
Multicore OSes
Looking Forward from 1991, er, 2011

David A. Holland, Margo I. Seltzer

{dholland, margo}@eecs.harvard.edu

May 11, 2011



The Scenario

• Physical limits have been reached.

• Hardware isn’t getting faster any more.

• To go faster we’re going to have to run in parallel.

1 HotOS /May 11, 2011



The Scenario

• Physical limits have been reached.

• Hardware isn’t getting faster any more.

• To go faster we’re going to have to run in parallel.

Parallel code is hard!

1 HotOS /May 11, 2011



The Scenario

• Physical limits have been reached.

• Hardware isn’t getting faster any more.

• To go faster we’re going to have to run in parallel.

Parallel code is hard!

Scalable parallel code is harder!

1 HotOS /May 11, 2011



The Scenario

• Physical limits have been reached.

• Hardware isn’t getting faster any more.

• To go faster we’re going to have to run in parallel.

Parallel code is hard!

Scalable parallel code is harder!

CRISIS!!!!!!

1 HotOS /May 11, 2011



Meh.

2 HotOS /May 11, 2011



Ok, it’s not quite 1991.

From software, multiprocessor umulticore.

Lessons from the past twenty years:
• Shared-memory code with locks doesn’t scale.

• Hardware will end up shared-nothing.

• Programming will involve message passing.

3 HotOS /May 11, 2011



Ok, it’s not quite 1991.

From software, multiprocessor umulticore.

Lessons from the past twenty years:
• Shared-memory code with locks doesn’t scale.

• Hardware will end up shared-nothing.

• Programming will involve message passing.

Let’s skip the bankruptcy filings
and go straight to messages.

3 HotOS /May 11, 2011



Lightweight messages and channels

Different programming paradigm.

Has some chance of scaling.

Not actually new:
• Communicating Sequential Processes

• pi calculus

• Erlang

• goroutines

4 HotOS /May 11, 2011



What It Looks Like (in “C”)

chan <- value; /* send on channel */

value <- chan; /* receive from channel */

Comparable to procedure calls.

choose {

option x <- c1: foo(x); break;

option x <- c2: bar(x); break;

}

Like select().

start { baz(); }

Makes a new thread.
5 HotOS /May 11, 2011



The Way Forward

We need whole systems built this way:

language...

and kernel...

and applications.

Not just one research system, either.

6 HotOS /May 11, 2011



The Way Forward

We need whole systems built this way:

language...

and kernel...

and applications.

Not just one research system, either.

Let’s talk about kernels.
(But don’t worry; I’m not advocating Erlang.)

6 HotOS /May 11, 2011



Channel OS Architecture

• System calls will be messages.

• This enables new OS structures.

• Also need a whole new kernel based on channels...

7 HotOS /May 11, 2011



Foreseeable Issues...

• Implementing choice.

• Waiting for channels to become ready.

• What does virtual memory look like?

• Too much parallelism?

• Partial failure.

• Scheduling.

(and of course scaling is still hard)

8 HotOS /May 11, 2011



Project State

→ hot air
vapourware
slideware
demoware

software

abandonware

9 HotOS /May 11, 2011



Multicore OSes
Looking Forward from 1991, er, 2011

David A. Holland, Margo I. Seltzer

{dholland, margo}@eecs.harvard.edu


