
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Measuring Windows NT — Possibilities and Limitations

Yasuhiro Endo, Margo I. Seltzer
Harvard University

Measuring Windows NT—Possibilities and Limitations

Yasuhiro Endo, Margo I. Seltzer
{yaz,margo}@eecs.harvard.edu

Harvard University

Abstract

The majority of today’s computing takes place on inter-
active systems that use a Graphical User Interface
(GUI). Performance of these systems is unique in that
“good performance” is a reflection of a user’s percep-
tion. In this paper, we explain why this unique environ-
ment requires a new methodological approach. We
describe a measurement/diagnostic tool currently under
development and evaluate the feasibility of implement-
ing such a tool under Windows NT. We then present sev-
eral issues that must be resolved in order for Windows
NT to become a popular research platform for this type
of work.

1. Introduction

In recent years, computer systems have become increas-
ingly interactive, most often based on Graphical User
Interfaces (GUI). In these systems, users interact with
the computer far more frequently than in traditional
computer systems, such as those based on a command-
line interface or systems used for scientific computation
or transaction processing. Another factor that makes
these interactive systems different from conventional
systems is that “performance” is determined by the
user’s opinion. This metric,user-perceived perfor-
mance, is different from the performance metrics most
commonly used, in that it is affected greatly by the sub-
jective judgment and physical limitations of users. In
order to measure and improve user-perceived perfor-
mance, we need a new methodology that takes these fac-
tors into account. We are currently developing such a
methodology and a set of diagnostic tools to gather data
that will allow us to improve user-perceived perfor-
mance.

This paper explains how interactive systems are differ-
ent from conventional systems and why we must devise
a new measurement methodology to evaluate interactive
systems. As Windows NT is one of the most commonly
used GUI platforms, we will evaluate the feasibility of
conducting such research on Windows NT. We begin by
identifying the differences between measuring interac-
tive systems and conventional systems. We summarize
our past efforts to measure interactive systems in Sec-
tion 3. Section 4 presents the motivation for our current
measurement project and outlines the design of the mea-

surement/diagnostic tool currently under development.
We then evaluate the feasibility of implementing this
tool on Windows NT in Section 5. Section 6 outlines the
problems that need to be addressed if NT is to become a
popular research platform for this type of work. We
present our conclusions in Section 7.

2. The challenges of interactive system mea-
surement

Typically, we use benchmark programs to rate system
performance. The most commonly used technique is to
measure how quickly a system handles a sequence of
requests; from this data, we calculate the bandwidth or
the throughput of the system. Systems that achieve high
scores in benchmarks are thought to have good perfor-
mance, and scoring high in well-known benchmarks
helps sell systems—both in the commercial market and
in the research community. This is one of the reasons
that a great deal of effort goes into making systems
achieve high benchmark scores. We also use benchmark
programs to guide us in the optimization process. A
good set of benchmark programs helps us optimize the
system effectively by identifying performance bottle-
necks. However, it is often difficult to devise a good
benchmark that stresses the system in a realistic manner.
A bad benchmarking methodology is misleading,
encouraging us to optimize parts of the system that have
little or no impact on the performance visible to users.

The task of benchmarking interactive systems, such as
Windows NT, is further complicated by adding a user
into the performance equation. It is known that human
judgment of performance is based roughly on the
response time or the latency with which the system han-
dles each user request. Generally speaking, collecting
response time information in a benchmark is more diffi-
cult than calculating the throughput. Moreover, deter-
mining how different response times affect users’
perception is difficult because perception is greatly
influenced by factors such as the user’s attitude, expec-
tation, and physical limitations [10]. These factors make
benchmarking interactive systems extremely difficult
and unique. It is clear that we cannot simply apply con-
ventional techniques to measure interactive systems.

Nonetheless, the majority of today’s benchmarks use

conventional techniques that are inappropriate for inter-
active system measurement. First, these benchmarks
often rely on throughput-based metrics. Interactive users
do not evaluate system performance based on how
quickly a system can respond to a sequence of requests,
but how quickly the system can respond to each individ-
ual request. Throughput-based metrics do not capture
how quickly the system was able to handleeach of the
requests nor do they report the variance observed for the
different events. Second, it is considered good practice
to use traditional statistical techniques to present our
data. We strive for stable, statistically significant results
and make every effort—such as removing the system
from the network and rebooting the system before each
trial—to ensure that the benchmark produces stable out-
put. These experiments inaccurately model the environ-
ment in which the system is actually used and ignore the
most important and interesting situations we can mea-
sure—anomalies. We, as users of interactive system our-
selves, often experience situations in which an operation
takes an unexpectedly long time for no apparent reason.
We, as researchers, must work to eliminate these anoma-
lies; they frustrate users and reduce the user-perceived
performance of the system. Experts on human-computer
interaction have long noted that expectation has a signif-
icant effect on user-perceived performance. Users are
surprisingly forgiving when they are waiting for opera-
tions they expect to take a long time but are unforgiving
when an operation that they expect to complete quickly
does not.

We have been working continuously to narrow the gap
between the techniques in use and an ideal interactive
system measurement technique. We will explain what
we have done so far, what we have learned, and on what
we are currently working. We will then evaluate the fea-
sibility of implementing the proposed system on Win-
dows NT.

3. Previous measurement projects

In an effort to make systems research more relevant to
the majority of computer users in the world, we have
undertaken a number of projects to help us understand
the performance of personal computer operating sys-
tems, such as Windows and Windows NT, and the appli-
cations that traditionally run on these platforms. In this
section, we discuss these projects from the perspective
of the benefits derived from using such a widely popular
platform and the challenges it imposed.

3.1. The Measured Performance of Personal Com-
puter Operating Systems

With the realization that the research community must

understand more about commodity systems, we set out
to measure and understand the behavior of commodity
systems and how they compare to traditional research
operating systems [2]. We measured and compared Win-
dows NT 3.50, Windows for Workgroups 3.11, and Net-
BSD 1.0. We used the Pentium Performance Counters
[4] to obtain performance statistics including execution
time, on-chip cache miss counts, and segment register
loads. The Pentium Performance Counters are accessi-
ble only from the supervisor mode. Accessing the per-
formance counters under NetBSD was straightforward,
since we could freely modify the kernel to introduce the
code to manipulate the counter. Under Windows for
Workgroups, we used the VxD interface, which allows
any user program to introduce supervisor-mode code
into the kernel and invoke it directly. Under Windows
NT, we took advantage of its installable device driver
interface. This interface allows a third party to imple-
ment and install a device driver into the NT kernel
dynamically. Following the documentation provided in
the Windows NT Device Driver Kit [8], we imple-
mented and installed a kernel-mode driver that makes
the Pentium Performance Counter registers appear as
ordinary device files.

The tools we built allowed us easy access to the perfor-
mance counters, but the lack of Windows and Windows
NT source code limited our ability to interpret measure-
ment results and draw useful conclusions. Explaining
the results of benchmarks was made difficult by the fact
that we could not confirm our suppositions by code
analysis. In many cases, we had to write several new
benchmarks to explain the results of one benchmark,
and in many cases, writing and measuring the additional
benchmarks did not help us fully explain the results. The
lack of source code access also meant that we could not
isolate and measure specific parts of the kernel. This
limited our ability to explain and further understand
interesting behavior that the systems exhibited.

Perhaps the most important lesson we took away from
this project was the realization that throughput metrics
do not always correlate with the user-perceived perfor-
mance. One of the benchmarks in this study measured
how quickly the systems executed a script using Wish, a
command interpreter for the Tcl language that provides
windowing support using the Tk toolkit [5]. The results
of this benchmark were greatly affected by the aggres-
sive optimization that NetBSD and the X-Windows sys-
tem applied to the input stream. When many requests
arrive at the server in a short period of time, the system
tries to minimize the server-client communication over-
head by sending multiple requests per communication
round trip. We observed similar behavior from Windows

NT running Microsoft Powerpoint when processing ten
page-down requests. The processor performed five to six
times more work1 when the requests were fed into the
system at a realistic rate of about 10 characters per sec-
ond than when all the requests were fed as quickly as
possible. These optimizations help systems perform bet-
ter on throughput metrics, but often have adverse effects
on user-perceived performance. This observation led to
our next study.

3.2. Using Latency to Evaluate Interactive System
Performance

We set out to establish an appropriate set of techniques
for measuring interactive system performance [3]. Pre-
vious measurement techniques relied almost entirely on
throughput-based measures [1][7], ignoring the fact that
throughput and user-perceived performance are different
in today’s popular GUI environments. User-perceived
performance might coincide well with throughput in
compute-intensive computations such as scientific com-
putation and compilation, but not necessarily with more
interactive applications, such as word processors,
spreadsheets, and games.

In this study, we measured the performance of interac-
tive systems using the response time that users experi-
ence when running commonly-used applications. We
recognized that the response time or the latency of the
system handling each user-initiated event, such as a key-
stroke, correlates better with user-perceived perfor-
mance than does throughput. We designed and
implemented techniques to measure event-handling
latency in commodity operating systems and applica-
tions, and used these techniques to measure Windows
NT versions 3.51 and 4.0 and Windows 95. Since we
could not instrument real applications, we devised mea-
surement techniques based on two assumptions. The
first assumption was that the CPU is idle most of the
time and becomes busy only when it is handling an
event. The second assumption was that applications are
single-threaded and only call the Win32 APIGetMes-
sage() to block waiting for new events, after they
have completed handling all previous events.

The combination of these two techniques allowed us to
measure the latency of user-initiated eventswhen our
assumptions were met. While we were able to measure
how long a simple application, such as Notepad, spent
handling each keystroke event, we were unsuccessful in
measuring complex applications such as Microsoft
Word, or more complex system states, such as multiple

1. Inferred from CPU occupancy time.

applications running concurrently. In terms of under-
standing user-perceived performance, we identified the
crucial difference between throughput and user-per-
ceived performance. Common cases dictate throughput
performance—the parts of the system in which the most
time is spent are ultimately reflected in throughput met-
rics. User-perceived performance is dictated by how fre-
quently the user is annoyed and the extent to which the
user is annoyed by each occurrence. No matter how fre-
quently they occur, events with latencies below the
threshold of user perception do not annoy the user and
are therefore irrelevant in the user-perceived perfor-
mance equation. Conversely, if an event takes suffi-
ciently long to be annoying, its contribution to user-
perceived performance is far greater than is suggested
from its frequency or percent of total execution time.

4. A New Measurement Methodology

Although constructing a performance metric that cap-
tures the subtleties of user subjectivity is beyond the
scope of our expertise, we can use the lessons learned in
the prior studies to measure and improve the perfor-
mance of interactive systems. Since the user’s judgment
of performance is subjective and events that annoy the
user are important, we must capture the situations that
annoy users. By understanding how these problems
arise and correcting the system to avoid such situations,
we can improve user-perceived performance.

The measurement system we are building monitors the
system under normal operation with a real user on the
console. This allows us to exercise the target system in a
realistic manner. Controlled experiments based on artifi-
cial benchmarks yield stable, statistically significant,
reproducible results but often fail to be realistic. In these
test cases, it is common to disconnect the machine from
the network and/or reboot the machine before each
experiment so that the various caches in the system are
in a known state. Unfortunately, this is not how most
people use their systems, so the benchmarks do not
accurately reflect actual use. Real systems often run
multiple programs and daemons simultaneously and are
constantly affected by external events such as packets
arriving on the network. Many performance problems
are created by these unpredictable interactions.

For our measurement system, we rely on the user to
decide when performance is unacceptable. The user of
the system notifies the measurement tool immediately—
by clicking a button on the screen—after or while expe-
riencing unacceptable performance. The tool then
records the latency of the operation that frustrated the
user and dumps data describing the last several seconds

of system state leading up to the unacceptable behavior;
data that allows us to diagnose the cause of the long
latency event. The technical challenges are to identify
the data we need to collect and determine how best to
collect such data without imposing high overhead
(either in time or storage). In the next section, we dis-
cuss the type of information we have determined neces-
sary to collect and evaluate the possibilities of collecting
such information under Windows NT.

5. Collecting data

Using the measurement system outlined above, we hope
to be able to find instances in which interactions
between processes and daemons, process scheduling
policy, or disk scheduling policy is causing irritating
delays in the processing of user-initiated events. Based
on earlier work, we have determined some of the data
that we must collect. In the sections that follow, we
describe the data and the techniques for collecting such
data in the Windows NT environment.

5.1. Latency of user-initiated events

Since user irritation is caused by slow response time
combined with the expectation of fast response time, it
is vital that we measure how long the system spends
processing each event. We had moderate success col-
lecting this data in our earlier studies, but we relied upon
two simplifying assumptions: that there are no back-
ground tasks and that users run a single application at a
time. We can no longer afford to make such assump-
tions. Real users often run more than one application
concurrently and many applications are multi-threaded
and perform background processing. In such an environ-
ment, the user and the application are the only parties
who know when event-handling begins and ends. Since
it is extremely difficult to instrument users, we must rely
on applications to provide this information to the mea-
surement system. This can be accomplished in one of
three ways. First, the application can keep track of its
own event latencies. This is likely to provide the most
accurate data, but it is also the least practical in that it
requires access to the application source code (not to
mention actually modifying all the applications a user is
likely to use). Second, we could use interposition to
intercept every application call in a measurement library
and then deduce the event latencies based on this trace.
This process is feasible by substituting our own libraries
for the standard DLLs, but interpretation of the trace
output is error-prone. The third technique is for the
operating system to try to extrapolate event beginning
and ending times. This introduces the potential for the
greatest margin of error and requires access to the oper-
ating system source code. None of these approaches is

particularly desirable, and all require source code avail-
ability, which makes it troublesome to collect this type
of data under Windows NT.

Even if we could capture latencies using one of these
techniques, there is a component of response time that
cannot be captured by the application alone. The time
that an application spends processing a user-initiated
event does not include the time that the system spends
delivering a hardware event, such as a mouse click, to
the application. Although we have yet to measure such a
case in our constrained environment, it is likely that, in a
real environment with multiple runnable threads, the
delivery time could contribute significantly to latency.
To measure event-delivery time, we must timestamp
every keyboard and mouse interrupt and determine
when the system actually delivers the corresponding
higher-level event to a particular application. In Win-
dows NT, timestamping keyboard and mouse events is
easily accomplished by modifying the keyboard and the
mouse drivers. However, associating a keyboard or
mouse input to a higher-level event delivered to the
application is challenging. Doing so requires instrumen-
tation of multiple points in the path executed as an input
event is processed. This cannot be done without OS
source code access. While the installable driver interface
provides the ability to collect statistics localized to the
driver, it fails to provide us a way to examine or modify
the other parts of the system.

5.2. Status of threads running in the system

To identify the cause of a performance problem, it is
essential to know when the required thread was able to
run, when it was not, and why. Windows NT has an
extensive performance monitoring interface. Objects in
the system such as threads, processes, processors, disks,
and network protocols maintain a set of performance
statistics that can be retrieved from user-level, as is done
by the statlist program [9]. Using this interface, it is pos-
sible to determine the state of a thread, whether the
thread is blocked, and the reason why it is blocked.

5.3. Queue States

If the performance of a system is limited because a criti-
cal thread is blocked, we must eliminate such waits or
shorten their duration. One prime example of such a
queue is the disk queue. Using the performance mea-
surement interface described in Section 5.2, we can
obtain various statistics including the number of read
and write requests and the length of the queues. Unfor-
tunately, the NT performance monitoring interface does
not reveal the contents of the disk queue, because such
information is localized to the disk driver. However, by

replacing the driver, we can identify the contents of the
disk queue. Unfortunately, we cannot directly relate a
specific device request to the thread that generated it.
Determining this information requires that the driver
examine thread states in the core of the kernel to which
the device driver interface does not allow access.

5.4. Kernel profile

Kernel profiling can provide detailed information about
the inner workings of the operating system, revealing
where a thread is spending its time inside the kernel. In
cases where a major component of the response time is
due to the thread executing inside the kernel, profile out-
put can help identify system bottlenecks. For this study,
we need to extend conventional profilers, because we
are interested in the data from a specific subinterval,
namely the interval during which the user was waiting,
not the interval during which the profiler was running.
Ordinary profilers do not maintain enough information
to calculate subinterval profiles. Typically, profiling
requires having source code access to the system being
profiled. While it might be possible to construct a profil-
ing system using a binary instrumentation tool such as
Etch [6], the information produced would be of limited
utility without source code with which to analyze the
data.

The requirement of the measurement tool described in
Section 4 goes beyond the provisions of Windows NT.
Table 1 summarizes our needs for constructing an inter-
active performance monitoring tool and identifies the
classes of data for which source code access is required.
In most of the cases, some data is available without
source code, but source code is required to analyze the

data and relate it to appropriate user actions. For exam-
ple, although the installable device driver interface pro-
vides the ability to measure and experiment with some
areas of the system, it fails to provide information about
the kernel’s inner workings. NT’s performance monitor-
ing interface also provides a convenient way to monitor
parts of the system, but the disconnect between the per-
formance monitoring tools and the device level inter-
faces limits its utility.

6. Difficulties in conducting research with-
out source code

In this section, we discuss several of the difficulties we
experienced conducting research using Windows NT.
Each of the following problems is serious enough to
make NT an unsuitable platform for some systems
research. In order for NT to become a good research
platform, both Microsoft and the research community
must work together to address these problems. We have
found that detailed performance analysis and under-
standing requires access to kernel (and application!)
source code. First, without source, it is often impossible
to confirm hypotheses about system behavior. In both of
our previous measurement projects, the lack of source
code access made it impossible to draw definite conclu-
sions. In some cases, we were able to make definitive
statements by taking several additional measurements to
confirm our suspicions, but in many cases, we simply
could not substantiate our suppositions—all we could
do was increase the probability that our intuition was
correct by taking additional measurements. While this is
the norm in some natural sciences, it is particularly frus-
trating when we know that the answer is easily verifi-

Data Collected Methodology

Source

Required
for data

collection

Required
for

analysis

Per-event latencies Detailed accounting of threads’ CPU activities. NO YES

Instrumenting the application. YES YES

Thread status NT performance monitoring interface. NO YES

Queue status NT performance monitoring interface. NO YES

Modify device drivers. NO YES

Kernel profile Source code profiler. YES YES

Binary instrumentation tool. NO YES

Table 1: Data Collection Summary.This table shows how we might collect the different types of data we need and
whether we can collect such data in the absence of source code. Notice that in most cases, the utility of the data is
diminished by the absence of the source code.

able.

In some cases, the lack of source code prevented us
from pinpointing the exact cause of a performance prob-
lem. In systems with source code, we could often find
the cause of the performance that we observed and, if
desired, modify it and remeasure. In the case of NT, the
best we could do was offer vague suggestions for allevi-
ating system bottlenecks. The goal of many research
projects is to find an exact answer to a question or solve
a problem so that the system will perform better. Win-
dows NT does not allow researchers to achieve this goal
in many circumstances. This makes conducting research
a frustrating experience.

While Microsoft does offer source code licenses for NT,
we find that the restrictions are so limiting that they are
in direct opposition to University policy. In particular,
requiring students to sign non-disclosure or confidenti-
ality agreements is problematic, particularly in the case
of undergraduates. Equally problematic is prohibiting a
class of students (those who come from certain foreign
countries) from participating in projects that use source
code. Finally, there is concern over publication. If we
have access to source code, and use that access to
explain results that we observe, does our confidentiality
agreement prohibit us from explaining our results? That
is certainly an untenable situation.

7. Conclusion

The unique manner in which user-perceived perfor-
mance is determined demands that we develop new
techniques to measure and improve interactive system
performance. Windows NT is an attractive platform for
such research. Conducting practical research that can
solve the type of problems that millions of people expe-
rience every day excites many researchers. We have
demonstrated that it is possible to perform interesting
research on NT, but we are approaching the limit that a
proprietary system places on the type of measurement
research that can be conducted. Researchers expect and
require more freedom from the platform they use; we
need better hooks into the operating system to provide
the detailed information we seek or fewer restrictions on
source code licensing.

8. References

[1] Business Applications Performance Corporation,
SYSmark for Windows NT, Press Release by
IDEAS International, Santa Clara, CA, March
1995.

[2] J. Bradley Chen, Yasuhiro Endo, Kee Chan, David
Mazieres, Antonio Dias, Margo Seltzer, and Mike
Smith, “The Measured Performance of Personal
Computer Operating Systems,”ACM Transactions
on Computer Systems 14, 1, February 1996, pages
3-40.

[3] Yasuhiro Endo, Zheng Wang, J. Bradley Chen and
Margo Seltzer, “Using Latency to Evaluate Interac-
tive System Performance,”Proceedings of the Sec-
ond Symposium on Operating System Design and
Implementation, October 1996, pages 185–199.

[4] Intel Corporation, Pentium Processor Family
Developer’s Manual. Volume 3: Architecture and
Programming Manual, Intel Corporation, 1995.

[5] John K. Ousterhout.Tcl and the Tk Toolkit, Addi-
son-Wesley, Reading, Massachusetts, 1994.

[6] Dennis Lee, Ted Romer, Geoff Voelker, Alec Wol-
man, Wayne Wong, Brad Chen, Brian Bershad, and
Hank Levy, Etch Overview, http://www.cs.washing-
ton.edu/homes/bershad/etch/index.html.

[7] M. L. VanNamee and B. Catchings, “Reaching New
Heights in Benchmark Testing,”PC Magazine, 13
December 1994, pages 327-332. Further informa-
tion on the Ziff-Davis benchmarks is available at:
http://www.zdnet.com/zdbop.

[8] Microsoft Corporation,DDK Platform, Microsoft
Developer Network, Redmond, Washington, Janu-
ary 1996.

[9] Microsoft Corporation, Win32 SDK, Microsoft
Developer Network, Redmond, Washington, Janu-
ary 1996.

[10]Ben Shneiderman,Designing the User Interface:
Strategies for Effective Human-Computer Interac-
tion (Second Edition), Addison-Wesley, Reading,
Massachusetts, 1992.

