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Abstract

The emergence of thin client computing and multi-user,
remote, graphical interaction revives a range of operat-
ing system research issues long dormant, and introduces
new directions as well. This paper investigates the ef-
fect of operating system design and implementation on
the performance of thin client service and interactive ap-
plications. We contend that the key performance met-
ric for this type of system and its applications is user-
perceived latency and we give a structured approach for
investigating operating system design with this criterion
in mind. In particular, we apply our approach to a quan-
titative comparison and analysis of Windows NT, Termi-
nal Server Edition (TSE), and Linux with the X Windows
System, two popular implementations of thin client ser-
vice.

We find that the processor and memory scheduling al-
gorithms in both operating systems are not tuned for thin
client service. Under heavy CPU and memory load, we
observed user-perceived latencies up to 100 times be-
yond the threshold of human perception. Even in the idle
state, these systems induce unnecessary latency. TSE
performs particularly poorly despite scheduler modifi-
cations to improve interactive responsiveness. We also
show that TSE’s network protocol outperforms X by up
to six times, and also makes use of a bitmap cache which
is essential for handling dynamic elements of modern
user interfaces and can reduce network load in these
cases by up to 2000%.

1 Introduction

Continuing improvements in networking speed, cost,
standardization, and ubiquity have enabled a literal “ex-
plosion” of the traditional computer system architecture.
Network links are now replacing an increasing number
of internal system busses, allowing the processor, mem-
ory, disk, and display subsystems to be spatially extruded
throughout a network. Well-known examples of extruded
subsystems include distributed shared memory and net-
work file systems [17, 12]. While these are established
areas of research, much less of the literature addresses
systems that enable extrusion of the display and input

subsystems that interface with human users.
Such functionality is commonly referred to as thin

client computing. Driven by IT concerns over cost and
manageability, the thin client trend has triggered renewed
interest in X Windows-like schemes and the introduction
of thin client service into major commercial operating
systems. This trend will accelerate as consumer prod-
ucts such as personal digital assistants, cellular phones,
pagers, and hand-held e-mail devices evolve and con-
verge into a yet another class of thin client terminals,
these additionally being wireless, mobile, and ubiqui-
tous.

We explore the question of how, in the current revival
of interactive timesharing, underlying operating system
design impacts thin client service, and how current met-
rics are inadequate for capturing the relevant impacts.
The contributions of this paper are an approach for ana-
lyzing the performance and scalability of thin client serv-
er operating systems, a quantitative comparison and anal-
ysis of Windows NT, Terminal Server Edition and Linux
with X Windows, two popular implementations, and a
discussion of related work informed by our approach.

The balance of this paper is organized as follows. Sec-
tion 2 gives background on the X Windows System and
Windows NT, Terminal Server Edition. Section 3 de-
scribes our approach. Sections 4, 5, and 6 discuss the
processor, memory, and network in turn as resources
within our framework. In Section 7, we discuss relat-
ed work on thin client performance, and we conclude in
Section 8.

2 TSE and Linux/X Windows

For the remainder of this paper, we will use conventional
client/server terminology although it is backwards from
the X Windows use. In particular, we will refer to the
machine in front of the user as the client (although in X
Windows the X server runs on this machine) and the ma-
chine on which the application runs the server (although
X Windows clients, such as xterm, run on this machine).

TSE and X Windows share similar architectures. Ap-
plications running on the server request display updates
and receive inputs from OS-provided abstractions. In X



Windows, this is the Xlib GUI library, and in TSE, the
Win32 GUI library. The code underlying these libraries
transparently routes display requests and input events ei-
ther to local hardware or remote client devices over the
network. Xlib interaction is entirely user-level, while
TSE display requests pass through the kernel.

Multi-user capabilities in TSE are provided by recent
modifications to the NT kernel, including virtualization
of kernel objects across user sessions, per-session map-
pings of kernel address space, and code sharing across
sessions. Multi-user functionality under X Windows is
provided by the underlying Unix implementation. In this
paper, we evaluate the performance of X Windows as it
runs on top of the 2.0.36 Linux kernel.

The network protocols used to carry display and input
information are X for X Windows and the Remote Dis-
play Protocol (RDP) for TSE. Both are high-level pro-
tocols encoding graphics primitive operations like bitblts
and text, polygon, and line drawing.

RDP is implemented in TSE as a display device driv-
er, and so appears to user-level applications as would any
other display device, such as a graphics card. RDP also
employs compression and client-side bitmap and glyph
(text) caching to reduce network traffic. Varying levels of
encryption can by applied to the protocol stream over the
wire. TSE users run the TSE client software to connect
to a TSE server. The client is a 200KB executable which
is available for DOS, all Windows platforms, and Unix
platforms via third-party add-ons. The RDP specifica-
tion is not published by Microsoft, making some analy-
ses more difficult. Although it is not within the scope of
this paper, the reverse-engineering of RDP is part of our
ongoing work.

X Windows is implemented on the server-side as a
GUI library called Xlib that is linked into applications
designed for the X environment. Such applications com-
municate over the wire directly and require no special
support from the underlying operating system other than
a TCP/IP stack. Client machines run so-called “X server-
s,” which accept connections from X-enabled applica-
tions and display their interfaces. X server software is
available on most major platforms including Windows,
Unixes, and Macintosh.

We also include in our comparisons LBX, which is a
protocol extension to X and is implemented as a proxy
that lives on both ends of an X Windows connection. It
takes normal X traffic and applies various compression
techniques to reduce the bandwidth usage of X applica-
tions [9]. RDP, X, and LBX all ran over TCP/IP in our
experimentation.

3 Our Approach

3.1 The Motivation

Traditional performance metrics in the systems domain
do not apply to operating systems whose primary func-
tion is thin client service. The output of benchmark suites
like Winstone, lmbench, and TPC are not particularly
enlightening. Ultimately, those interested in deploying
interface services need to know the maximum number
of concurrent users their servers can support given some
hardware configuration and what impact on users yields
this maximum value. Each characteristic of thin client
service places unique demands on what an appropriate
benchmark must measure:

3.1.1 Interactive

Unlike HTTP or database servers for which throughput
is critical and response time often reduces to a question
of throughput, the primary service in which we are in-
terested is interactive login. Endo et al., argued persua-
sively that for desktop operating systems like Windows,
latency, not throughput, is a key performance criterion
[7]. We contend that for thin client servers, latency is not
only a key criterion, it is paramount. Any useful metric
must yield information on whether the system satisfies
the latency demands of users.

3.1.2 Multi-User

Benchmarks designed for single-user operating systems
are not appropriate because a single user multi-tasking
is not equivalent to multiple users uni-tasking or multi-
tasking. On single-user systems, although asynchronous
background tasks may consume system resources, sys-
tem load is still typically limited by the rate at which
the human user interacts with the foreground application.
Furthermore, on a multi-user system there can be many
foreground applications (one for each user), so latency
demands must be met by more than just a single process.
Furthermore, schemes to improve foreground application
performance by favoring them over background process-
es are thwarted when most, if not all, processes are fore-
ground.

3.1.3 Graphical

In a graphical environment, the user’s primary interac-
tion is visual. Therefore, benchmarks need to consider
the delicate tolerances of human perception, particularly
with respect to latency.



3.1.4 Remote Access

On single-user systems like Windows 98 and NT
Workstation, user interface richness and sophistication
consume and are constrained by locally available video
subsystem bandwidth. In remote-access environments
like TSE and X Windows, the video subsystem at the
server is irrelevant and the GUI is instead constrained
by network bandwidth, the efficiency of the network
protocol, and the video hardware at the client.

3.2 The Key Role of Latency

As discussed above, latency, not throughput, is the key
performance criterion for thin client service. A user in-
teracting with an operating system performs a set of op-
erations by sending input and waiting for the system to
respond. These are the operations on which the user is
sensitive to latency. Previous work has found that tol-
erable levels of latency vary with the nature of the op-
eration. For example, latency tolerances for continuous
operations are lower than for discrete operations, and hu-
mans are generally irritated by latencies 100ms or greater
[4, 13, 20]. Jitter, or an inconsistent level of latency, is
also considered harmful.

The quality of a system can therefore degrade in three
ways with respect to latency. First, for a given opera-
tion, latency can rise above perceptible levels, and per-
formance suffers as latency continues to increase for that
operation. Second, performance suffers as the number of
operations that induce perceptible latency increases. Fi-
nally, performance suffers when perceptible latency con-
tinually changes and is unpredictable. Ideally, a “good”
system would meet users’ latency demands for each op-
eration performed and would do so consistently.

In an interface service environment, latency depends
on three categories of factors:

3.2.1 Hardware resources

Relevant hardware resources include the processor,
memory, disk, and network. Hardware inevitably intro-
duces latency, and slow hardware contributes more. La-
tency can also be caused by resource scarcity. For exam-
ple, while free memory remains, data access latency is
bounded by the speed of the memory hierarchy level into
which the active data set fits. But when physical mem-
ory is exhausted and paging to disk begins, average data
access latency increases dramatically.

3.2.2 Operating system structure

Operating system design and implementation also influ-
ence user-perceived latency. Even bleeding-edge hard-

ware can be sabotaged if it is exposed to users through a
poorly designed operating system abstraction. Long in-
put handling code paths, inefficient context switches, bad
scheduling decisions, and poor management of resource
contention can all contribute to increased latency.

3.2.3 User behavior

User behavior indirectly affects latency through hard-
ware resource limitations. Two classes of users run-
ning different application mixes will consume resources
at different per-user rates. As concurrent use increases,
the class of users with greater per-user resource demands
will approach saturation conditions and potential increas-
es in latency more quickly.

3.3 Applying our Approach

In the next three sections, we use these principles to
guide a quantitative comparison of TSE and Linux/X
Windows. Our analysis cuts along the axis of hard-
ware resources, as we consider the processor, memory
and the network in turn. For each resource, we consid-
er the impact of user behavior and how the exercise of
various applications generates load. Finally, we consid-
er how load translates into user-perceptible latency, and
how that translation is influenced by design character-
istics of the operating system. Using this analysis, we
highlight shortcomings in current operating system de-
sign with respect to thin client service, and suggest new
potential directions for operating systems optimization.
Some issues, such as network graphics and protocol ef-
ficiency, are unique to remote interactive access, while
others, such as process and memory scheduling, have
not been visited in the literature in quite some time but
are critical in establishing a high-performance, thin client
computing environment.

3.4 Experimental Testbed

Our testbed consisted of a server, a client, and a net-
work listening host connected by a Bay Networks Net-
Gear EN104TP 10Mbps Ethernet hub. The server was a
333MHz Intel Celeron system with the Intel 440EX AG-
Pset, 96MB SDRAM, a 4GB IDE IBM DCAA-34330
hard disk, and a Bay Networks NetGear FA-310 Ethernet
adapter. The client was an Intel Pentium II-400 with the
Intel 440BX AGPset, 128MB SDRAM, an 11GB IDE
Maxtor 91152D8 hard disk, and a 3Com 3C905B Ether-
net adapter. The listening host was an Intel Pentium-233
with the Intel 440TX PCIset, 96MB EDO RAM, a 2GB
IDE IBM DTNA-22160 hard disk, and a 3Com 3C589C
Ethernet adapter. The server ran, alternately, the Linux
2.0.36 kernel and build 419 of Windows NT, Terminal
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Figure 1: A comparison of the idle-state processor activity
over a 10 second period in NT Workstation, TSE, and Linux.

Server Edition. The client system ran Windows 98 as
its operating system and established remote access to the
server with build 419 of the TSE client and White Pine’s
eXodus X-Windows server version 5.6.4. The listening
host ran the 2.0.36 Linux kernel. All network adapters
were configured for 10Mbps half-duplex operation.

4 Processor

In this section, we examine the latency characteristics of
operating system processor abstractions in the context of
thin client service. We consider how user behavior gen-
erates processor load and then compare each operating
system’s ability to minimize the user-perceived latency
induced by varying levels of load.

4.1 From Behavior to Load

The addition of thin client support to an operating sys-
tem has a measurable effect on both its requirements and
characteristics with respect to latency.

When a system becomes multi-user (as NT did when
Microsoft introduced TSE), it bears the additional bur-
den of meeting human latency requirements for multi-
ple concurrent foreground applications versus just one
for single-user operation.

Support for multiple concurrent users produces addi-
tional system activity and potential latency increases for
user-level applications. Multi-user support typically in-
cludes at least one daemon process to listen for and han-
dle incoming session connections and additional per-user
kernel state and ownership information. Remote-access
support contributes yet more latency. Interface opera-
tions previously handled by just the graphics subsystem
must now also pass through the network subsystem.

4.1.1 Compulsory Load

These latency contributors, those that are inherent in
the operating system, are particularly important because
they are behavior-independent. Because multi-user and
remote-access support are core functionality required
for thin client service, all users, regardless of the ap-
plications they use, are subject to at least the minimum
latency induced by these components. Any calculation
of user-perceived latency must start by measuring this
baseline load, which we call “compulsory load.”

Methodology
Endo et al. introduced a novel methodology for measur-
ing user-perceived latency they describe as “measuring
lost time” [7]. Using a combination of the Pentium Per-
formance Counters and system idle loop instrumentation,
they are able to determine when, and for how long the
CPU is busy handling user input events. This yields a
method for measuring user-perceived latency with a pre-
cision not previously achieved.

Endo et al. employed this technique to generate a set
of idle system profiles for three versions of Windows:
95, NT 3.51, and NT 4.0. We use this data as a baseline
and use identical methodology to measure the idle
system profiles of TSE and Linux for comparison. We
discuss the significance of these idle-state profiles as it
bears on latency in section 4.2.1.

From Windows NT to TSE
As shown in Figure 1, TSE exhibits greater overall

idle-state CPU activity than NT does, demonstrating the
increase in compulsory latency caused by the changes
made to transform the NT kernel into the TSE kernel.
Although Microsoft documentation states that the typical
clock interval for NT 4.0 running on a Pentium processor
is 15ms, we found, as Endo et al. did, small regular CPU
spikes at 10ms intervals in both TSE and NT, suggesting
that the clock interrupts are handled every 10ms [5]. This
discrepancy is unexplained.

Beyond clock interrupt handling, TSE seems to
perform a number of other activities at regular intervals
that NT does not. These can be attributed to the addition
of the Terminal Service and Session Manager which



listen for and handle incoming client connections, and
whatever additional overhead there is in the idle-state
for per-session state management in the NT Virtual
Memory, Object, and Process Managers.

X Windows on Linux
Unlike TSE, Unix has long had multi-user and local and
remote graphical display capabilities courtesy of the X
Windows System. Unix operating systems can also run
in single-user mode, like NT, but seldom do, and usually
only for the purposes of crash diagnosis and recovery.

Figure 1 also shows idle-state CPU activity for the
Linux kernel running in multi-user mode. Clearly, the
Linux kernel spends much less CPU time handling tasks
when idle than do either NT or TSE. This contributes
less compulsory load, which, as we will see in the next
section, translates to less latency.

4.2 From Load to Latency

Next we discuss how system load translates to user-
perceived latency. We examine how both compulsory
and dynamic load can increase latency and how intel-
ligent operating system design decisions can minimize
those impacts.

4.2.1 Compulsory Latency

Figure 2 compares the cumulative latency of the three
systems (NT, TSE, and Linux) in the idle state. The bulk
of CPU activity under NT is attributable to events that
are 100ms or shorter in duration. The TSE idle state sees
these same events, plus a number of additional events
lasting 250ms and 400ms. Linux, contrastingly, sees few
idle events of significant latency. In the aggregate, TSE
generates about three times the idle-state load that NT
Workstation does, and about seven times that of Linux.

Even when the systems are idle, any user input activi-
ty that intersects with these events will experience delay.
The scheduler design determines just how much delay
there must be. In particular, the quantum (NT parlance
for time-slice) is often manipulated to adjust the respon-
siveness of a system, but we find that the choice of quan-
tum length is something of a “latency catch-22.”

Consider a round-robin scheduler and several non-
blocking, ready-to-run threads with equal priority. The
longer the quantum, the longer some thread three or four
deep in the queue will have to wait until it can run.
In contrast, if the quantum is made shorter, this inter-
quantum waiting is reduced, but the full, run-to-block ex-
ecution time of each thread becomes fragmented across
more distinct quanta. If there are a large number of
threads in the ready queue, then this problem of execu-
tion fragmentation can easily overwhelm the benefits of
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Figure 2: Idle-state profiles of the NT Workstation, TSE, and
Linux kernels. The profiles are displayed as cumulative laten-
cy histograms. Large changes in the y-axis values indicate a
significant contribution to overall latency by the events at the
corresponding x-coordinate.

shorter quanta.
Consider a user operation that takes 100ms to com-

plete with no other competing activity. Scheduler quanta
on systems like NT and Linux are on the order of 10ms,
meaning this operation is fragmented into as many
as 10 quanta. If the system is busy with background
processing, the original 100ms completion time can be
extended considerably. While dynamic priority boosting
for GUI-related and foreground threads may help alle-
viate this problem, it does not help when the competing
threads are also foreground and/or GUI-related, as we
would often find on a thin client server. Next, we discuss
how effectively the TSE and Linux schedulers deal with
this problem. For the following discussion, note that
greater numeric priorities are better on NT and TSE,
while lower are better on Unix systems.

NT and TSE Scheduling
The NT and TSE kernels share the same scheduling

code and differ only in their default priority assignments
for processes and threads. NT Workstation and TSE
both have a 30ms quantum on Intel Pentiums and higher.
While TSE is based more directly on NT Server, which
has a 180ms quantum, it uses the 30ms quantum found
in NT Workstation, ostensibly to improve interactive re-
sponsiveness. The default priority level for foreground
threads is 9 and for other threads it is 8.

The NT/TSE scheduler implements two mechanism-
s to further improve user interaction. The first, “quan-
tum stretching,” allows the system administrator to mul-
tiply the quantum for all foreground threads. The al-
lowed stretch factors are one, two, and three. The sec-
ond mechanism is “priority boosting” for waiting GUI
threads. GUI threads associated with an interactive ses-
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Figure 3: User-perceived keystroke handling latency as a func-
tion of server CPU load. Linux/X scales more gracefully than
does TSE. TSE became unusable at a load of 15.

sion get their priority boosted to level 15 after waking
up to service a user input event. This boost lasts for two
quanta.

In TSE, the Session Manager and Terminal Service
have a priority of 13. So, if the idle activity we saw
in TSE is associated with these processes, GUI thread
priority boosting should theoretically prevent this back-
ground activity from increasing user-visible latency since
the boosted priority for the GUI thread is higher than
that of the idle activity (15 vs. 13). However, the boost
lasts for only two quanta, and even assuming they are
stretched by three, this boost benefits the GUI thread for
at most 180ms. After these 180ms, a GUI thread’s prior-
ity drops back to 9, and cannot run again until all priority
13 threads yield or block. In the previous section, we saw
idle-state events in TSE of up to 400ms. If a GUI thread
intersects with such an event, its completion time would
be extended by 400ms in spite of the scheduler’s help.

When the system is dominated by foreground activity,
a likely scenario on a thin client server hosting a large
number of concurrent users, priority boosting provides
no benefit for foreground threads with respect to one an-
other. In this case, GUI threads can run for at most 90ms
before being pre-empted by other threads in the queue.

The lesson here is that quantum stretching and pri-
ority boosting can only eliminate latency when the net
boosted-priority “grace period” is long enough to com-
plete the interactive operation. In the case of NT and
TSE, this threshold is 180ms when competing with back-
ground activity, and 90ms when competing with other
foreground activity.

How do these thresholds compare with typical inter-
action completion times? Endo et al. report that the ma-
jority of interactive events last between 30 to 45ms for
Microsoft Notepad, 60 to 250ms for Microsoft Power-
point, and 50 to 100ms for Microsoft Word. They also
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tion of server CPU load. As with average latency, jitter is less
noticeable on Linux/X than on TSE.

report a 500ms completion time for the window maxi-
mize operation. We highlight this operation because it
is representative of user interface elements meant to “en-
hance” the user experience, but are designed with fast,
local, desktop systems in mind instead of thin client en-
vironments.

Note that Endo et al.’s values were collected on a
100Mhz Pentium machine, so these completion times
are likely to be on the order of 5 to 10 times faster on
today’s processors. Nevertheless, continuing increases in
user interface complexity, marked by more sophisticated
graphics and the introduction of animated elements,
makes such thresholds a continuing concern.

Linux Scheduling
The Linux kernel supports FIFO, round robin, and oth-

er scheduling classes, with priority values between -20
and +20 in each class. Most processes run in the round
robin class with a quantum of 10ms. There is no pro-
vision for changing the quantum length and no facility
for automatic priority boosting on GUI-related or fore-
ground processes. The first implication of this design is
that any user input event that is greater than 10ms, which
is a fairly low threshold, risks being fragmented across
quanta. In a high load scenario, this can increase laten-
cy for that event considerably. And because the quantum
is so small, the level of fragmentation is greater than in
TSE.

Moreover, Linux provides no help for interactive pro-
cesses. NT and TSE can easily target and boost fore-
ground threads because of the tight integration of the
graphics subsystem into the kernel. However, X Win-
dows is a user-level graphics subsystem and there is no
well-defined method for passing GUI-related informa-
tion into the kernel.

But in 1993, Evans et al. of SunSoft did exactly that



when optimizing the System V, R4 scheduler for interac-
tivity [8]. Their approach traded a clean user-level/kernel
separation for scheduler access to application-level infor-
mation on process interactivity. They showed that in a
control system running the SVR4 kernel, keystroke han-
dling latency increases as the scheduler queue length (or
load) grows because there is no provision for protect-
ing interactive processes from CPU-intensive processes.
Then they demonstrated a prototype SVR4 kernel mod-
ified with an interactive scheduler for which keystroke
handling latency remains constant and small, even as
load approaches 20.

In spite of this work, years later no Unix-like kernels
implement such improvements, probably due to the
separation between kernel development and user-level
X Windows development. Although the modifications
made by Evans et al. should be readily adaptable to the
Linux and BSD kernels, such an implementation faces
several challenges. First, user-applications must be mod-
ified in order to take advantage of priority boosting.
Kernel modifications and new system calls do not ben-
efit existing X applications. Furthermore, because GUI
services are provided by the user-level Xlib library and
not the kernel, the kernel has no straightforward way of
preventing arbitrary processes and threads from claim-
ing they are GUI-related even when they are not. This
challenge represents an opportunity for further research
stemming from this work.

4.2.2 Dynamic Latency

If scheduler deftness is important in minimizing com-
pulsory latency, it is even more critical in the dynamic
case when the processor is heavily loaded and many
threads are queued, ready to run. Our experiments show
that both TSE and Linux perform poorly when compared
to Evans et al.’s modified SVR4, and surprisingly, TSE
performs much more poorly than does Linux, despite
its mechanisms for favoring interactive foreground
processes.

Methodology
We wrote a simple C program called sink that is a greedy
consumer of CPU cycles. Since sink never voluntarily
yields the processor, each running instance should in-
crease the scheduler queue length by one. We used this
program to control the load level on the server.

At varying levels of load, we ran a simple text editing
application at the client. Under TSE it was Notepad and
under X Windows vim. The tester held down a key in
the application to engage character repeat on the client
machine, the rate of which was set at 20Hz.

Under no load, we expect the server to respond ev-
ery 50ms with a screen update message to draw a new

character. We measured message inter-arrival times by
examining the timestamps on the corresponding network
packets using tcpdump. Under increasing load, we ex-
pect some or all of these inter-arrival times to rise above
50ms as the server handles other computations. We call
each instance of this an “interactive stall,” with the length
of the stall defined as the inter-arrival time minus 50ms.
A stall is therefore the duration of time when the serv-
er’s processor was occupied with other tasks and the user
therefore ended up waiting.

For each load level we recorded message inter-arrival
times for 60 seconds and report the average.

Results

With no load on the server, both kernels performed as ex-
pected, sending a message to the client every 50ms. But
figures 3 and 4 show that as the number of sink processes
increased, so too did the length and variability of stalls.
The relationship between load and latency exhibited by
TSE and Linux are still similar to that of the 1993 vintage
SVR4 scheduler.

TSE exhibits poor behavior, with latency increasing
sharply around 10 load units. The data for TSE stops
at 15 load units because at that point the system became
barely usable at the console. These TSE results are in-
explicable without access to NT source code. Linux, on
the other hand, while still not protecting interactive pro-
cesses properly, handles increasing load with more grace,
with latency increasing linearly but more slowly with re-
spect to load. This confirms the expectations based on
our analysis of the scheduler.

These levels of latency and jitter are quite high and
certainly well within the range of human perception.
Subjectively, these interactive stalls felt like irregular
“hiccups” in the system. That is, while some keystrokes
would generate immediate character echo, the echo for
other keystrokes was delayed by up to one second in ex-
treme cases. The inconsistency of these stalls, or latency
jitter, further contributed to an unsatisfying user experi-
ence.

5 Memory

In this section, we examine memory consumption and
memory induced latency in a thin client context. First,
we consider how varying user behavior consumes mem-
ory at different rates. Second, we consider the latency
consequences of increasing memory usage on the server.



5.1 From Behavior to Load

5.1.1 Compulsory Load

Compulsory memory load has two components. The first
is the dynamic memory usage of the kernel and the user-
level services necessary to support graphical, multi-user,
remote login. This is simply the amount of memory that
is unavailable to user applications when the system is idle
with no user sessions. In our configuration, memory load
in this state was roughly comparable between the two
systems, 17MB for Linux and 19MB for TSE.

The second component is the memory usage of
each user session. This usage is governed by what is
considered to be a minimal login with no additional
user activity. The following tables list the processes
associated with minimal logins for each system. For
each process, we conservatively give the amount of
private, per-user memory consumption, excluding any
amortized shared code page costs for executable text or
mapped, shareable memory.

Process Typical

in.rshd 204 KB
xterm 372 KB
bash 176 KB

Total 752 KB

a. Linux/X

The in.rshd is a daemon process that accepts and pro-
cesses client session initiation requests. It is somewhat
analogous to the Terminal Service in TSE. xterm is the X-
enabled application that draws a graphical terminal win-
dow to the client’s screen. bash is the shell that gives the
user access to operating system services and allows other
processes to be launched.

Process Typical Light

explorer.exe command.com
(shell) 1,368 KB 224 KB
csrss.exe 452 KB 452 KB
nddeagnt.exe 300 KB 300 KB
winlogon.exe 700 KB 700 KB

Total 2,820 KB 1,676 KB

b. NT TSE

csrss.exe is the subsystem that provides Win32 API
services, nddeagnt.exe provides network dynamic data
exchange (DDE) services, and winlogon.exe manages in-
teractive user logons and logoffs.

In fairness, explorer.exe does offer a fully featured
graphical file navigation and program launching inter-
face while bash does not. We should note that TSE

clients have the option of dispensing with the Explor-
er and running just a specific application in a user ses-
sion (but it cannot be empty). This admits the possibility
of using a lighter alternative more comparable to bash.
The DOS Prompt (command.com), for example, requires
only 224KB of private, unshared memory, bringing the
minimum compulsory memory load per-user for TSE
down to 1,676KB.

5.1.2 Dynamic Load

Dynamic load is the memory utilization due to user be-
havior above and beyond the simple act of logging in-
to the system. This issue is no different for thin client
servers than for other types of operating systems. As-
suming that the operating system supports code page
sharing, the smaller the set of active applications and the
smaller their user-specific stack and heap areas, the lower
the dynamic memory load.

Of the three hardware resources discussed in this pa-
per, memory is the most difficult for which to make gen-
eralizing comments regarding load. Memory utilization
is highly dependent upon the applications used.

5.2 From Load to Latency

The latency consequences of increasing memory utiliza-
tion are well-known. As the active data set of a system
exceeds the size of each level of the memory hierarchy,
average data access latency increases roughly in steps
[2].

The two most dramatic steps occur when the data set
falls out of the cache and into main memory and when
it falls out of main memory onto disk. Processes run-
ning on thin client system are by no means restricted to
being interactive programs. In fact, multi-user systems
like Unix are often used to run backgrounded compute
or memory intensive jobs while the owner attends to oth-
er tasks.

As we saw in Section 4, poor resource scheduling of
the processor can allow such greedy processes to severe-
ly impact perceived latency for interactive users. Like-
wise, poor resource management for memory can do the
same. As observed by Evans et al., certain types of non-
interactive, streaming memory jobs will typically force
all other non-active processes to be paged to disk. They
give as examples large data copies over NFS, creation
of large temporary files in /tmp, and various stages of
program compilation.

This behavior can be particularly damaging to inter-
activity in the following scenario. An interactive user
may load a document into an application but then stop
interacting with it for several minutes while he reads the
document on-screen. During this time, a non-interactive



process on the same server with high page demand may
force his application out to disk. When he goes to scroll
down, there will be significant lag as his process is paged
back into memory. We next demonstrate that TSE and
Linux both perform poorly in this scenario.

In our tests, we opened a simple text editing appli-
cation remotely. In Windows we used Notepad and in
Linux vim. We then started on the server a process that
touches enough memory to force pages of the edit appli-
cation’s memory to be swapped to disk. Then we input
a single keystroke and measured the time it took for the
server to respond with a screen update. As we saw in
an earlier experiment, the response should come in less
than 50ms. However, because the application’s memory
must be paged back from disk, significant latency is in-
troduced. We report ranges and averages over ten runs
for each operating system:

Process Pages
OS In-Memory Paged Out

Linux
min 50ms 330ms
avg 50ms 1,170ms
max 50ms 3,000ms

TSE
min 50ms 2,430ms
avg 50ms 4,026ms
max 50ms 11,850ms

These values are quite high and well into the range of
perceptible latency. The latencies generated in TSE av-
erage about 40 times the threshold of human perception,
while in Linux they average 11 times this limit.

Frequent paging of semi-active processes like we de-
scribe here indicates that the server has insufficient mem-
ory. A simple solution, of course, is to add more mem-
ory. Nevertheless, operating system mechanisms that
mask scarcity-induced latency still provide at least two
non-trivial benefits. First, a system that protects the
pages of interactive processes is capable of hosting non-
interactive batch jobs that have arbitrary memory re-
quirements. A system without this protection cannot host
such jobs without drastically degrading interactive per-
formance. Second, paging protection guards against dis-
ruptive delays during spikes in memory utilization that
are transient and do not warrant permanent additional re-
sources.

Evans et al. also demonstrated in their prototype kernel
a solution to this problem, which is non-interactive pro-
cess throttling in high load situations. They demonstrat-
ed that their SVR4 kernel modified with throttling elimi-
nated this pathology. The modifications they made could
be adapted to today’s TSE, Linux, and BSD kernels. But
as with the scheduling modifications, the task would be
easier in TSE than in Linux and BSD because the Unix-
/X platforms must rely on user-level applications to pro-

vide information about which threads and processes are
latency-sensitive.

6 Network

In this section, we consider the impact of the network on
latency and the role therein of operating system abstrac-
tions for display and input service.

First, we consider how user behavior generates net-
work load. We compare the ability of RDP, X, and LBX
to minimize network traffic for any given user behavior.
The comparison includes a typical application workload,
and an examination of the impact of trends in user in-
terface design, particularly the growing usage of anima-
tion. Second, we discuss how network load translates to
user-perceived latency, underscoring the importance of
network protocol efficiency.

To simplify our discussion, we first define two terms.
Let a “channel” simply be a directed stream of network
messages between the client and server. We call the
stream from the server to the client the display channel
because it carries messages instructing the client to dis-
play application interface elements. The stream from the
client to the server we call the input channel because it
carries keystroke and mouse input information to the ap-
plication.

6.1 From Behavior to Load

Thin client servers export user interfaces over network
links to remote users. Therefore, load generated on the
network resource depends heavily on the design and im-
plementation of the user interfaces of the applications be-
ing run remotely.

Perhaps the most visible user application trend over
recent years has been the increasing richness and sophis-
tication of graphical interfaces. As a result, the typical
user behavior in a thin client environment is becoming
increasingly network intensive.

One of the strengths of TSE’s design is that it allows
existing Windows applications to run unmodified in a
remote access environment. In fact, TSE would not be
commercially viable if users could not use the same ap-
plications on which they currently rely. However, Win-
dows software developers have typically designed their
interfaces assuming fast, local graphics acceleration and
therefore many applications that will be run on TSE will
potentially consume unfriendly amounts of bandwidth.

Likewise, applications written for the X environment
are growing more like modern Windows applications in
their appearance and functionality, particularly with Lin-
ux’s growing popularity on the desktop. In the following
subsections, we investigate the network loads generated
by typical modern graphical applications.



6.1.1 Compulsory Load

Compulsory network load includes both the quantity of
bytes exchanged between the client and the server for
session negotiation and initialization, and any network
traffic that is exchanged after session setup but while the
user is idle.

Session setup costs in our configurations were 45,328
bytes and 16,312 bytes for TSE and Linux/X, respective-
ly. These costs are rare and ephemeral, and are typically
not major contributors to latency. In terms of idle load,
neither system requires data to be exchanged when no
user activity is present. So compulsory load is a relative
non-issue with the network on these two systems. The
real contributor to latency is dynamic load generated by
application usage, which we discuss next.

6.1.2 Dynamic Load

To gain a broad understanding of the relative perfor-
mance of RDP, X, and LBX, we compared their behav-
ior on a typical application workload. Thanks to the
growth in popularity of Linux, we were able to develop
a workload with cross-platform applications that run on
Windows and Linux/X. These were Corel WordPerfect, a
word processor, the Gimp, an open-source photo-editing
package, and Netscape Navigator, a web browser.

For each network protocol, we performed a predefined
set of user interactions: editing a WordPerfect document,
creating a simple bitmap with the Gimp, and surfing sev-
eral websites with Netscape. We collected data during
these trials using prototap, our own protocol tracing soft-
ware based on the tcpdump pcap packet sniffing library.

The following table shows byte and message counts
for each channel and for each protocol. We also report
the average message size for each protocol.

RDP LBX X

Bytes
input 196,343 1,478,341 2,749,328
display 2,049,132 8,137,445 14,183,842
total 2,245,475 9,615,786 16,933,170

Msgs
input 1,155 18,888 19,345
display 2,422 74,618 20,797
total 3,577 93,506 40,142

Avg. msg size 627.75 102.84 421.83

RDP is clearly the most efficient protocol, generating
less than 25% of the byte traffic of LBX and less than
15% of X. This is due in large part to the the small num-
ber of messages it sends relative to X and LBX. However,
RDP also has the largest average message size, suggest-
ing that RDP messages encode a higher level of graphics
semantics than do those of X and LBX. The message size

advantage of LBX over X is due to message compres-
sion. Note that this savings comes at the expense of a
133% increase in display message count over X. This,
however, does not seem to adversely affect the overall
performance of LBX.

The average message size among the three protocols
is just 209 bytes, which is much smaller than the inter-
face MTU on our systems (1500 bytes). For such small
messages, the overhead imposed even by just 20 byte
IP headers is significant. In non-routed deployment en-
vironments, a scheme like the x-kernel virtual-IP (VIP)
network stack could reduce overhead by omitting the IP
header [11]. The following table gives the potential byte
savings of omitting the IP header.

RDP X LBX

Normal Bytes 2,245,475 16,933,170 9,615,786
Bytes w/ VIP 2,169,435 16,096,790 7,745,666
Savings 3.38% 4.94% 19.45%

Because LBX has the smallest average message size, it
stands to benefit most from a VIP-like scheme. However,
even with this VIP optimization, LBX would still be less
than half as efficient than RDP.

6.1.3 Animations

As discussed earlier, application interfaces have steadily
grown more sophisticated and active. In particular, we
observe an increasing use of animation in user interface
design.

Animation is often employed to improve the user
experience by creating the illusion of reduced latency
through visual contiguity. Ironically, the use of smooth
and effective animation in a thin client environment can
produce considerable network load, yielding, on balance,
a negative impact on user-perceived latency. Moreover,
animations often run asynchronously of user interaction,
meaning that their activity is not limited by the rate of
user events such as keystrokes or mouse movements.

Simple animations like blinking cursors and progress
bars generate a harmless amount of traffic, generally less
than 10KBps for short durations. Other types of anima-
tion, however, can be quite costly. In particular, today’s
web pages are replete with animated GIF advertisements
and Java and HTML based stock and news tickers. The
remote display of the MSNBC homepage produces sus-
tained average network loads well in excess of 1Mbps on
RDP, X, and LBX.

Such levels of network activity make multi-user ser-
vice over 10Mbps Ethernet unfeasible. If just five users
open their browsers to a page like this, the network link
becomes saturated. Although many administrators of
interface service environments may, by policy, prohibit
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Figure 5: Network load generated by displaying a 100 by
100 pixel, 10-frame, 20Hz animated GIF in Netscape Navigator
over X, LBX, and RDP.

the use of web browsers or enforce the disabling of
webpage animations, this remains an important issue to
consider when developing a “realistic” behavior profile
for a user base. 100Mbps of faster Ethernet connectivity
is virtually required to support this type of user behavior.

Taming Animation: Bitmap Caching
While on the animation-intensive MSNBC page all the
protocols perform similarly, on a less intensive synthetic
page, RDP significantly outperforms LBX and X.

Figure 5 shows the network load for displaying on
Netscape a synthetic animated GIF. The animation is a
100 by 100 pixel rotating MSNBC logo that has 10 to-
tal frames and runs at 20 frames per second. Under L-
BX, bandwidth utilization is 0.8Mbps, while under X it
is 2.0Mbps, and under RDP just 0.01Mbps.

This disparity between RDP and the X-based
protocols suggests the presence of a client-side bitmap
cache in TSE large enough to store all the frames of the
synthetic animation. But for the animations on the more
intensive MSNBC page, their competing frames over-
flow the cache such that each miss generates a full bitmap
transfer over the network. When the frames do fit into the
cache, we presume that display data not need to be trans-
ferred, so that only small “swap bitmap” messages are
exchanged.

Indeed, according to Microsoft’s product literature,
the TSE client reserves, by default, 1.5MB of memory
for a bitmap cache using an LRU eviction policy [5]. The
cache is typically used to store icons, button images, and
glyphs. Storing these items can be especially bandwidth
effective since users often spend much of their time in
just a few applications each with a finite number of icons
and images.

X, and consequently LBX, does not support bitmap
caching, and the consequences are clearly shown in Fig-
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Figure 6: CPU utilization and bitmap cache hit ratio for a 66-
frame animation that overflows the bitmap cache. The CPU
hovers around 10% utilization. The hit ratio starts at 75% due
to cache hits on screen elements displayed before the beginning
of the test. During the test, the oversize animation overflows the
cache, preventing any hits, and resulting in an asymptotically
declining cumulative cache hit ratio.

ure 5. If there were a cache of any appreciable size
(which there is not) it is not being used. Each frame of
the animation requires the full bitmap to be transferred
across the network.

The difference in performance between RDP and
X/LBX again reinforces the importance of considering
the design and implementation of the operating system
abstractions for hardware resources. The inclusion of a
bitmap cache in TSE’s abstraction for display and input
allows it to handle behavior that includes animation
with much less load. That, in turn, means that TSE can
support more concurrent users with this behavior before
exhibiting noticeable latency.

Cache Effectiveness and CPU Load
The effectiveness of the cache is not only critical to re-
ducing network load, but also processor load at the serv-
er. In these tests, we used the Session object in the Mi-
crosoft Performance Monitor to measure the various met-
rics associated with the client-side bitmap cache.

Figure 6 shows the effect on CPU Utilization and
Bitmap Cache Hit Ratio of a 66-frame animation that
overflows the cache. The CPU Utilization starts at
around 10% as it transmits frames for the first time.
However, it never falls, because the server must continue
to send the frames that fall out of the cache just before
being needed, which is all of them. The Cache Hit
Ratio which is cumulative, begins around 70%, and falls
asymptotically toward zero with each subsequent miss.

Cache Pathology
However, bitmap caching has its limitations. Loop-
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and every frame must be transferred over the wire, generating
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ing animations defeat LRU bitmap caches in the same
way that sequential byte range accesses defeat LRU disk
caches, which is a well-known phenomenon in file sys-
tems research [15].

To demonstrate, we created a series of animations
whose frame counts range from 25 to 100. Figure 7
shows that for values 25 through 65, bandwidth utiliza-
tion is 0.01Mbps, but for all values above 65, bandwidth
utilization is 0.96Mbps.

Clearly, while LRU may be the appropriate eviction
scheme for typical usage, it is exactly the wrong scheme
for handling looping animations. A more intelligent
scheme capable of dealing with such animations might
somehow detect loop patterns and adjust its eviction be-
havior accordingly.

X Windows could certainly benefit from the in-
troduction of client-side bitmap caching, and even
TSE could benefit from a larger cache. Even though
Microsoft claims that “testing has found that 1.5 MB is
the optimal cache size,” our results show that modest
amounts of interface animation can render a cache of
this size useless [5]. When available, additional memory
should be allocated to enlarge the bitmap cache. As
a rule of thumb, a 256-color, 468 by 60 pixel banner
advertisement with 10 seconds of 20 frame per second
animation requires about 5.6 MB of memory to cache
the entire animation. This figure does not account for
any compression that is possible on the frames, and
so serves as an upper bound for this amount of animation.
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Figure 8: Latency increases above human-perceptible levels
as the network fabric approaches saturation.
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Figure 9: Jitter also increases considerably as the network fab-
ric approaches saturation.

6.2 From Load to Latency

We have just shown how various user behaviors generate
network load. The next step in the framework is mapping
network load levels to user-perceived latency.

To investigate this relationship, we produced synthetic
TCP/IP network load on our experimental testbed. The
load was generated by two simple C programs that estab-
lish a TCP connection and send and receive random data
at various rates. Figures 8 and 9 show the effect of load
on network latency and jitter. For each load level, we ran
ping for 60 seconds and took the average and variance in
round-trip time (RTT) for all packets sent. We used the
default packet size in ping, which is 64 bytes. 64 bytes is
roughly the size of a typical input channel message, such
as a keystroke. Therefore, the latencies we observe here
give a realistic lower-bound for latencies that would be
observed by a user.

Figure 9 shows that while the network is not saturated,
RTT remains low and almost perfectly consistent. How-
ever, as the network nears saturation, performance suffer-



s dramatically. The 55ms delay induced at 9.6Mbps load
is considerable with respect to known levels of human
latency tolerance [7]. The inconsistency of the latency, a
phenomenon known as jitter, only compounds the nega-
tive impact of network saturation.

7 Related Work

There is relatively little other work directly relevant to
our broad discussion of operating system design impact
on thin client performance. What there is, we now dis-
cuss and analyze in light of our approach and findings.

Endo et al. and Evans et al. have emphasized the im-
portance of latency, and were discussed in detail in Sec-
tions 4 and 5.

Danskin published several papers on profiling the X
protocol [6]. His work, in terms of our framework,
focused primarily on determining the load generated
by typical applications of his day. While the typi-
cal X behavior profile has changed considerably since
then, his methodology provides the inspiration for our
prototap tool. Danskin also did work on characterizing
application-specific idioms used on the display channel.
Finally, he came to the same conclusion as we did that
small message size makes TCP/IP an inefficient network
substrate for protocols like RDP, X, and LBX.

Schmidt et al. introduced a new thin client wire pro-
tocol called SLIM, which is embodied in the Sun Mi-
crosystems SunRay product [19]. While SLIM has the
advantage of being more platform independent than X
or RDP, their results show it to be roughly equivalent in
performance to X, placing it still behind RDP and LBX
in network load efficiency. Their paper also touches up-
on the issue of latency induced by server-side resource
contention, but omits analysis of how the server-side op-
erating system can be tuned to reduce latency. We con-
tend that in the long view, network protocol efficiency
is just one piece of a high-performance, low-latency thin
client user experience. VNC, from AT&T Laboratories
Cambridge, is another network protocol that is similar to
SLIM [16].

Sirer et al. describe an architecture for extruding the
components of a virtual machine over multiple hosts in a
network [22]. Their work further emphasizes the benefits
of factoring system services out of clients and onto net-
work servers. Their DVM architecture differs from what
are colloquially called thin client architectures in that it
draws the line where the network is spliced in a different
place, factoring out services such as verification, secu-
rity enforcement, compilation and optimization, but not
execution. Moreover, their work emphasizes throughput
and not user interaction latency, and focuses more on the
network bandwidth impact of code transfers rather than
user interface input and display traffic.

On the performance of TSE, the only documents we
have been able to find are server sizing white papers pub-
lished by Microsoft and various hardware vendors who
market TSE servers [14, 10, 3]. These white papers are
remarkably similar, defining typical user profiles and re-
porting the load generated by these profiles. They uni-
formly ignore, however, the issue of user-perceived la-
tency. We also believe the network load characteriza-
tions in these papers are overly optimistic, ignoring the
increasingly dynamic and rich nature of user interfaces.

8 Conclusion

Latency is the paramount performance criterion for op-
erating system support for thin client service, or interac-
tive, graphical, multi-user, remote access.

We have presented an approach for evaluating thin
client environments which is founded on latency and
highlights important issues relevant to thin client per-
formance. These include the influence of user-specific
behavior, the translation of that behavior into resource
load, the importance of operating system abstraction im-
plementation therein, and the translation of resource load
into user-perceived latency.

This approach guided our resource-by-resource com-
parison of TSE and X Windows on Linux, two popular
implementations of thin client services. Our investiga-
tion reveals that resource scheduling for both the proces-
sor and memory in these systems is not well optimized
for heavy, concurrent, interactive use. In common cas-
es of resource saturation, both latency and jitter rise well
above human-perceptible levels. We also performed a
detailed comparison of the RDP, X, and LBX protocols
and found that RDP is generally more efficient in terms
of network load, particularly in handling animated user
interface elements.
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