strong predictor of operation counts, amount of data
transferred, and the read-write ratio for CAMPUS.

We examined a range of possibilities for the “peak”
hours for CAMPUS and found that using 9am-6pm re-
sulted in the least variance. The standard deviation, ex-
pressed as a percentage of the mean, is reduced by a
factor of at least 4 for all of the CAMPUS statistics
when only these peak hours are considered. The same
peak hours were also those that resulted in the least vari-
ance for EECS, although there is less correlation between
the EECS workload and the “regular” work week. In
many cases, the load spikes from Figure 4 are directly
attributable to specific causes, such as software builds,
large experiments, or data processing, which are often
run via cron during off-hours.

Understanding the time-varying nature of a workload
is essential for any kind of dynamically-optimizing stor-
age system. Systems that experience genuine quiet peri-
ods can use them to rearrange data in anticipation of the
next period of heavy use. Less radically, if the system is
designed to make file layout decisions based upon work-
load, it is useful to know that there are atypical periods
(for example, when backups are running) that might best
be ignored, in order to avoid optimizing for an uncom-



mon or non-critical workload.

6.3 Predicting File Attributes via File Names

One purpose of our data collection was to explore
ways of predicting future file access patterns in order to
optimize file and block layout. Cao et al. propose that
applications can provide hints to the file system about
what the application believes the future properties and
access patterns of their files will be [4]. This method
has not been widely adopted because it requires modify-
ing the applications to provide these hints. However, we
found that on CAMPUS and EECS, applications do pro-
vide hints in that the filenames chosen for new files are
accurate predictors of the lifespan, size, and access pat-
terns of nearly all files. We also observe that file renames
are rare, which means that these hints are rarely wrong or
need to be modified. This means that the file system has,
at the time of file creation, reliable and potentially useful
information to guide its decisions.

On CAMPUS we can predict the size, lifespan, and
access patterns of most files extremely well simply by
examining the last component of the pathname. Nearly
all of the files on CAMPUS fall into one of the four cat-
egories: lock files, dot files, mail composer files, and
mailboxes, and the size, lifespan, and access patterns are
predicted strongly for each of these categories.

Zero-length lock files make up 96% of the files that are
both created and deleted during our test week, and 99.9%
of these lock files live less than 0.40 seconds. Temporary
files created by the mail composer account for 2.5% of
the files created each day; 45% of these live less than 1
minute, 98% are less than 8K in length, and 99.9% are
smaller than 40K. Most dot files fit in one block, although
there are some multi-block dot files (for example, the pri-
mary mail client configuration file .pinerc varies in
size from 11K to 26K). The mailbox files are consider-
ably larger than any other commonly-accessed file and
are never deleted.

Activity on EECS is a union of several kinds of activ-
ities, and the combined workload is more complex than
CAMPUS. However, our preliminary analyses show that
for most files on EECS, the pathname of a file is also a
strong predictor of file attributes. Analyzing these rela-
tionships and developing methods for the file system to
infer and exploit them is the subject of ongoing work.

6.4 Run Patterns and Sequentiality

In order to quantify the degree of sequentiality in a
run to a finer level than simply sequential or random, we
introduce a sequentiality metric, based on Keith Smith’s
layout score [14]. Our sequentiality metric is the fraction
of blocks that have been accessed sequentially. A block
is accessed sequentially if it is consecutive to the previ-

ous access. A run with a sequentiality metric close to 1.0
is almost sequential and should be processed by the file
system and disk as if it were.

To account for the minimal penalty introduced by
small jumps, we introduce the term � -consecutive to
mean that a block is within � blocks of its predecessor. In
our analyses we have arbitrarily chosen a � of ��� blocks;
logical jumps of less than 10 blocks are unlikely to re-
quire seeks, but these jumps also account for a large per-
centage of the jumps we observed.

Figure 5 examines the differences in average sequen-
tiality metrics for different run lengths. Long reads on
CAMPUS are typically highly sequential. Long CAM-
PUS writes, however, tend to touch several sequential
blocks and then seek to a new location, either forward
or backward in the file. This is reflected in a metric of
about ��� � , which means that only 60% of the accesses
are � -consecutive. Long EECS reads also tend to exhibit
highly sequential behavior, although not to as great a de-
gree as CAMPUS. The jaggedness of the plot of long
EECS runs is caused by the scarcity of occurrences of
runs of this size in EECS and the high variance between
those occurrences. EECS writes still tend to be highly-
seek prone, often having average sequentiality metrics
below ����� , even when ����� � .

The central difficulty in the results produced through
the mechanisms of partial reordering (described in Sec-
tion 4.2) and allowing small jumps is that they only en-
able approximations of the clients’ behaviors. If a se-
ries of requests is genuinely out-of-order or makes small
jumps, these two mechanisms will obscure this behavior.
However, an NFS server must take into account client
activity when deciding to prefetch. That requests are re-
ordered despite the best efforts at the client to issue them
in an optimal order suggests that a more intelligent algo-
rithm must be used by the server to optimize accesses.

To investigate the effect of reordered requests on NFS
read performance, we performed an experiment by mod-
ifying the FreeBSD 4.4 NFS server to employ a simpli-
fied version of the sequentiality metric presented here in
its read-ahead heuristic. On a loaded system, we ob-
served that nearly 10% of the requests were reordered,
and in this situation our new heuristic improved end-to-
end transfer speed for large sequential transfers by more
than 5%.

The need to apply heuristics to adequately support
client-side access patterns and the results of our experi-
ment suggest that NFS servers must be intelligent in cat-
egorizing a client’s access: a single out-of-order access
should not relegate it to the “random” dustbin. In our
traces, the vast majority of seeks were to blocks two or
three away from the current offset. These may have been
due to lost packets or may be a genuine reflection of the



 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

16k 64k 256k 1M 4M 16M 64M

A
ve

ra
ge

 S
eq

ue
nt

ia
lit

y 
M

et
ri

c

CAMPUS Reads

Small jumps allowed

Small jumps not allowed

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

16k 64k 256k 1M 4M 16M 64M

A
ve

ra
ge

 S
eq

ue
nt

ia
lit

y 
M

et
ri

c

EECS Reads

Small jumps
allowed

Small jumps
not allowed

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

16k 64k 256k 1M 4M 16M 64M

A
ve

ra
ge

 S
eq

ue
nt

ia
lit

y 
M

et
ri

c

CAMPUS Writes

Small jumps allowed

Small jumps not allowed

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

16k 64k 256k 1M 4M 16M 64M
A

ve
ra

ge
 S

eq
ue

nt
ia

lit
y 

M
et

ri
c

EECS Writes

Small jumps
allowed

Small jumps
not allowed

0%

25%

50%

75%

100%

16k 64k 256k 1M 4M 16M 64MC
um

. P
er

ce
nt

ag
e 

of
 R

un
s

Bytes Accessed in Run (log scale)

CAMPUS Cumulative Percentages

Total runs
(% of total)

Read runs (% of total)

Write runs (% of total)

0%

25%

50%

75%

100%

16k 64k 256k 1M 4M 16M 64MC
um

. P
er

ce
nt

ag
e 

of
 R

un
s

Bytes Accessed in Run (log scale)

EECS Cumulative Percentages

Total runs (% of total)

Write runs (% of total)

Read runs (% of total)

Figure 5: Bytes Accessed vs. Sequentiality Metric. �!�"� � shown as “small jumps allowed”; �!��� as “small jumps
not allowed.”

access stream, but in either case runs containing only ad-
jacent and nearby requests are served more efficiently if
they are considered sequential. In our categorization, we
consider any jump of fewer than 10 blocks sequential,
because on today’s disks, if the file is laid out contigu-
ously on disk, then logical seeks of fewer than 10 blocks
are unlikely to induce disk arm movement.

7 Conclusion
Some of our results strengthen or support the heuris-

tics behind contemporary file system design, while oth-
ers portray new aspects of NFS workloads that should be
taken into consideration in the design of future file sys-
tems and NFS servers. Our analysis of our new traces
also suggests several new research questions.

� We find that NFS servers must be prepared to deal
with reordered calls. If they use fragile metrics to
estimate the sequentiality of an access pattern, re-
ordered calls may degrade their performance.� Optimizations based on file pathnames could as-
sist servers in optimizing their file layout. The

predictions are not uniform across systems, but
must be learned from observations of each system.
The predictions are particularly accurate on single-
application systems, such as mail servers, which are
becoming more common.

� Our traces show a continuation in the trend that
in traditional computer science workloads, many
blocks die quickly. We also see this in email work-
loads. Mechanisms for delaying writes, such as
NVRAM, would improve performance for both the
CAMPUS and EECS workloads.

� Most long read runs that conventional metrics label
as “random” actually contain long, entirely sequen-
tial sub-runs, so servers that recognize these some-
what more complex patterns can improve perfor-
mance by optimizing the files for sequential access.

� Although long write runs exhibit higher variance in
sequentiality than long read runs, 60% of their block
accesses are sequential.

� On EECS and especially CAMPUS, servers could
schedule periods of reorganization since the daily



and weekly pattern of the workload is predictable.

� While it may have been obvious a priori, flat-file
mailboxes are quite inefficient. Anecdotal evidence
and recent experiments suggest that database-driven
mail servers can be faster and consume fewer re-
sources than file-system based servers [6]. It might
be possible to build a file system to serve mail loads
as efficiently as database-driven mail servers, but it
is not clear whether such a file system offers any
compelling advantages.

Our findings suggest a number of ways that file servers
can optimize their performance by analyzing the work-
load they observe, but it remains to be seen whether the
benefit of those optimizations is worth the cost. For ex-
ample, we do not know how much data and computation
are necessary for a general purpose file system to derive
and take advantage of the strong correlation between file-
names and file size or lifespan. The larger question is
whether it makes sense to attempt this optimization at all,
or instead simply accept the fact that general purpose file
systems can never perform as well as specialized ones,
and focus our efforts on designing file systems for spe-
cific workloads such as mail service, WWW service, the
desktop, and other new workloads as they emerge.

8 Acknowledgments
We could not have collected our traces without gen-

erous help from the administrators of each system, par-
ticularly Alan Sundell and Bill Ouchark of CAMPUS
and Peg Schaefer and Aaron Mandel of EECS. The pa-
per benefited enormously from the thoughtful comments
from our reviewers and Remzi Arpaci-Dusseau, our pa-
per shepherd. This work was funded in part by IBM.

9 Obtaining a Copy of Our Traces
Researchers interested in acquiring a copy of our

tools for collecting anonymized traces, or a copy of the
anonymized copies of the traces described in this pa-
per (or newer traces, as they become available) should
contact the authors at sos@eecs.harvard.edu. We are in
the process of constructing a public repository for traces
and related tools, and are actively gathering contributions
from other researchers.

References
[1] Mary G. Baker, John H. Hartman, Michael D. Kupfer,

Ken W. Shirriff, and John K. Ousterhout. Measurements
of a Distributed File System. In Proceedings of 13th ACM
Symposium on Operating Systems Principles, pages 198–
212, Monterey, CA, October 1991.

[2] Matthew A. Blaze. NFS Tracing by Passive Network
Monitoring. In Proceedings of the USENIX Winter 1992

Technical Conference, pages 333–343, San Fransisco,
CA, January 1992.

[3] Matthew A. Blaze. Caching in Large-Scale Distributed
File Systems. PhD thesis, Princeton University, January
1993.

[4] Pei Cao, Edward W. Felten, and Kai Li. Implementation
and Performance of Application-Controlled File Caching.
In Proceedings of the First USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), pages
165–177, Monterey, CA, November 1994.

[5] Michael Dahlin, Randolph Wang, Thomas E. Anderson,
and David A. Patterson. Cooperative Caching: Using
Remote Client Memory to Improve File System Perfor-
mance. In Proceedings of the First USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), pages 267–280, Monterey, CA, 1994.

[6] Nicholas Elprin and Bryan Parno. An Analysis of
Database-Driven Mail Servers. Technical Report TR-02-
13, Harvard University DEAS, 2002.

[7] Riccardo Gusella. The Analysis of Diskless Workstation
Traffic on an Ethernet. Technical Report 379, University
of California at Berkeley, 1987.

[8] Andrew W. Moore. Operating System and File System
Monitoring: a Comparison of Passive Network Monitor-
ing with Full Kernel Instrumentation Techniques. Mas-
ter’s thesis, Monash University, 1995.

[9] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze,
M. Kupfer, and J. Thompson. A Trace-Driven Analysis
of the UNIX 4.2 BSD File System. In Proceedings of the
Tenth ACM Symposium on Operating Systems Principles,
pages 15–24, Orcas Island, WA, December 1985.

[10] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan,
M. Eisler, D. Noveck, D. Robinson, , and R. Thurlow. The
NFS Version 4 Protocol. In Proceedings of the 2nd In-
ternational System Administration and Networking Con-
ference (SANE2000), Maastricht, The Netherlands, May
2000.

[11] S. Quinlan and S. Dorward. Venti: a New Approach to
Archival Storage. In First USENIX Conference on File
and Storage Technologies, pages 89–102, Monterey, CA,
2002.

[12] Drew Roselli, Jacob Lorch, and Thomas Anderson. A
Comparison of File System Workloads. In USENIX
2000 Technical Conference, pages 41–54, San Diego, CA,
2000.

[13] Mendel Rosenblum and John K. Ousterhout. The De-
sign and Implementation of a Log-Structured File Sys-
tem. ACM Transactions on Computer Systems, 10(1):26–
52, 1992.

[14] Keith A. Smith and Margo I. Seltzer. File System Aging
- Increasing the Relevance of File System Benchmarks.
In Proceedings of SIGMETRICS 1997: Measurement and
Modeling of Computer Systems, pages 203–213, Seattle,
WA, June 1997.

[15] Werner Vogels. File System Usage in Windows NT. In
Proceedings of the Seventeenth ACM Symposium on Op-
erating Systems Principles, pages 93–109, Kiawah Island,
SC, December 1999.


