
NFS Tricks and Benchmarking Traps

Daniel Ellard and Margo Seltzer

FREENIX 2003 - June 12, 2003



June 12, 2003 2Daniel Ellard - Freenix 2003

Outline

• Motivation
– Research questions

– Benchmarking traps

• New NFS Read-Ahead Heuristics
– Optimize sequential reads

– Improve non-sequential reads

• Results

• Conclusions



June 12, 2003 3Daniel Ellard - Freenix 2003

Goal - Improve NFS Read Throughput

• We are interested in improving the throughput
of data accessed from disk via NFS.
– Example: email workload

• Our approach: improve the heuristics that
control the amount of read-ahead done by the
server.



June 12, 2003 4Daniel Ellard - Freenix 2003

Why Improve Read-Ahead Heuristics?

• With busy NFS clients, 5-10% of NFS
requests arrive at the server out-of-order.

• nfsiods are the primary source of reordering.
– nfsiod is a client daemon that marshals and

schedules NFS requests.

– Many implementations use multiple nfsiods.

– Contention for resources and process scheduling
effects can cause reordering.



June 12, 2003 5Daniel Ellard - Freenix 2003

Why Improve Read-Ahead Heuristics?

• Sequential access patterns may appear non-
sequential if requests are reordered.

• Servers do less (or no) read-ahead for non-
sequential access patterns.

• Read-ahead is necessary for good
performance.



June 12, 2003 6Daniel Ellard - Freenix 2003

Research Questions

• Can we improve performance for sequential
reads by improving the way the NFS
sequentiality-detection heuristic handles
“slightly” out-of-order requests?

• Can we detect non-sequential access
patterns that have sequential components
and therefore can benefit from read-ahead?



June 12, 2003 7Daniel Ellard - Freenix 2003

A Micro-Benchmark for NFS Reads

• Long sequential reads

• Many concurrent readers

• Inspired by observed email workloads

• All tests begin with a cold cache on client and
server.
– All data is brought from disk during the

benchmark.



June 12, 2003 8Daniel Ellard - Freenix 2003

The Testbed

• FreeBSD 4.6.2
• Commodity PCs

– Note: PCI bus transfer speed of 54 MB/s

• Intel PRO/1000 TX gigabit Ethernet
– em device driver
– MTU=1500
– Raw TCP transfer rate of 49 MB/s

• IDE and SCSI drives
– Paper discusses SCSI, this talk focuses on IDE



June 12, 2003 9Daniel Ellard - Freenix 2003

Preliminary Results

• Before measuring the effect of our changes to
the NFS server, we must understand the
default system.

• Results of our benchmarks were frustrating:
– Large variance

– Strange effects

• We decided to investigate these effects
before proceeding.



June 12, 2003 10Daniel Ellard - Freenix 2003

Benchmarking Traps

• Properties of disks and their drivers:
– ZCAV/disk geometry effects

– Disk scheduling algorithms

– Tagged command queues

• Arbitrary limits in the NFS implementation

• Network issues
– TCP vs UDP for RPC



June 12, 2003 11Daniel Ellard - Freenix 2003

ZCAV Effects

• ZCAV - “Zoned Constant Angular Velocity”
– Disk tracks are grouped into zones.
– Within each zone, each track has the same

number of sectors.
– The number of sectors is roughly proportional to

the length of the track.

• Tracks in the outer zones hold 1.2 - 2 times
more data
– Outer zone has a higher transfer rate
– Outer zone requires fewer seeks



June 12, 2003 12Daniel Ellard - Freenix 2003

The ZCAV Effect - Local IDE Disk

0
5

10
15
20
25
30
35
40
45
50

1 2 4 8 16 32

Number of Concurrent Readers

M
B

/s

Outermost Zones Inner Zones



June 12, 2003 13Daniel Ellard - Freenix 2003

Controlling for ZCAV Effects

• To minimize the ZCAV effect, minimize the
difference between the innermost and
outermost zones you use.
– Use a large disk.

– Run your benchmark in a small partition.

• To measure the effect, create several
partitions and repeat your benchmark in
each.



June 12, 2003 14Daniel Ellard - Freenix 2003

Disk Scheduler Issues

• BSD systems use the CSCAN scheduler.

• CSCAN trades fairness for disk utilitization.
– Some requests are serviced much sooner than

others.

– It is not hard to create request streams that starve
other requests for the disk.

– Overall throughput is very good.

• Many scheduling algorithms are unfair.



June 12, 2003 15Daniel Ellard - Freenix 2003

Controlling for Scheduler Effects

• Application specific!

• For our purposes:
– Total throughput for concurrent readers

– Measure the total time it takes for all the
concurrent readers to finish their tasks, instead of
the time of each individual reader.

• There is large variation in the time each
reader takes, but the time required by the
slowest reader is reasonably consistent.



June 12, 2003 16Daniel Ellard - Freenix 2003

Tagged Command Queues

• SCSI drives have tagged command queues.
– Disk requests are sent to the drive as soon as they

reach the front of the scheduler queue.

– The drive schedules the requests according to its
own scheduling algorithm.

• For our benchmarks and hardware:
– Tagged command queues increase fairness.

– Unfortunately, throughput is reduced (almost 50%
in the worst case).



June 12, 2003 17Daniel Ellard - Freenix 2003

Back to the Experiments…

Q: What is the potential for improvement in the
read-ahead algorithm?
– Compare the default system to AlwaysReadAhead,

a system that aggressively always does as much
read-ahead as it can.

A: There is benefit when the degree of
concurrency is high and requests arrive out-
of-order.



June 12, 2003 18Daniel Ellard - Freenix 2003

NFS Read Throughput (Busy Clients)

0

5

10

15

20

1 2 4 8 16 32

Number of Concurrent Readers

M
B

/s

AlwaysReadAhead Default



June 12, 2003 19Daniel Ellard - Freenix 2003

The SlowDown Heuristic

Default Heuristic

If the access is sequential
relative to the previous
access:

seqCount++

else

seqCount = small const

SlowDown Heuristic

If the access is sequential
relative to the previous
access:

seqCount++

else if the access is “close” to
the previous access:

seqCount is unchanged

else

seqCount = seqCount / 2



June 12, 2003 20Daniel Ellard - Freenix 2003

The Effect of SlowDown

0

5

10

15

20

1 2 4 8 16 32

Number of Concurrent Readers

M
B

/s

AlwaysReadAhead Default SlowDown



June 12, 2003 21Daniel Ellard - Freenix 2003

Why Doesn’t SlowDown Help?

The problem is not SlowDown.

• In FreeBSD, the sequentiality scores are
stored in a fixed-size hash table.

• When the table is full, adding a new entry
forces the ejection of another.

• The hash table is too small to support more
than a few readers.



June 12, 2003 22Daniel Ellard - Freenix 2003

SlowDown with the Larger Table

0

5

10

15

20

1 2 4 8 16 32

Number of Concurrent Readers

M
B

/s

AlwaysReadAhead Default SlowDown + New Table



June 12, 2003 23Daniel Ellard - Freenix 2003

The Effect of Increasing the Table Size

• Increasing the hash table size makes
SlowDown as fast as AlwaysReadAhead.

• Fixing the table also makes the default
algorithm as fast as AlwaysReadAhead.
– For our current testbed, it is enough simply to

have a reasonable value for seqCount.

– Perhaps in the future having a more accurate
value will become important.



June 12, 2003 24Daniel Ellard - Freenix 2003

Improving Non-Sequential Reads

• Some read patterns are non-sequential, but
do contain sequential components.

• One example is two threads reading
sequentially from the same file:
– Thread 1 reads blocks 0, 1, 2, 3, 4 …

– Thread 2 reads blocks 1000, 1001, 1002, 1003 …

– Server sees 0, 1000, 1, 1001, 2, 1002, 3, 1003 …

• This pattern is not sequential according to the
default or SlowDown read-ahead heuristics.



June 12, 2003 25Daniel Ellard - Freenix 2003

Using Cursors to Find Components

• For each active file, maintain a set of cursors.
– Each cursor is a position and sequentiality score.

• For each read access to the file, choose the
cursor with the closest position:
– If there is no “close” cursor, create one.

– If there are already too many cursors for this file,
eject the least recently used.

– Update the sequentiality score for the cursor.



June 12, 2003 26Daniel Ellard - Freenix 2003

The Effect of Cursors

0

2

4

6

8

10

12

14

16

2 4 8

Number of Concurrent Threads

M
B

/s

Using Cursors Default Read-Ahead



June 12, 2003 27Daniel Ellard - Freenix 2003

Conclusions

• The SlowDown heuristic does not help much,
at least not for our system.
– Fixing the hash table does help

• Cursors work well for access patterns that are
the composition of sequential access
patterns.

• Benchmarking is hard, even for simple
changes.



June 12, 2003 28Daniel Ellard - Freenix 2003

Obtaining Our Code

Daniel Ellard

ellard@eecs.harvard.edu

http://www.eecs.harvard.edu/~ellard/NFS


