
New NFS Tracing Tools and
Techniques for System Analysis

Daniel Ellard and Margo Seltzer – Harvard University

ABSTRACT

Passive NFS traces provide an easy and unobtrusive way to measure, analyze, and gain an
understanding of an NFS workload. Historically, such traces have been used primarily by file
system researchers in an attempt to understand, categorize, and generalize file system workloads.
However, because such traces provide a wealth of detailed information about how a specific
system is actually used, they should also be of interest to system administrators. We introduce a
new open-source toolkit for passively gathering and summarizing NFS traces and show how to use
this toolkit to perform analyses that are difficult or impossible with existing tools.

Introduction

The purpose of most passive NFS tracing
research tools is to discover and investigate workload
characteristics that can be exploited by the operating
system. The goals of the tools and methods described
in this paper are quite different – we wish to use pas-
sive NFS trace analysis to help system administrators
understand the workload on their systems, identify
latent performance issues, and diagnose specific prob-
lems. For example, file system researchers might be
content to know that on a particular system most of
the reads come from a small number of large files, but
the administrators of that system might also want to
know the names of those files. If the system becomes
swamped with requests for those files, the administra-
tors might also want to identify the owner of the files
and the users responsible for the requests so that those
users can be consulted.

There already exist a number of tools that make
it possible to quantify many aspects of NFS traffic,
and system administrators have devised ways to use
these tools in order to identify and debug common
problems [17]. Unfortunately, most of these tech-
niques are limited in their ability to analyze the activi-
ties of specific clients and users. Furthermore, they are
tailored to solving specific problems and are difficult
to use as a way to explore the wealth of information
that can be gleaned from NFS traces.

In this paper, we describe nfsdump and nfsscan,
a pair of tools that provide a framework for gathering
and analyzing NFS traces in a general and extensible
manner. nfsdump collects NFS traces, while nfsscan
scans through the traces gathered by nfsdump and cre-
ates a set of summary tables that can be analyzed by
simple scripts or imported into a spreadsheet or other
data analysis tool for further processing. In addition to
nfsdump and nfsscan, we describe ns_timeagg,
ns_split, and ns_quickview, three applications that
simplify manipulation of the tables created by nfsscan.

The advantage of decoupling the process of gather-
ing traces from trace analysis is that the same traces can

be analyzed several ways and at different time scales. It
also means that there is a clear interface between these
tools and that they can be used independently. For exam-
ple, we have written several other programs to analyze
the output of nfsdump and used them in our own studies
of NFS workloads and usage patterns [6, 7].

Another advantage of the separation of the gathering
and analysis of traces is that the data may be anonymized
before analysis. The nfsdump toolkit includes an
anonymizing postprocessor that anonymizes the client and
server IP addresses, user and group ID numbers, and file
names. All of the data presented in this paper have been
anonymized so that they may be made public. In ordinary
use by system administrators, however, this anonymiza-
tion step would be omitted so that specific and potentially
useful identifying information about users, groups, client
hosts, and file names is preserved.

The rest of this paper is organized as follows:
• A discussion of related work and other tools for

NFS analysis
• An overview of nfsdump and nfsscan
• A description of the systems used in our exam-

ple analyses and case studies
• Basic analyses using nfsscan
• Case studies
• A discussion of the limits of passive tracing and

how to augment nfsdump/nfsscan with active
methods

• Conclusion

Related Work

NFS1 trace analysis has a long and rich history as
a tool for file system research. Because of this, most of
the work in passive NFS trace analysis has focused on
research topics such as characterizing workloads and
investigating the effects of client-side caching [5, 15].

1In the context of this paper, NFS refers only to NFS ver-
sion 2 protocol [14] and the NFS version 3 protocol [2]. nfs-
dump and nfsscan do not support version 4 of the NFS pro-
tocol [13, 16] or any variants of NFSv2 and NFSv3, al-
though our tools may be extended to handle these protocols.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 75



New NFS Tracing Tools and Techniques for System Analysis Ellard & Seltzer

Matthew Blaze introduced several techniques for
inferring the client workload from an NFS trace and
implemented these techniques in rpcspy and nfstrace
[1]. Andrew Moore gives a survey of these and other
techniques and contrasts the analysis of file system
workloads via passive network monitoring and direct
kernel-level traces [12]. This work shows that passive
NFS tracing reveals useful and accurate information
about many aspects of an NFS workload.

There already exist many tools for gathering NFS
traces or summary information about NFS activity.
Basic tools like nfsstat(1M), iostat(1M), and nfswatch [4]
provide aggregate statistics about NFS traffic. For many
diagnostic purposes, these statistics suffice. Specialized
tools such as nfstrace and the NFS Logging System [18]
focus entirely on NFS. General-purpose network proto-
col monitors, such as tcpdump [11], ethereal [3], rpcspy
[1], and snoop [19] can be used to analyze NFS traffic
and other system activity. Most of these tools contain
code to decode and print detailed information about
NFS calls and responses, and therefore general-purpose
tools like tcpdump have replaced special-purpose NFS
monitors in many contexts.

In terms of general capability, our system most
closely resembles nfswatch and the NFS logging/nfs-
logd system provided with Solaris. In comparison to
nfswatch, nfsdump/nfsscan is more flexible because it
runs on more platforms and captures more information
– nfsscan can gather any combination of per-user, per-
group, per-client, per-file, and per-directory informa-
tion, while nfswatch gathers either per-user or per-
client information.

In contrast to the NFS logging system and nfslogd,
our system is completely passive, can run on a separate
host instead of running on the server, and is portable
across a range of platforms instead of being tied to
Solaris. A shortcoming of nfsdump/nfsscan is that it
does not attempt to reconstruct an application-level trace
of the NFS activity in the same manner as nfslogd, but
this capability could be added as a postprocess to the
output of nfsdump (much as nfslogd postprocesses the
records created by the NFS Logging System).

The Toolkit

Our toolkit consists primarily of a pair of tools,
nfsdump and nfsscan. nfsdump collects NFS traces,
while nfsscan takes those traces and generates sum-
mary tables useful for further analyses. In addition, we
bundle three analysis applications in our toolkit –
ns_timeagg, ns_split, and ns_quickview – which post-
process the nfsscan summary tables.

nfsdump
Our tracing system, nfsdump, is similar to nfs-

trace or tcpdump in general philosophy, but captures
more information than either, and, unlike tcpdump,
only decodes the NFS protocol. Like tcpdump, the
output of nfsdump is human-readable text. nfsdump

uses libpcap [10], the same packet-capture library as
tcpdump, and has the ability to read and write raw
packet files in the same format as tcpdump or any
other tool that uses this format.

The most important functional differences between
nfsdump and earlier tools are that nfsdump captures the
effective UID and GID of each call, and properly
decodes RPC over TCP (even with jumbo frames).

nfsscan

The first step of our analysis system, nfsscan,
writes its data in a format designed to be easy to parse
and interface with other tools. This is in contrast with
most other tracing tools, which often generate output in
an irregular, difficult to parse, or undocumented format
– for example, tcpdump 3.7.2 prints file offsets for read
and write operations in hexadecimal for NFSv3 requests
and decimal for NFSv2 requests, but does not print
whether the request is NFSv2 or NFSv3.

The output of nfsscan consists of one or more
distinct tables (depending on how nfsscan is invoked).
These tables can be analyzed by simple scripts or
imported into a spreadsheet, database, or other data
analysis tool for further processing. These tables
include the following information:

• The total number of NFS operations and the
number of times each NFS operation is called
during each analysis period. The default analysis
period is five minutes, but a different analysis
period may be specified on the command line.

• The average latency of each type of NFS operation.
• A map of the file system hierarchy, and infor-

mation about each file accessed.
The file system hierarchy is inferred from the
results of lookup, create, mkdir, rename,
remove, and link calls. Information about each
file is gathered from the responses to getattr
and other calls.

By default, nfsscan only records the counts for
the NFS operations that appear most frequently in a
typical workload – read, write, lookup, getattr, access,
create, and remove. Additional operations or an alter-
native list of operations may be specified on the com-
mand line.

Unless more information is requested, nfsscan
creates per-server aggregate statistics in a manner sim-
ilar to nfsstat. However, it can also subdivide the
statistics by any combination of client, UID, GID, and
file handle, and it can filter the data based on caller
host, UID, or GID.

Helper Applications

The most general and powerful method for ana-
lyzing the tables created by nfsscan is to import these
tables into a database or data analysis package. To
simplify some of the more common analyses, how-
ever, our toolkit includes several helper applications
that make it possible to manipulate the output of

76 2003 LISA XVII – October 26-31, 2003 – San Diego, CA



Ellard & Seltzer New NFS Tracing Tools and Techniques for System Analysis

nfsscan and perform useful analyses from the com-
mandline or by using short shell scripts.

By default, nfsscan creates a single table contain-
ing aggregate operation counts for each five-minute
interval of a trace. The user may specify a shorter or
longer time interval, but this is usually unnecessary. A
helper application named ns_timeagg makes it easy to
compute aggregates across rows of the table created
by nfsscan. For example, if the nfsscan time interval is
five minutes, ns_timeagg can create a new table with a
time interval of one hour directly from the output of
nfsscan. It is typically several orders of magnitude
faster to compute aggregates from the tables generated
by nfsscan than it is to re-run nfsscan with different
parameters. ns_timeagg can also aggregate by client
host, UID, or GID.

In contrast to ns_timeagg, which combines rows
from the table, ns_split provides a way to filter rows
from the table, throwing away rows that do not match
given criteria. A combination of ns_timeagg and
ns_split is usually sufficient to isolate the interesting
data. It is also easy to write scripts to manipulate the
output of nfsscan, ns_timeagg, and ns_split because
the tables are generated in a simple text format.

The helper application ns_quickview uses gnuplot
[20] to create plots for the operation count tables cre-
ated by nfsscan, ns_timeagg, or ns_split. ns_quick-
view can either save the gnuplot script to file, so that it
can be edited before execution, or generate the plots
immediately. ns_quickview also accepts commands to
pass directly to gnuplot, which allows the user to cus-
tomize the plots without editing the scripts. All of the
plots in this paper were created by ns_quickview,
using command-line options to tell gnuplot to create
encapsulated postscript of the proper size and with the
appropriate font.

We anticipate that for most purposes, nfsscan with
the default parameters will provide enough information
to identify general trends in the data. If the user discov-
ers that a specific period of the trace is particularly inter-
esting, he or she can re-run nfsscan with different
parameters to extract additional per-client, per-user, per-
group, per-file, or per-directory information, as
described in the Case Studies section, to build a table to
investigate specific questions. It is possible to simply
create the full set of tables containing all of the informa-
tion for the entire trace, but this requires a large amount
of processing time and memory, and the resulting tables
require a considerable amount of disk space.

Overview of the Example Systems

In this section we describe the computing envi-
ronments from which we collected the traces that are
used in later sections to illustrate the use of nfsdump,
nfsscan, and the helper applications.
EECS03

The EECS03 traces were taken from the Net-
work Appliances Filer that serves the home directories

for most of the Computer Science Department at Har-
vard University from February 17, 2003 through
February 21, 2003. EECS03 has two network ports,
serving clients on different subnets. Our traces are
gathered from one of these ports. The EECS03 traces
do not include backup activity.

There is no standard EECS03 client machine, but
a typical client is a workstation with at least 128 MB
of RAM running GNU/Linux, UNIX, or Windows NT.
The Windows machines access EECS03 via SAMBA
running on a UNIX server, and therefore all of their
network disk accesses appear in some form in the NFS
trace. All workstations store their operating system
and most of their applications on their local disk, and
use their local disk for scratch space. EECS03 is used
primarily for home directories and shared data.

Email for EECS03 users is delivered on a sepa-
rate file system. Some users use procmail or other pre-
processors that file their mail for them in their home
directory, and this activity is reflected in our traces,
but on the whole email appears to play only a small
role in the EECS03 workload.

The EECS03 traces were taken from the same server
as the EECS traces described in earlier work [6], but were
taken more than a year later. Due in part to a redistribution
of responsibilities among the servers of the EECS commu-
nity, the workload of this server has changed significantly
during this time. The largest difference is that the WWW
server now uses EECS03 to store the main web pages; in
EECS there was very little WWW traffic because most of
the pages were stored on a separate file system. This raises
the question of what the EECS03 workload would look
like if we moved the WWW pages back to a separate file
system. We will see how to investigate questions of this
kind in the section ‘‘Exploring the Impact of the WWW
Server on EECS03.’’
DEAS03

The DEAS03 traces were taken from the Net-
work Appliances Filer that serves the home directories
for the Division of Engineering and Applied Sciences
at Harvard University from February 17, 2003 through
February 21, 2003. The DEAS03 traces do not include
backup activity. There is no standard DEAS03 client
machine, but the typical DEAS03 client is a PC run-
ning GNU/Linux or Sparcstation running Solaris.

In contrast to EECS03, the DEAS03 workload
does contain email. Email for DEAS03 users is deliv-
ered to a mail spool outside of the users home direc-
tory, but on the same NFS file system. In addition to
email, the DEAS03 workload contains a fairly typical
research and development workload.

The DEAS03 traces were taken from the same
server as the DEAS traces described in earlier work
[7], but in this paper we use a more recent trace.
ICE and MAIL

ICE and MAIL are traces from two different
interfaces of the same Digital UNIX NFS server. This

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 77



New NFS Tracing Tools and Techniques for System Analysis Ellard & Seltzer

machine, along with several similarly configured
machines, hosts the home directories of the general-
purpose accounts provided to all undergraduates, grad-
uate students, and University staff. Each of these
machines hosts several file systems and has several
network interfaces, and each network interface com-
municates with a different set of clients. Backup activ-
ity is not included in either the ICE or MAIL traces,
because a separate interface is used for backups.

The ICE trace captures the traffic from April 21,
2003 to April 25, 2003, between the NFS server and a
set of machines that form the instructional computing
environment, a shared resource used for computer sci-
ence instruction and other academically-oriented
work. Students are permitted to run email clients on
the ICE machines. In this paper, we only analyze a
trace of the traffic between one ICE host and one of
the NFS home directory file systems.

System Total Ops read write lookup getattr access create remove

EECS03 33639133 22.27% 10.94% 28.90% 1.73% 22.83% 0.72% 0.86%
DEAS03 134603789 50.03% 17.70% 3.35% 25.63% 1.49% 0.26% 0.39%
ICE 37543922 3.11% 0.74% 16.30% 33.21% 39.21% 0.01% 0.00%
MAIL 626452462 93.39% 0.36% 1.82% 2.44% 0.65% 0.15% 0.29%

Ta b l e 1: Total operation count for five consecutive weekdays, and percent of the total for the most common operations.

The MAIL trace captures the traffic between the
NFS server and the campus mail servers from May 5,
2003 to May 9, 2003. These machines host the IMAP and
SMTP servers that handle the bulk of the campus email.
Many users also login to these machines to run email pro-
grams, primarily pine. In this paper, we only analyze a
trace of the traffic between one of the mail server hosts
and one of the NFS home directory file systems.

The MAIL traces are taken from the same gen-
eral environment as the CAMPUS traces from 2001
described in earlier work [6]. However, during the
elapsed time the system architecture has changed sig-
nificantly – the mail software has been changed, and
nearly all of the client hosts have been replaced with
new hardware running a different operating system.
As a result, the MAIL workload is quite different from
the CAMPUS workload.

Example Analyses

In this section, we provide examples of some of
the analyses that are easy to perform with nfsdump/
nfsscan, using five-day traces gathered from EECS03,
DEAS03, ICE, and MAIL. Each of the traces begins at
midnight on a Monday and continues until the end of
the subsequent Friday. The traces have been processed
with nfsscan, including per-client and per-user infor-
mation in addition to the default information. We will
assume that the output from nfsscan for each trace has
been saved in files EECS03.ns, DEAS03.ns, ICE.ns,
and MAIL.ns. For some of the examples, we will also
assume that each of the .ns files has also been split

into five files corresponding to the days of the trace,
and given names like EECS03-1.ns.

What are the General Workload Characteristics?
The most general question of interest is how many

operations of each type a server performs over a given
period of time. We can use ns_timeagg to compute sum-
mary statistics for an entire table created by nfsscan by
specifying a time interval of zero. Table 1 shows the total
operation counts for five consecutive weekdays, and the
percentage of the total contributed by each of the most
common operations. Figure 1 shows the commands that
generated the counts shown in Table 1.

ns_timeagg -t 0 EECS03.ns
ns_timeagg -t 0 DEAS03.ns
ns_timeagg -t 0 ICE.ns
ns_timeagg -t 0 MAIL.ns

Figure 1: Commands to generate the data for Table 1.

Table 1 illustrates the diversity of workloads that
NFS servers must support:
Read/Write Ratio All of the systems have a

read/write ratio of more than one. EECS03 has
a read/write ratio of approximately 2, while
DEAS03 has a ratio of 3, and ICE has ratio of
more than 4. MAIL, on the other hand, is
utterly dominated by reads. More than 93% of
the operations in the MAIL trace are reads.

Data and Metadata The EECS03 and especially
ICE workloads have more metadata requests
than reads and writes – there are more requests
for information about files or directories than
requests to read and write the contents of files.
However, the operation mixes differ – EECS03
is dominated by access and lookup calls, while
ICE also has a large number of getattr calls.

In contrast, DEAS03 and MAIL are dominated
by data operations, particularly read.

When is the System Most and Least Busy?
In order to plan maintenance activity or schedule

large jobs in such a way to make the best use of an
NFS server, it is important to know when the system is
busy and whether there are idle periods. In our own
research we have found that on many systems the load
varies in a highly predictable manner according to the
time of day and day of week. However, these patterns
are not always intuitive – on one system, we found
that the system was swamped with requests between
4:00 am and 9:00 am because several users thought
that this would be the time when the system would be

78 2003 LISA XVII – October 26-31, 2003 – San Diego, CA



Ellard & Seltzer New NFS Tracing Tools and Techniques for System Analysis

most idle, and therefore they each scheduled their
largest jobs to run at this time.

We can use ns_timeagg to aggregate the data by
client, and then use ns_quickview to create plots of the
data. Note that for a quick look at the basic load pat-
terns, a five-minute interval is too short. To change the
interval, use the -t flag, which takes a parameter mea-
sured in seconds. An example of a command to create
a quick plot of the total operation count of EECS03
for each 30-minute interval during the trace period is
shown in Figure 2.

ns_timeagg -t 1800 EECS03.ns \
> EECS03.tmp

ns_quickview EECS03.tmp

Figure 2: Commands to create and display a plot of
total operation counts of EECS03 over the five
days summarized in EECS03.ns.

ns_timeagg -t 1800 EECS03-1.ns \
> EECS03-1.tmp

...
ns_timeagg -t 1800 EECS03-5.ns \

> EECS03-5.tmp
ns_quickview -l EECS03-[12345].tmp

Figure 3: Commands to create and display the over-
lay plot of total operation of EECS over the five
days summarized in EECS03.ns.

Figure 4 shows examples of plots created by
ns_quickview. The left column of this figure shows
plots of the total operation count for each host for each
half hour period over five consecutive weekdays. The
right column shows the same data, but with the data
for each day plotted on top of each other.

The plot from the commands in Figure 2 is
shown in the top left of Figure 4. To see if the work-
load repeats strongly from one day to the next, we can
take each day of the five day period and use ns_quick-
view to overlay the data on the same hourly scale. The
command for accomplishing this is shown in Figure 3,
and the resulting plot is shown in the top right of Figure
4. We repeat this pair of plots for the remaining systems
(MAIL, ICE, and DEAS03). Daily cycles, if any, will be
readily apparent.

MAIL, ICE and DEAS03 have clear daily
rhythms. For all three systems, the operation rate is
low in the late evening and early morning, and then
climbs rapidly though the morning, reaching a peak at
approximately noon, and then staying high throughout
the afternoon. The operation rate for DEAS03
decreases rapidly at the end of business hours, but ICE
and MAIL are still busy until midnight. Both systems
have predictable periods of relatively light activity.

In the plot for the entire week for EECS03, it is
hard to see any particular patterns, but the overlay plot
shows that in addition to a general increase of activity
during business hours, there are at least three regular

daily events that cause load spikes twice in the early
morning, and once in the late evening. The regularity of
these events suggests that they are probably cron jobs.

The overlay plot for ICE shows that the work-
load is remarkably consistent from one day to the
next, particularly in the early morning hours. We also
note that the workload is lower than average for the
weekdays on Friday afternoon and evening. (This is
not apparent from the plots as they appear in this
paper, because the key that shows which line corre-
sponds to each day has been omitted from these plots.
If requested, ns_quickview will label each line.)

Note that the first day of the traces for EECS03
and DEAS03 is a University holiday, and this appears
to have an impact on both systems. Also note that
there is a gap in the MAIL traces during the evening
of Thursday 5/9/2003 due to a problem with the host
that gathered the traces.

ns_timeagg -t 0 -B C EECS03.ns | \
sort -k7 -n -r > EECS03.cli.tmp

Figure 5: A command to find the per-client operation
counts for all of the clients of EECS03, sorted in
descending order by total operation count. Note
that column 7 of the output is the total operation
count.

Which Clients Are Busiest?

Another question is which clients contribute the
largest load to the system over time. We can investi-
gate this by using ns_timeagg to compute the per-
client operation counts. Figure 5 shows a command
that computes the cumulative per-client operation
counts for the entire trace period, and then sorts the
resulting table in descending order by total operation
count to find the busiest clients. The ten busiest clients
for EECS03 are listed in Table 2.

Once we have identified the busiest clients (or
any other clients that we think are interesting) we can
use ns_split to extract the contribution from those
clients, use ns_timeagg to create a table of the activity
of those clients over time, and then use ns_quickview
to create plots from these tables, using a command
like the one shown in Figure 6.

ns_split -B C -c 0.0.0.51 EECS.ns | \
ns_timeagg -B C -t 1800 > EECS03.tmp

ns_quickview EECS03.tmp

Figure 6: Commands to plot the operation count of
client 0.0.0.51.

Figure 7 shows plots generated via ns_quickview
for the four busiest systems.

Which Users Are Busiest?

Finding the busiest users is done in the same man-
ner as finding the busiest clients. The only difference is
that the aggregation is per user, instead of per client.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 79



New NFS Tracing Tools and Techniques for System Analysis Ellard & Seltzer

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000
 500000

00:00
02/17
2003

00:00
02/18
2003

00:00
02/19
2003

00:00
02/20
2003

00:00
02/21
2003

00:00
02/22
2003

EECS03 Operation Count

 0
 200000
 400000
 600000
 800000
 1e+06

 1.2e+06
 1.4e+06

00:00
02/17
2003

00:00
02/18
2003

00:00
02/19
2003

00:00
02/20
2003

00:00
02/21
2003

00:00
02/22
2003

DEAS03 Operation Count

 0

 50000

 100000

 150000

 200000

 250000

 300000

00:00
04/21
2003

00:00
04/22
2003

00:00
04/23
2003

00:00
04/24
2003

00:00
04/25
2003

00:00
04/26
2003

ICE Operation Count

 0
 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06
 4e+06

 4.5e+06

00:00
05/05
2003

00:00
05/06
2003

00:00
05/07
2003

00:00
05/08
2003

00:00
05/09
2003

00:00
05/10
2003

MAIL Operation Count

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000
 500000

00:00 06:00 12:00 18:00 00:00

EECS03 Operation Count

 0
 200000
 400000
 600000
 800000
 1e+06

 1.2e+06
 1.4e+06

00:00 06:00 12:00 18:00 00:00

DEAS03 Operation Count

 0

 50000

 100000

 150000

 200000

 250000

 300000

00:00 06:00 12:00 18:00 00:00

ICE Operation Count

 0
 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06
 4e+06

 4.5e+06

00:00 06:00 12:00 18:00 00:00

MAIL Operation Count

Figure 4: Plots of the total operation counts for each 30-minute period of five consecutive weekdays. Each plot in
the left column shows the total operation count per half hour period for the entire five days. Each plot on the
right shows the same plot, but with the data for each day superimposed on the others.

80 2003 LISA XVII – October 26-31, 2003 – San Diego, CA



Ellard & Seltzer New NFS Tracing Tools and Techniques for System Analysis

A table of the operation counts for the ten busiest
users on EECS03 for the five days 2/17/2003 through
2/21/2003 is shown in Table 3. Once again, there is
great diversity of workload patterns illustrated in this
simple table.

Client ID Total Ops Read Write Other System Use
Total 33639133 7491050 3680255 22467828

0.0.0.51 19560815 4009983 1489135 14061697 Mail and WWW server
0.0.0.130 3106796 38633 21444 3046719 Desktop of user1
0.0.0.53 2847486 460192 580911 1806383 WWW server/Desktop of user2
0.0.0.80 1304624 20778 644105 639741 Desktop of user3
0.0.0.84 938404 279071 362768 296565 Cycle server
0.0.0.56 668044 13379 95665 559000 SunRay server
0.0.0.68 614755 128977 99706 386072 Desktop/Cycle server
0.0.0.54 528469 501601 3786 23082 Cycle server
0.0.0.55 519653 492413 3728 23512 Cycle server
0.0.0.57 514069 487531 3705 22833 Cycle server

Table 2: Total operation counts for the ten busiest EECS03 clients for the period 2/17-2/21/2003. Note that the
client identifiers have been anonymized.

User ID Total Ops Read Write Other Role
Total 33639133 7491050 3680255 22467828

101002 7683078 1268777 1024 6413277 WWW
101000 2494411 2396508 14917 82986 Grad Student
101009 2461584 384792 496133 1580659 Grad Student (user 2)
0 2020323 16 48 2020259 Superuser (root)
101060 1659601 70247 25455 1563899 Faculty Member (user 1)
101022 1371083 178598 13357 1179128 Faculty Member
101062 1310198 21422 644776 644000 Researcher (user 3)
101035 1131660 96183 1727 1033750 Grad Student
101001 1076060 293780 366905 415375 Grad Student
101034 1008195 138130 817268 5279 Grad Student

Table 3: Total operation counts for the ten busiest EECS03 users for the period 2/17-2/21/2003. Note that the user
ID numbers have been anonymized, except for www and root. Users user1, user2, and user3 are the same users
referenced in Table 2.

• The busiest ‘‘user ’’ is the www user. The opera-
tion counts for this user are dominated by infor-
mation requests, but also contain some reading,
and very little writing.

• The second busiest user is a user whose operation
count is dominated almost entirely by reading.

• The third busiest user is the user of workstation
0.0.0.53, one of the busiest clients.

• The fourth busiest ‘‘user ’’ is root, and the opera-
tion counts for root contain almost no reads and
writes. The fact that root accounts for much of
the workload is surprising. We investigate the
causes of this behavior in the next section.

• The fifth busiest user is the user of workstation
0.0.0.130, another one of the busiest clients.

What Files are Busiest?
We can also use nfsscan to discover which files

and directories are the object of the most operations,

and what those operations are. This can be useful to
identify hot files or directories, which might benefit
from being replicated (if read-only), moved to a local
disk (if not shared), or moved to a faster file server.

nfsscan can compute per-file operation counts in
the same manner as it can create per-user and per-
client operation counts. It can also gather additional
descriptive information about files, such as their path-
name, owner, permissions, and modification times. To
save space, particularly when per-user or per-client
information is gathered in addition to per-file informa-
tion, the file description information is stored in a sep-
arate table. Both tables can be indexed by file handle,
however, so they can be joined if necessary.
Which Directories are Busiest?

nfsscan can also compute per-directory operation
counts. The directory operation count is defined as the
sum of the operation counts for all of the files and sub-
directories of the directory. This metric is useful for
identifying collections of files or directory hierarchies
that are the object of many operations even if each
individual file is not the object of many. For example,

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 81



New NFS Tracing Tools and Techniques for System Analysis Ellard & Seltzer

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

00:00
02/17
2003

00:00
02/18
2003

00:00
02/19
2003

00:00
02/20
2003

00:00
02/21
2003

00:00
02/22
2003

Activity of EECS Client 0.0.0.51

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

00:00
02/17
2003

00:00
02/18
2003

00:00
02/19
2003

00:00
02/20
2003

00:00
02/21
2003

00:00
02/22
2003

Activity of EECS Client 0.0.0.130

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

00:00
02/17
2003

00:00
02/18
2003

00:00
02/19
2003

00:00
02/20
2003

00:00
02/21
2003

00:00
02/22
2003

Activity of EECS Client 0.0.0.53

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

00:00
02/17
2003

00:00
02/18
2003

00:00
02/19
2003

00:00
02/20
2003

00:00
02/21
2003

00:00
02/22
2003

Activity of EECS Client 0.0.0.80

Figure 7: Plots of the total operation counts for each
30-minute period of five consecutive weekdays
for the four busiest EECS03 clients.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

00:00
02/17
2003

00:00
02/18
2003

00:00
02/19
2003

00:00
02/20
2003

00:00
02/21
2003

00:00
02/22
2003

Activity of EECS User 101002

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

00:00
02/17
2003

00:00
02/18
2003

00:00
02/19
2003

00:00
02/20
2003

00:00
02/21
2003

00:00
02/22
2003

Activity of EECS User 101000

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

00:00
02/17
2003

00:00
02/18
2003

00:00
02/19
2003

00:00
02/20
2003

00:00
02/21
2003

00:00
02/22
2003

Activity of EECS User 101009

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

00:00
02/17
2003

00:00
02/18
2003

00:00
02/19
2003

00:00
02/20
2003

00:00
02/21
2003

00:00
02/22
2003

Activity of EECS User 0

Figure 8: Plots of the total operation counts for each
30-minute period of five consecutive weekdays
for the four busiest EECS03 users.

82 2003 LISA XVII – October 26-31, 2003 – San Diego, CA



Ellard & Seltzer New NFS Tracing Tools and Techniques for System Analysis

some mail clients store each email message as a sepa-
rate file in a directory dedicated to this purpose, while
others store an entire mailbox (or even a collection of
mailboxes) as a single file. In the latter case, it is
straightforward to identify and count all of the opera-
tions associated with the email of a particular user by
keeping track of all operations associated with a single
file. In the former case, however, it is much more dif-
ficult because the activity is distributed over a direc-
tory of files. In this situation, per-directory operation
counts are a useful way to aggregate all of this activity
into a single table row.

Another example where per-directory operation
counts can be helpful is for measuring the total usage
of shared directories, such as source code repositories.

Per-directory operation counts can also help
identify the busiest subdirectories of a web site.
Although it might seem that much of this information
can be inferred from the web server logs (which
record details about what requests web clients make,
and how much data the web server sends to its
clients), this may lead to inaccurate conclusions. It
may be that there are important differences between
the traffic from a web server and its clients and the
traffic from the web server and the NFS server. For
example, if most requests to the web site are for the
same pages, these pages may be cached in the web
server and therefore these requests will not translate
into much NFS activity.

As another example, typical web server logs con-
tain no useful information about what files are
accessed each time a dynamically generated web page
is visited. The total amount of data used to generate
such a page might be very different from the amount
of data that the web server finally sends to the client.

Case Studies

Previously, we showed how to use nfsscan,
ns_timeagg, ns_split, and ns_quickview to perform
several basic analyses. In this section, we show how to
perform deeper analyses by exploring several interest-
ing aspects of the traces.

What is Root Doing on EECS03?

As we saw in Table 3, root was one of the busiest
users on EECS03 during the trace period. This is sur-
prising because the EECS03 server is configured to
treat root as an untrusted user except from a small
number of machines. It is also interesting that nearly
all of the NFS operations performed by root during
this period are not operations that nfsscan ordinarily
considers interesting, and therefore does not tabulate.

To investigate this mystery, we first used ns_split
to remove the ‘‘trusted’’ hosts from the table. This
made little difference, however, which was a bit trou-
bling because this appears to imply that at least one
supposedly untrusted host was able to access the

server as root. This, of course, is the kind of situation
that haunts the nightmares of NFS system administra-
tors, and so we immediately investigated further.

The plots for the load from client 0.0.0.130 (in
Figure 7) and the load for the root user (in Figure 8)
provided a valuable clue. These two plots are very
similar in shape (although not in magnitude), suggest-
ing that the activity of this host and the activity of the
root account are linked. A quick check using ns_split
to isolate the contributions of the root user on client
0.0.0.130 confirmed that most of the operations per-
formed by root during the trace period were indeed
taking place on that system. Using ns_split again to
isolate the activity of the user who owns client
0.0.0.130, we observe that at every time scale, plots of
the total operation count for this user and for root have
an almost identical shape. A further mystery was that
the operations performed by the user mostly fell into
the category of ‘‘normal’’ operations, unlike virtually
all of the operations performed by root.

Now that we knew exactly what host to check
and what period of the trace to examine, we re-ran
nfsscan on a short section of the EECS03 traces, ask-
ing it to collect operation counts for all the NFS opera-
tions instead of only the default set of ‘‘interesting’’
operations. We discovered that all of the mystery oper-
ations were fsstat calls. Looking at the trace itself
showed that for every operation invoked by the user,
there was one or more corresponding fsstat call.

The fsstat call requests information about a NFS
file system, including how much free space there is,
and whether there have been any changes to the under-
lying file system (such as might be caused by a reboot
or remount). Because fsstat does not access informa-
tion about specific files or directories, it is permitted
to run as root even if root is untrusted, and many NFS
client implementations, including the one running on
0.0.0.130, are implemented to treat fsstat calls as if
they were being performed on behalf of root.

The reason that 0.0.0.130 stands out is that the
NFS client used by this host is implemented in a very
conservative manner, and during the trace period was
also misconfigured, and therefore used fsstat inces-
santly, generating at least one fsstat call per ordinary
operation. The fact that the primary user of client
0.0.0.130 is also one of the busiest users in the trace
makes this behavior stand out even more.

Unfortunately for the purpose of our analysis, the
user of host 0.0.0.130 noticed that the machine seemed
sluggish and requested an upgrade of the OS before
we had an opportunity to discover the cause of the
excessive fsstat calls. However, using our tools we
were able to confirm that during later trace periods the
number of fsstat calls generated by host 0.0.0.130 did
return to normal levels.

The behavior exhibited by client 0.0.0.130 raises
some administration issues. When confined to a single

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 83



New NFS Tracing Tools and Techniques for System Analysis Ellard & Seltzer

host, the ‘‘extra’’ fsstat calls have no serious implica-
tions, but this behavior could become a problem if the
EECS administrators had deployed this configuration
of this NFS client implementation across the entire
department. If all of the clients of a server exhibited
this behavior, the number of NFS requests would
nearly double. On a relatively unloaded server (such
as EECS during the EECS03 trace period) this addi-
tional load might not cause a problem (or even be
noticed), but on a more heavily loaded system, such as
DEAS03, ICE, and especially MAIL, doubling the
number of NFS requests could have an impact on the
total system because the additional requests would
increase the apparent latency and overall utilization of
the network.

Exploring the Impact of the WWW Server on
EECS03
We noted in the previous section that the busiest

EECS03 user is the WWW server account, and that
the busiest client hosts the department web server.

We also noted that the EECS03 trace exhibits
different load characteristics from an earlier EECS
trace, and theorized that this might be due to the fact
that the earlier trace did not contain accesses to the
WWW site. With nfsscan, we can test this theory.

Tw o of the defining characteristics of the EECS
traces are a read/write ratio of less than 1, and that
requests for metadata outnumber reads and writes sig-
nificantly. Since the WWW server account is by far the
busiest user, and is dominated by reads, a reasonable
hypothesis is that the EECS03 workload would resem-
ble the EECS workload if the WWW server traffic was
removed. We can test this hypothesis by using ns_split
to create a new table with all of the contributions from
the WWW server account removed.

Removing the WWW server account from the
workload does not change the character of the work-
load very much. The new workload still has a
read/write ratio that is much closer to that of EECS03
than EECS. However, we can also note that after the
WWW server account is removed, the busiest remain-
ing user (user 10100) also has a notably high
read/write ratio. Furthermore, if we use ns_split to
make a table consisting only of this single user, we
can see that the load from this user is distributed over
a handful of machines. From our knowledge of the
role of each of these machines, and our familiarity
with the activities of this user, we know that the work-
load we are seeing from this user is probably due to
this user running several large analyses.

While it is normal for users to run their analyses
on these machines, it is arguable that this analysis
might be unusual because it does not resemble things
we have seen in other traces. We can use ns_split
again on the original table to compute the operation
counts with both the WWW server and this user
removed. The resulting operation counts do resemble

the counts from the EECS traces – the read/write ratio
is approximately 1, and requests for metadata (lookup,
getattr, and access) dominate requests to read and write
data. Therefore, if we can successfully argue that the
high operation counts for user 10100 during this
period are unusual, then we can claim that the work-
load of EECS03 is similar to EECS with the addition
of the workload contributed by WWW server.

However, there is an additional wrinkle to the
analysis. In the original EECS configuration, the
department web pages were hosted on a separate file
system, but user home pages and some project home
pages were hosted on the EECS NFS server. There-
fore, accesses to personal home pages were recorded
in the EECS traces, but they had little effect on the
total overall workload. Using the per-directory statis-
tics generated by nfsscan, we can see that this is no
longer true (at least for this trace period). During this
trace, project and user home pages contribute the over-
whelming portion of the web-oriented traffic. There-
fore, we can conclude that moving the departmental
home pages back to a separate server would have little
impact on the EECS03 workload. Moving user and
project home pages to another server, however, would
significantly reduce the EECS03 workload.

Why is MAIL So Busy?
The MAIL workload is prodigious, and is almost

entirely reads. What is the source of all of these reads?

Using nfsscan with per-user and per-file informa-
tion, we can quickly identify the busiest files in the
system, and see that nearly all of the reads come from
mailboxes.

Examination of a short trace (2:00 pm-3:00 pm
on 5/6/2003) with nfsscan shows activity to 1033
inboxes on the MAIL file system. Approximately 70
of the owners of these inboxes have chosen to forward
their email to other accounts or use an email prepro-
cessor to categorize their incoming email, and there-
fore have very small inboxes. For the rest of the users,
the median inbox size is more than 7 MB, and the
largest 10% are over 35 MB. To make matters worse,
these files are apparently read and re-read repeatedly
by the email clients.

We believe that much of the problem is due to
the particular properties of NFS client caching. NFS
semantics permit the client to cache data read from a
file, but provide only weak constraints on the consis-
tency of cached data. The server does not know
whether the client is caching data, and does not inform
the client if the data is updated by another writer.
Instead, the server relies upon each client to check
periodically whether its cached data are up to date by
asking the server whether the underlying file has
changed. To make matters worse, the client can only
ask whether the file has changed, and not individual
blocks. This means that any change to a file (even
rewriting a single byte with the same value) will either

84 2003 LISA XVII – October 26-31, 2003 – San Diego, CA



Ellard & Seltzer New NFS Tracing Tools and Techniques for System Analysis

cause NFS to invalidate all cached data associated
with that file, or permit an inconsistency between the
state of the file on the server and the client.

In order to prevent inconsistencies and scram-
bled mailboxes, the mail clients and email servers run-
ning on the MAIL client NFS hosts essentially dis-
ables client-side caching. Combined with frequent
mailbox scans performed by the mail clients and the
large size of the mailboxes, the system is doomed to a
heavy workload of incessant reads. Therefore we
believe that accessing flat-file mailboxes over NFS is
simply not practical in an environment such as MAIL.
Elprin & Parno [8] have shown that IMAP servers that
store email in databases can be significantly more effi-
cient than servers that store their email in flat files,
and we believe that such systems will be widely
deployed as mail workloads continue to grow.

Active Analyses

One of the most attractive properties of collect-
ing traces via nfsdump (or most of the the other trac-
ing tools) is that it is completely non-invasive and
unobtrusive; it requires no changes to the client or
server, nor does it place any additional load on the
system. However, there are hard limits to what can be
learned from passive tracing because we can only
observe active files and directories – if a file or direc-
tory is never accessed, then no information about it
will appear in the trace. We can augment passive tech-
niques with a small amount of active probing to the
workload in order to discover information that would
otherwise remain hidden.

There are two mechanisms by which NFS
requests specify the file or directory to act upon.
Requests such as read and write specify the file via a
file handle, an opaque object provided by the server to
uniquely identify a file. Requests such as create or
rename, on the other hand, specify a file via its name
and the file handle of its parent directory. It is often
useful to have a complete mapping between file names
and file handles, so that we can identify all the opera-
tions that touch a particular file or directory,
whichever way the identity of the file or directory is
specified. We can infer most of this map simply by
observing the results of the operations that the clients
use to traverse the file system. Unfortunately, there are
three cases in which we will fail to discover the proper
mappings for a particular file or directory:

• The file or directory is never accessed.
The easiest method for making sure that all
files are observed is simply to run a process
that traverses the entire file system. We can use
the techniques discussed previously to find a
time when we believe that the system will be
relatively quiet and then use a command like
find to traverse the file system completely.

• The file or directory is accessed, but only using
the file handle or name. We never see the lookup
request that connects the name to the file handle.

This can happen when the clients cache the
directory data for the parent directories. If the
directories do not change, the client can do the
lookup out of its own cache, and we will not
have the opportunity to observe it. This appears
to often be the case for directories near the root
of the file system, or directories that are partic-
ularly busy. This is troublesome because these
are the directories that are usually the most
interesting.
To make sure that these files and directories are
observed, we need to find a client host that does
not have these directories cached, and then per-
form a shallow scan of the file system by using
find with a small maxdepth. The easiest way to
accomplish this is to have a client unmount and
remount the file system (but this is disruptive to
any users on that client, so it is best to use a
client host that is otherwise idle).

• The file is accessed, but the requests or the cor-
responding responses are omitted from the trace
because of network errors or other problems.
In this situation, the only practical solution is to
be patient and hope that the file will be
accessed again soon.

Ideally, it would be nice to run full traversals
constantly in order to maximize the file system infor-
mation captured by each trace. For most systems,
however, this is simply not practical, because a full
traversal can place a significant load on the system
and on large file systems may require hours to run. In
contrast, a shallow traversal requires a small fraction
of the time of a full traversal, and captures information
about the hottest directories.

Conclusion

We have presented nfsdump and nfsscan, a
framework for gathering NFS traces and performing
simple analyses and shown how to use these tools to
perform various analyses of NFS activity, including
investigating aspects of the workload of four produc-
tion NFS servers.
Status and Availability

The source for nfsdump, nfsscan, and the related
tools mentioned in this paper are available for down-
load from http://www.eecs.harvard.edu/sos/software/ .
Acknowledgments

This work would not have been possible without
the contributions of many people, especially Peg
Schafer, Aaron Mandel, Chris Palmer, Lars Kellog-
Stedman, Scott McGrath, and Alan Sundell, who
allowed me to gather traces from NFS servers under
their administration. Peg Schafer, Lois Bennet, and
Alan Sundell also provided suggestions for useful
analyses. Our paper shepherd, Mario Obejas, provided
helpful comments and suggestions regarding the struc-
ture and content of this paper.

This work was funded in part by IBM.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 85



New NFS Tracing Tools and Techniques for System Analysis Ellard & Seltzer

About the Authors

Daniel Ellard is a graduate student at Harvard
University, where he expects to complete his Ph.D. in
Computer Science this year. His thesis research con-
cerns self-tuning file systems that automatically learn
heuristics for choosing appropriate layout and replica-
tion policies for new files based on the observed
access patterns of existing files. His research interests
also include distributed systems and pedagogical tech-
niques for introductory computer science courses.
Before starting his Ph.D. research, Daniel was
employed by BBN Laboratories for more than ten
years, where he wrote software for planning and logis-
tics, speech recognition and modeling, undersea war-
fare simulation, parallel programming tools, and
Chrysalis, SunOS, and pSOS device drivers and pro-
gramming interfaces for array processors, tape drives,
and communication peripherals. Daniel Ellard can be
contacted at ellard@eecs.harvard.edu.

Margo Seltzer is a Gordon McKay Professor of
Computer Science and Associate Dean for Computer
Science and Engineering in the Division of Engineer-
ing and Applied Sciences at Harvard University. Her
research interests include file systems, databases, and
transaction processing systems. She is the author of
several widely-used software packages including
database and transaction libraries and the 4.4BSD log-
structured file system. Dr. Seltzer spent several years
working at startup companies designing and imple-
menting file systems and transaction processing soft-
ware and designing microprocessors. She is a Sloan
Foundation Fellow in Computer Science, a Bunting
Fellow, and was the recipient of the 1996 Radcliffe
Junior Faculty Fellowship and the University of Cali-
fornia Microelectronics Scholarship. She is recognized
as an outstanding teacher and won the Phi Beta Kappa
teaching award in 1996 and the Abrahmson Teaching
Award in 1999. Dr. Seltzer received an A. B. degree in
Applied Mathematics from Harvard/Radcliffe College
in 1983 and a Ph.D. in Computer Science from the
University of California, Berkeley, in 1992.

Future Work

nfsdump and nfsscan are works in progress. We
expect that they will evolve as users experiment with
them and provide feedback or requests for new func-
tionality. In particular, we hope that users will share
whatever scripts they develop to encapsulate common
analyses or administrative tasks so that we may add
them to the nfsdump/nfsscan distribution.

We have also identified several specific areas for
future work:

• nfsscan could be implemented in a more effi-
cient manner. For heavy workloads such as
MAIL, nfsscan requires all of a fast processor
just to keep up with nfsdump. Since much of
the processing time of nfsscan is spent parsing
its input, it may be necessary to change the

output format of nfsdump in order to increase
the speed of nfsscan.

• nfsscan could extract the inode number from
file handles for popular server types. The inode
number is more useful than the file handle for
tracking down specific files or directories.

• We would like to find a way for nfsscan’s method
of translating file handles into paths (by inferring
the file system hierarchy from the results of
lookup, create, and rename operations) to work
gracefully with the NetApp snapshot mechanism
[9]. It is not clear whether there is any way to
resolve this problem in a general manner.

References

[1] Blaze, Matthew A., ‘‘NFS Tracing by Passive
Network Monitoring,’’ Proceedings of the
USENIX Winter 1992 Technical Conference, pp.
333-343, San Francisco, CA, January 1992.

[2] Callaghan, Brent, Brian Pawlowski, and Peter
Staubach, ‘‘NFS Version 3 Protocol Specifica-
tion,’’ http://www.ietf.org/rfc/rfc1813.txt , June,
1995.

[3] Combs, Gerald, ethereal, http://www.ethereal.
com/ .

[4] Curry, Dave and Jeff Mogul, nfswatch, http://
freeware.sgi.com/cd-3/relnotes/nfswatch.html .

[5] Dahlin, Michael, Randolph Wang, Thomas E.
Anderson, and David A. Patterson, ‘‘Cooperative
Caching: Using Remote Client Memory to
Improve File System Performance,’’ Proceedings
of the First USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pp.
267-280, Monterey, CA, 1994.

[6] Ellard, Daniel, Jonathan Ledlie, Pia Malkani, and
Margo Seltzer, ‘‘Passive NFS Tracing of Email
and Research Workloads,’’ Proceedings of the
Second USENIX Conference on File and Storage
Technologies (FAST’03), pages 203-216, San
Francisco, CA, March, 2003.

[7] Ellard, Daniel, Jonathan Ledlie, and Margo
Seltzer, ‘‘The Utility of File Names,’’ Technical
Report TR-05-03, Harvard University Division
of Engineering and Applied Sciences, 2003.

[8] Elprin, Nicholas and Bryan Parno, ‘‘An Analysis
of Database-Driven Mail Servers,’’ Proceedings
of the 17th Large Installation Systems Adminis-
tration Conference (LISA’03), San Diego, Octo-
ber, 2003.

[9] Hitz, D., J. Lau, and M. Malcolm, ‘‘File System
Design for an NFS File Server Appliance,’’ Pro-
ceedings of the USENIX Winter 1994 Technical
Conference, pp. 235-246, San Francisco, CA,
January, 1994.

[10] Jacobson, Van, Craig Leres, and Steven McCanne,
libpcap, http://sourceforge.net/projects/libpcap/ .

[11] Jacobson, Van, Craig Leres, and Steven McCanne,
tcpdump implementation, http://www.tcpdump.org/ .

86 2003 LISA XVII – October 26-31, 2003 – San Diego, CA



Ellard & Seltzer New NFS Tracing Tools and Techniques for System Analysis

[12] Moore, Andrew W., Operating System and File
System Monitoring: a Comparison of Passive
Network Monitoring with Full Kernel Instrumen-
tation Techniques, Master ’s thesis, Monash Uni-
versity, 1995.

[13] The NFSv4 project, http://www.nfsv4.org/ .
[14] Nowicki, Bill, ‘‘NFS: Network File System Pro-

tocol Specification,’’ http://www.ietf.org/rfc/
rfc1094.txt , March 1989.

[15] Roselli, Drew, Jacob Lorch, and Thomas Ander-
son, ‘‘A Comparison of File System Work-
loads,’’ USENIX 2000 Technical Conference, pp.
41-54, San Diego, CA, 2000.

[16] Shepler, Spencer, Carl Beame, Brent Callaghan,
Mike Eisler, David Noveck, David Robinson,
and Robert Thurlow, The NFS Version 4 Pro t o -
col, http://www.ietf.org/rfc/rcf3530.txt , May, 2000.

[17] Stern, Hal, Mike Eisler, and Ricardo Labiaga,
Managing NFS and NIS, Second Edition,
O’Reilly & Associates, 2001.

[18] Sun Microsystems, Inc., nfslogd(1M), Solaris 8
Reference Manual Collection.

[19] Sun Microsystems, Inc., snoop(1), Solaris 8 Ref-
erence Manual Collection.

[20] Williams, Thomas and Colin Kelley, gnuplot,
http://www.gnuplot.info .

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 87



88 2003 LISA XVII – October 26-31, 2003 – San Diego, CA


