
LLAMA: Efficient graph analytics
using Large Multiversioned Arrays

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Macko, Peter, Virendra Marathe, Daniel Margo, and Margo Seltzer.
2015. "LLAMA: Efficient Graph Analytics Using Large Multiversioned
Arrays." In Proceedings of the 31st IEEE International Conference
on Data Engineering (ICDE 2015), Seoul Korea, April 13-17, 2015:
363-374.

Published Version doi:10.1109/icde.2015.7113298

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:22713050

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=LLAMA:%20Efficient%20graph%20analytics%20using%20Large%20Multiversioned%20Arrays&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=c58672c7263b6e25039b4b3d50193bb9&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:22713050
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

LLAMA: Efficient Graph Analytics Using
Large Multiversioned Arrays

Peter Macko #∗1, Virendra J. Marathe ∗2, Daniel W. Margo #3, Margo I. Seltzer #∗4

School of Engineering and Applied Sciences, Harvard University
33 Oxford Street, Cambridge, MA, USA

1 pmacko@eecs.harvard.edu
3 dmargo@eecs.harvard.edu
4 margo@eecs.harvard.edu

∗ Oracle Labs
35 Network Drive, Burlington, MA, USA
2 virendra.marathe@oracle.com

Abstract—We present LLAMA, a graph storage and analysis
system that supports mutability and out-of-memory execution.
LLAMA performs comparably to immutable main-memory anal-
ysis systems for graphs that fit in memory and significantly
outperforms existing out-of-memory analysis systems for graphs
that exceed main memory. LLAMA bases its implementation
on the compressed sparse row (CSR) representation, which is
a read-only representation commonly used for graph analytics.
We augment this representation to support mutability and per-
sistence using a novel implementation of multi-versioned array
snapshots, making it ideal for applications that receive a steady
stream of new data, but need to perform whole-graph analysis
on consistent views of the data. We compare LLAMA to state-
of-the-art systems on representative graph analysis workloads,
showing that LLAMA scales well both out-of-memory and across
parallel cores. Our evaluation shows that LLAMA’s mutability
introduces modest overheads of 3–18% relative to immutable
CSR for in-memory execution and that it outperforms state-of-
the-art out-of-memory systems in most cases, with a best case
improvement of 5x on breadth-first-search.

I. INTRODUCTION

Graph-structured data are everywhere. From biological to
social networks, from roads to the Internet, from recommen-
dations to history, graph-structured data are growing in both
size and complexity. Graph analytics have become almost syn-
onymous with “big data”, and graph data are often processed
using distributed systems. Recent efforts tackle both scaling
up, using large machines with dozens to hundreds of cores [1],
and scaling out, using a cluster of machines each of which
processes part of a dataset [2]. There are two distinct efforts:
main-memory analytic systems require that the entire graph fit
in memory [1], [3], [4], [5], and out-of-memory systems use
persistent representations accommodating graphs that exceed
memory [6], [7], [8]. The problem with main-memory systems
is that they require costly shared-memory machines to process
large graphs, while the problem with existing out-of-memory
systems is that they frequently do not perform well when the
graph fits in memory (as shown in Section V-B).

We present LLAMA (Linked-node analytics using Large
Multiversioned Arrays), a system designed to provide the best
of both worlds. Its performance is comparable to in-memory

analytics systems when the graph fits in the memory of a
single machine and comparable to or better than existing out-
of-memory analytic engines on graphs that exceed memory.

LLAMA’s in-memory representation is based on the com-
pressed sparse row representation (CSR) used in most main-
memory systems [9]. While most such systems operate on
immutable data, LLAMA provides high-performance analytics
in the presence of incremental data ingest and mutation.

LLAMA stores graphs as time series of snapshots. When
first loaded, a graph resides in a single LLAMA snapshot; then
each following incremental load produces another snapshot.
This makes it easy to support updates, as each batch of updates
produces a new snapshot; it also provides the ability to analyze
graphs temporally [10], [11]. This structure is also ideal for
applications that receive a steady stream of new data, but
need to perform whole-graph analysis on consistent views. We
leverage the virtual memory system and the parallel nature of
SSDs to support out-of-memory execution.

We compare LLAMA to several of the most popular graph
analytics systems, using graphs ranging from millions to
billions of edges. We consider three widely used benchmarks:
PageRank [12], an embarrassingly parallel vertex-centric com-
putation; breadth-first search (BFS), which exercises graph
traversal; and triangle counting, which is the building block
of many graph centrality metrics. We show that LLAMA’s
mutability introduces modest overheads of 3–18% relative to
an immutable CSR for in-memory graphs and that it signifi-
cantly outperforms state-of-the-art out-of-memory systems in
most cases, with a best case improvement of 5x on BFS.

The contributions of this work are:
• The design and implementation of a multi-version CSR

representation that performs almost as well as a tradi-
tional CSR, while also supporting updates.

• The design and implementation of a CSR representation
that works on datasets that exceed memory.

• A system that provides competitive performance for in-
memory graphs.

• A system that outperforms state-of-the-art out-of-memory
systems.

The rest of this paper is organized as follows. Section II de-
scribes LLAMA’s architecture, focusing on its read-optimized
storage, and Section III then discuses some of the more crucial
design decisions. Section IV describes how to use LLAMA.
Section V evaluates LLAMA’s performance, comparing it to
several popular graph analytic systems. Section VI places
LLAMA in the broader research context, and Section VII
concludes.

II. READ-OPTIMIZED GRAPH STORAGE

LLAMA represents a graph using a variant of the Com-
pressed Sparse Row (CSR) representation that supports ver-
sioned data, which we use to provide efficient incremental
ingest and fast multiversioned access. When a graph is first
loaded into LLAMA, it resides in a single base snapshot,
and each subsequent incremental load creates a new “delta”
snapshot containing the newly loaded vertices and edges.
A vertex’s adjacency list can thus be spread across several
snapshots. We call the part of an adjacency list contained in
a single snapshot an adjacency list fragment.

A graph in LLAMA consists of the following data struc-
tures, each of which is described in more detail in the
following sections:

• multiple edge tables, one per snapshot, each storing
consecutive adjacency list fragments, and

• a single vertex table shared by all snapshots that maps
vertex IDs to per-vertex structures.

The vertex table is a Large Multiversioned Array or LAMA,
as described in Section II-A.

By default, LLAMA stores only the out-edges of a graph,
as this suffices for many analytics applications; the user can
optionally include in-edges. LLAMA additionally supports
other views of the graph that can be useful for specific
applications. For example, an undirected graph can be loaded
in “doubled” mode, which transforms it to a directed graph
by representing each edge as a pair of incoming and outgoing
edges. The user can also specify “post-order edges” mode,
which inverts some edges so that all edges lead from a tail
ID to a numerically greater (or equal) head ID. This mode is
useful for triangle counting.

Figure 1 shows a simple multiversioned 3-node graph and
its LLAMA representation. The first snapshot (0) contains the
original graph, while the second snapshot (1) illustrates the
addition of one edge and the removal of another. The vertex
table (Section II-A) is shared between the two snapshots, while
each snapshot has its own edge tables and deletion vectors
(Section II-B).

A. Vertex Table: Large Multiversioned Array (LAMA)

LLAMA implements the vertex table using multiversion ar-
rays, which we call LAMAs. From the programmer’s perspec-
tive, a LAMA is a mutable array with support for snapshotting.
In principle one could treat snapshots as writable clones and
create a branching version tree, but we currently do not.

The LAMA implementation uses a software copy-on-write
technique: We partition the array into equal-sized data pages,

each of which holds 2m elements for some fixed value m.
We then construct an indirection array containing pointers to
the data pages. We access the ith element of the array in two
steps: first, assuming that we have b-bit indices, locate the data
page by using the b − m most significant bits of i to index
into the indirection array, then, use the remaining m bits to
select the appropriate entry from the data page.

We create a snapshot by copying the indirection array. To
modify a data page belonging to a previous snapshot, we first
copy the page, update the indirection array to reference the
new page, and then change the new page as necessary. The top
of Figure 1b shows a LAMA vertex table with two snapshots
and 2m = 2 elements per page. In practice, we choose m to
be high enough so that the physical page size is an integer
multiple of the file-system and virtual memory page sizes and
the entire indirection table fits in the L3 cache or higher in
the memory hierarchy.

Vertex Records: We store the following four fields for each
vertex in the vertex table:

• Snapshot ID: the snapshot containing the first adjacency
list fragment that belongs to the given vertex

• Offset: the index into the edge table of the given snapshot
• Fragment Length: the length of the given adjacency list

fragment
• Degree (optional): the total vertex degree
Although the copy-on-write vertex table for a snapshot

conceptually contains entries for all vertices, the data pages
comprising the adjacency list fragments for that snapshot
contain only small number of vertices. Therefore, we have to
store adjacency list fragment lengths explicitly, because there
is no guarantee that consecutive vertices reference consecutive
adjacency list fragments, so the typical trick of subtracting the
offsets from consecutive elements in the vertex table does not
work.

Adding and Deleting Vertices: Different versions of the
vertex table can have different sizes. We add new vertices to
a snapshot by creating a larger vertex table for that snapshot.
We delete vertices by replacing their vertex table entries with
special nil records.

On-Disk Format: On persistent storage, we default to storing
16 consecutive snapshots in one file – i.e., we store the first
16 snapshots in the first file, and then we start a second file in
response to creating the 17th snapshot. Limiting the number
of snapshots per file lets us easily reclaim space from deleted
snapshots while keeping the number of files manageable.

The on-disk representation is nearly identical to the in-
memory representation. Each file has a header containing
metadata for each snapshot, which includes the offset of the
corresponding indirection table and range of data pages con-
taining the snapshot. We store the indirection table as an array
of structures, each containing two fields: a snapshot number, a
4-byte integer identifying the snapshot (and therefore file) that
owns the page, and an offset, an 8-byte integer indicating the
offset within the appropriate file in which the page resides. If
the indirection table is identical to that of a previous snapshot
(i.e., there are no modifications between the two snapshots),

0

1 2

New in S1

Deleted from S1

(a) Modified Graph Structure
Ed

ge
 T

ab
le

Ve
rt

ex
 T

ab
le

Snapshot 0 Snapshot 1

0 1 2 3 4

Edge Tables
(adjacencies) 1 2 2 0 2 1

Deletion Vectors
(optional)

- - - 1 -

C: 0, 3

0 1 2
- - -

0–1 2–3 0–1 2–3

Page 0
0 1

0, 0 0, 2

Page 1
2 3

0, 3 –

Page 1'
2 3

1, 0 –

Indirection
Tables

Data Pages
(2m = 2 elements

per page)

(b) LLAMA Representation

Fig. 1: Example of a LLAMA with Two Snapshots with one added and one removed edge in Snapshot 1. The elements in
the vertex table contain the snapshot number and index into the corresponding edge table, omitting adjacency list fragment
lengths and degrees for brevity. The adjacency list fragment in the edge table of Snapshot 1 ends with a continuation record
that points to where the adjacency list continues.

we store a reference to the previous snapshot rather than
storing a duplicate indirection table. We store a snapshot’s
data pages contiguously in the file.

Data Load: We load data into memory in ascending order
of snapshot ID. For each snapshot, we mmap the appropriate
data pages from the file and build the in-memory indirection
array containing pointers to the corresponding mapped regions.
Accessing an element using its index translates into just two
pointer dereferences.

Large Initial Capacity: We can easily allocate a LAMA
with more capacity than is currently needed with only a small
space penalty. We set entries in the indirection array to refer
to not-yet-populated pages, all referencing a single zero-filled
page, which we update copy-on-write. For example, even with
small 4 KB data pages, reserving space for one million eight-
byte elements requires only 16 KB in memory (one 8-byte
pointer per data page) or 24 KB on disk (one 4-byte snapshot
ID + one 8-byte offset per data page), plus the zero page.

B. Edge Tables and Deletion Vectors

Edge Tables: An edge table is a fixed-length mmap-ed array
that contains adjacency list fragments stored consecutively;
each fragment contains edges added in the given snapshot.
We represent an edge by the vertex ID corresponding to its
target vertex. By default, LLAMA allocates 64 bits for vertex
IDs, but users can alternately request 32-bit vertex IDs. We
use 64-bit IDs in the remainder of the paper unless stated
otherwise.

Each adjacency list fragment in a delta snapshot (a snapshot
with ID greater than 0) ends with a 16-byte continuation
record that points to the next fragment or a special NULL
record if there are no more edges. The continuation record of
vertex v that points to snapshot s is a copy of v’s per-vertex
structure from the vertex table’s version s.

For example, consider finding vertex 2’s adjacency list from

Snapshot 1 in Figure 1. The vertex table entry indicates that the
adjacency list starts in edge table 1 at index 0. The adjacency
list fragment of this snapshot {1} indicates that there is one
edge in this snapshot, and the continuation record C : 0, 3
reveals that the adjacency list continues in edge table 0 at index
3. As edge table 0 corresponds to the oldest snapshot, we do
not need a continuation record at the end of the adjacency
fragment in that snapshot.

Deletion Vectors: LLAMA supports two methods for edge
deletion. By default, LLAMA deletes edge u→ v by writing
u’s entire adjacency list (without the deleted edge) into a new
snapshot with a NULL continuation record. This approach is
time-efficient but space-inefficient.

When deletions are frequent or adjacency lists are suffi-
ciently large that copying them takes up too much space,
the user can choose deletion vectors instead. Deletion vectors
are arrays, logically parallel to the edge tables, encoding in
which snapshot an edge was deleted. In Figure 1, Snapshot
0’s deletion vector indicates that edge 2 → 0 was deleted
in snapshot 1. If using 64-bit vertex IDs, we can embed the
deletion vector values in the top d bits of the vertex ID,
where 2d is the maximum number of snapshots required. This
trades vertex ID space for deletion vector space. By default,
we allocate 16 bits for the deletion vector and 48 bits for
the actual vertex ID. When using 32-bit vertex IDs, LLAMA
stores deletion vectors in a separate array.

C. Properties

LLAMA implements graph element properties using
LAMAs. We store each property in its own LAMA, parallel
to either the vertex or edge table. (The index into the LAMA
is the same as the index into the table.) Figure 2 shows the
LLAMA representation of a 3-node graph with one vertex
property “Age” and one edge property “Weight”. The snap-
shots and internal structure of the vertex table are omitted for

Vertex Table

Edge Table

0, 0, 2 0, 2, 1 0, 3, 2

1 2 2 0 2

0 1 2 3 4
Weight 0.1 0.2 0.5 0.8 0.4

0 1 2
Age 19 27 24

(snapshot, offset, adj.
list fragment length)

Fig. 2: Example of a Single-Snapshot LLAMA with a
Vertex and an Edge Property. The figure contains just one
snapshot and just the high-level representation (omitting the
internal structure) of the LAMAs – the vertex and the property
tables – for clarity.

clarity. A LAMA can store only fixed-size elements; we use
a separate key/value store for variable-sized properties.

D. Loading Data

LLAMA’s bulk loader accepts a variety of edge-list based
formats. These can be either complete graphs or a list of new
edges to be added as a new snapshot.

Ingest is most straightforward with sorted edge lists, so if
necessary, we first sort. Then, we scan the input edges to build
an array of vertex degrees; the cumulative sum of this array
provides each vertex’s index into the edge table. We create
an edge table of the appropriate size and then read the file a
second time, copying the target vertex IDs directly into the
edge table. Because we sorted the edges, this writes the edge
table sequentially.

E. Merging Snapshots

We do not normally delete snapshots; instead we merge
all snapshots into a single new LLAMA. Merging is a fast,
straightforward operation: for each vertex, read its adjacency
list, sort it by the target vertex ID, and write it out to the new
edge table.

Deleting a single snapshot or a group of snapshots proceeds
similarly: we merge into the next oldest snapshot. We only
support merging the most recent snapshots. Deleting older
snapshots requires updating the vertex tables and continuation
records in newer snapshots; we have left implementing this
for future work.

LLAMA’s operation is similar to an LSM tree [13], [14]: the
system always writes data into a new snapshot and eventually
merges the snapshots together, except where multiple versions
are specifically desired.

F. Write-Optimized Delta Map

LLAMA buffers incoming updates in a write-optimized
delta map. We represent each modified vertex by an object
containing the list of new and deleted out- and in- edges. We
store these vertex objects in a custom high-throughput, in-
memory key-value store.

The user can run queries across both the delta map and the
read-optimized graph storage, but querying the delta map is
slower. LLAMA thus excludes the delta map from analytics
workloads by default, treating it instead as a buffer for updates.
Snapshot creation is sufficiently fast that we expect a query
needing the most up-to-date data to create a snapshot and then
compute on the snapshot.

III. DESIGN RATIONALE

One of our primary design goals was to be as efficient as
in-memory analytics engines for in-memory data. We bench-
marked the three most common state-of-the-art in-memory
representations: CSR, which is used in a large number of
graph analytic systems [1], [3], [15], [16]; storing adjacency
lists in separate objects [17], [18], [19]; and representing the
graph as a collection of compressed sparse bitmaps [20]. We
chose CSR because it was the most efficient. For example,
breadth-first search on a 9 million node, 45 million edge
Barabási graph ran 34% faster on an immutable CSR than on
a representation with separate adjacency lists and 46% faster
than when using bitmaps. (We obtained these results on the
“commodity machine” described in Section V-A.)

The main advantages of CSR are its compact size and
excellent cache behavior, both due to its dense packing of
both edges and vertices. Sorting the edges first by their tail
vertex IDs and then by their head IDs produces sequential
access for many graph algorithms, such as PageRank, BFS,
and single-source shortest path (SSSP).

CSR was originally designed for in-memory computation,
but we expected CSR to also perform well in out-of-memory
scenarios for these same reasons. While many systems operate
on edge-lists [8], [21], a CSR-like approach uses about half the
space. In an edge-list representation, each edge requires both
head and tail vertex IDs; CSR requires only a head vertex ID
– the tail is implied. A smaller data footprint means that more
of the graph fits in memory, requiring fewer I/Os.

A. Mutability and Snapshots

The main disadvantage of CSR is immutability. Existing
systems address immutability using two basic approaches.
Some add a write-optimized delta map directly on top of a
CSR [7], while others treat the CSR as a log, appending a
modified adjacency list to the end of an edge table [1], [15].
The first approach requires rebuilding the entire CSR to merge
changes from the delta map, because delta maps are typically
too slow for analytics workloads. The second approach is not
much better: even a moderate number of updates causes the
edge table to grow quickly and leaves holes in the middle. This
destroys the sequentiality of the adjacency lists. Consequently,
the entire CSR must occasionally be rebuilt.

LLAMA chooses a different approach. We tried three dif-
ferent methods for storing adjacency lists in snapshots: 1)
write new edges only into a new snapshot, 2) write the entire
adjacency list, or 3) choose one or the other based on a simple
policy. The first of these performs best overall. We found that
writing complete adjacency lists (and the hybrid approach)

performs marginally better when the graph is entirely memory
resident, but the graph grows rapidly when updated and falls
out of memory. Performance then plummets.

B. Properties

Separating storage of properties from the graph structure
draws on column-store philosophy: load only the needed parts
of the data. For example, many algorithms need only outgoing
edges. Loading only the edges and properties necessary for an
algorithm leads to superior performance relative to systems
that must load all data associated with a vertex or an edge.

However, if the user frequently runs analyses that require
certain properties, using columnar storage might backfire. We
thus plan to implement a row-store like materialized views
in the future that will combine the graph structure with user-
specified vertex and edge properties in a single data structure.

C. The Cost of the Indirection Table

To understand the overhead of accessing data through the
indirection table in LAMA when all data fits in memory
(i.e., when data access is not I/O bound), we compared
LAMA to an immutable flat array implementation on two
common graph algorithms on 10 million node and 50 million
Erdős-Rényi edge random graphs. The first algorithm, triangle
counting, consists of a tight inner loop; this highlights the
effect of additional instructions in element access. On this
highly CPU-sensitive workload, LAMA’s overhead was 5.0%.
On PageRank [12], which has no such tight inner loop, the
performance difference between LAMA and an immutable
array was statistically insignificant. We also compared LAMA
to a copy-on-write implementation in which we modify the
operating system’s page tables directly to share common
pages, but we found that this produced sufficiently many TLB
misses to be approximately 5% slower than LAMA.

D. Buffer Management

As we transitioned from a purely in-memory representation
to one that could gracefully and efficiently handle datasets
larger than memory, we implemented and evaluated several
alternative strategies for caching data. Our final implemen-
tation uses mmap, which produces effectively zero overhead
once data are memory resident. This was our highest priority
design requirement.

We also experimented with maintaining our own buffer pool
and transferring data between disk and memory explicitly. We
tried two different approaches for pinning pages in memory
– reference counting using atomic increment/decrement op-
erations and hazard pointers [22], but found the in-memory
overhead prohibitive in both cases. Relative to the mmap-
based implementation, the overhead ranged from nearly 50%
for PageRank to nearly 200% for triangle counting.

This result is not entirely unsurprising. Moderately high
overheads due to page latching have already been observed
in relational databases [23], but the results for graph analytics
are even worse. To better understand this, we disassembled our
triangle counting routine; we found that the LAMA array is

accessed in a loop of 12–16 instructions. Adding even a small
number of instructions significantly affects execution time.

In theory, the disadvantage of using mmap is that we give
up control over which data pages are evicted from memory.
In practice, we find that other systems take one of only three
approaches to this issue. One is to always access vertices in
order (e.g., GraphChi [7], X-Stream [8]), in which case the
operating system does a good job prefetching and evicting.
The second is to simply ignore out-of-memory execution (e.g.,
GraphLab [24], Pregel [25]), and the third is to use mmap
as we do (e.g., Lin et al. [21]). Should the need arise for
more specific eviction control, we have experimented with
madvise and mlock; preliminary results suggest that they
can make mmap to behave as we want.

IV. USING LLAMA

LLAMA is a C++ library that users can easily embed in
their programs. After opening a database, the user can iterate
over all vertices in the database using a for loop, potentially
using OpenMP [26] for parallelism, or can address vertices
directly using their IDs. LLAMA thus supports both whole-
graph queries and targeted queries such as BFS that start from
a specific vertex. Then, given a vertex, the user can open
an iterator to iterate over the vertex’s adjacency list, using
either the most recent data or data from a specific snapshot.
LLAMA does not expose the CSR adjacency lists directly to
the user, except in the special case in which the graph is stored
in a single snapshot, in which case all the adjacency lists
occupy a single fragment. LLAMA additionally provides a
BFS construct and syntactic sugar to simplify many common
operations such as iterating over all nodes or iterating over the
out-edges of a given node.

LLAMA provides a general purpose programming model
instead of restrictive vertex- or edge- centric models, such
as GAS [27]. It is nonetheless possible to write LLAMA
programs that exhibit such access patterns, and it is indeed
advantageous to do so when processing graphs significantly
larger than memory, as this produces more sequential access
patterns. Unlike GraphChi [7] or X-Stream [8], LLAMA
enables rather than enforces sequential access patterns. We
found that writing programs that exploit sequential access was
straightforward: process vertices in the order in which they are
stored in the vertex table.

We implemented two alternative implementations for some
algorithms, such as BFS; one is optimized for in-memory
graphs, and the other is optimized for out-of-core graphs.
Currently the user has to choose between the two manually;
we plan to support dynamic adaptation.

V. EVALUATION

Our evaluation has four parts, analyzing LLAMA’s: 1)
performance relative to competing engines, 2) multiversion
support, 3) scalability by number of cores, and 4) scalability
with respect to graph size and composition. We use three main
benchmarks: ten iterations of PageRank [12] (PR), breadth-
first search (BFS), and triangle counting (TC). The goal of

System Load PageRank BFS TC
LLAMA 7.74 6.48 0.35 9.97
GraphLab 48.80 24.30 6.60 21.02
GreenMarl 6.75 5.30 0.27 9.79
GraphChi 26.00 39.54 38.84 45.81
X-Stream – 12.74 5.65 –

(a) LiveJournal (in memory, 4 cores)

System Load PageRank BFS TC
LLAMA 311.1 607.6 233.8 2875.0
GraphLab – – – –
GreenMarl – – – –
GraphChi 760.5 1260.9 1334.9 3975.2
X-Stream – 1942.9 1124.7 –

(b) Twitter (larger than memory, 4 cores)

TABLE I: Commodity Machine Performance for LiveJournal and Twitter datasets, elapsed times shown in seconds. Note
that neither GreenMarl nor GraphLab can run when the graph exceeds main memory. X-Stream does not implement an exact
triangle counting algorithm, only an approximation, so we do not include its results.

System Load PageRank BFS TC
LLAMA 12.68 2.42 0.25 8.58
GraphLab 120.26 15.63 4.33 8.51
GreenMarl 10.56 2.11 0.23 5.24
GraphChi 37.03 14.43 18.21 48.73
X-Stream – 263.00 258.18 –

(a) LiveJournal (in memory, 64 cores)

System Load PageRank BFS TC
LLAMA 260.0 41.9 7.9 1033.8
GraphLab 2909.0 205.7 52.4 1132.5
GreenMarl 226.4 40.7 6.7 1031.4
GraphChi 1234.8 339.4 545.9 1441.0
X-Stream – 395.5 348.1 –

(b) Twitter (in memory, 64 cores)

TABLE II: BigMem Performance for LiveJournal and Twitter datasets, elapsed times shown in seconds.

the evaluation is to evaluate different parts of a system that
starts by loading an initial graph, then keeps receiving updates,
running analytics, and merging periodically – all in isolation
to better understand each one of these parts.

First, we compare LLAMA’s performance to two in-
memory systems, GreenMarl [3] and GraphLab v. 2.2 (Pow-
erGraph) [27], and two out-of-core systems, GraphChi [7]
and X-Stream [8]. We chose GreenMarl because it exposes a
flexible programming model as does LLAMA. GraphLab and
GraphChi use a vertex-centric model, and X-Stream provides
an edge-centric model. We also ran some of our workloads
on Neo4j [18], but we do not include the results in the paper.
Neo4j handles graphs larger than memory, and is one of the
most widely used graph databases, but it targets a different
point in the graph processing design space. Even on the
smallest datasets, its performance was orders of magnitude
worse than the other systems.

Second, we evaluate LLAMA’s multiversion support, by ex-
amining incremental data ingest performance and the overhead
of running analytics workloads across multiple snapshots.

Third, we evaluate scalability in the number of cores.
Fourth, we analyze LLAMA’s scalability on synthetically

generated R-MAT graphs, varying the number of vertices and
the average vertex degree. R-MAT is a recursive matrix model
for generating realistic graphs [28].

A. Setup

We run our evaluation on two platforms, each representing
a design point we target:

• BigMem, a large shared-memory multiprocessor on which
data all fit in memory: 64-core AMD Opteron 6376, 2.3
GHz with 256 GB RAM.

• Commodity, a small personal machine on which we may
need to execute out-of-core: Intel Core i3, 3.0 GHz with
two HT cores (4 hardware threads total), 8 GB RAM,
and a 256 GB Samsung 840 Pro SSD.

We compute on the following real-world graphs in addition
to R-MAT:

• LiveJournal [29]: 4.8 mil. nodes, 69.0 mil. edges
• Twitter [30]: 41.7 mil. nodes, 1.47 bil. edges

In LLAMA, LiveJournal uses 601 MB. Twitter is a 11.9
GB file; this is almost 50% larger than the memory of the
commodity machine.

For GraphLab tests in memory, we loaded the entire graph
into a single partition to avoid inter-partition communication
overhead. Note that while GraphLab is a distributed system,
it has good support for shared-memory computation.

B. Cross-System Comparison

Tables I and II compare the performance of LLAMA to the
four other systems on the commodity and BigMem machines,
respectively. We store the entire graph in a single LLAMA
snapshot. (We evaluate LLAMA with multiple snapshots in
Section V-C.) The LiveJournal dataset fits in memory in both
cases, while Twitter fits in the memory only on the BigMem
machine.

We did not run triangle counting on X-Stream; X-Stream
only implements an approximate algorithm, and did not pro-
duce a close-enough result even when run as long as exact
triangle counting on the other systems. This is an artifact of the
fact that X-Stream is designed to work directly on its input data
files without preprocessing them first. X-Stream also has no
separate loading phase, so its performance on each benchmark
could reasonably be compared to the sum of the load time and
the run time on the other systems. However, in practice load
times are amortized if a system runs multiple workloads.

LLAMA outperforms all systems except GreenMarl both in
and out of memory, and GraphLab matches it only for triangle
counting on BigMem.

GreenMarl: We used nearly identical implementations of
PageRank, BFS, and triangle counting on both LLAMA
and GreenMarl. GreenMarl’s runtime likewise uses OpenMP

Time (s) CPU Time Breakdown (%) I/O (GB)
System Wall CPU CPU% PageRank Buffer Mgmt. Other Read Write
LLAMA 607.6 1088.5 179 98.0 < 0.1 2.0 118.4 0.0
GraphChi 1260.9 3463.3 274 11.9 86.6 1.5 38.7 0.2
X-Stream 1942.9 7746.2 398 24.8 27.0 48.2 306.3 121.0

TABLE III: PageRank on Twitter: Performance Breakdown on the Commodity platform.

and CSR, although its CSR is in-memory and immutable.
Therefore, the differences between LLAMA’s and GreenMarl’s
runtimes approximate the overhead of supporting persistence
and multiple snapshots. This difference is heavily workload-
dependent and tends to be smaller on large datasets as illus-
trated by the Twitter graph results. LLAMA performs less
than 0.23% slower on triangle counting, 3% on PageRank,
and 18% on BFS. The three major differences relative to
Green-Marl’s CSR that account for this disparity are: LLAMA
accesses an element in the vertex table through an extra level
of indirection, LLAMA’s vertex table is larger due to including
the adjacency list fragment length, and the iterator contains
extra code for processing continuation records.

LLAMA’s “overhead” on small graphs with short runtimes
on the order of seconds (as shown by the LiveJournal results)
ranges from 3% to 30% for most workloads. The only outlier is
triangle counting on the BigMem platform, where the overhead
is nearly 60%. This is because of an artifact of LLAMA’s
(and GreenMarl’s) triangle counting implementation: when the
graph is sufficiently large, both LLAMA and GreenMarl sort
the vertices by degree before counting in order to improve
cache locality. This is a widely-used optimization for triangle
counting on very large graphs, but the LiveJournal graph is
not large enough to benefit from it: sorting takes longer than
the expected gain. However, the resulting cache penalty hurts
LLAMA more than GreenMarl, because it applies to every
indirection in the LAMA vertex table. For graphs that are
large enough to benefit from degree-sorting, the access pattern
is better behaved and the difference between LLAMA and
GreenMarl shrinks.

GraphLab: LLAMA significantly outperforms GraphLab
running on a single machine for all cases except for triangle
counting on BigMem, where they perform similarly. There
are two factors that account for this. The first is memory
footprint: on the BigMem platform, GraphLab uses almost 8
GB for the LiveJournal graph and almost 200 GB for Twitter,
while LLAMA uses only 0.6 GB and 18 GB respectively.
Profiling the execution of PageRank shows the second reason:
While LLAMA’s PageRank function accounts for 98% of the
CPU time, GraphLab’s scatter, apply, and gather functions
account for a total of 37%. The remaining 63% goes towards
the framework supporting the vertex-centric computational
model. Even discounting the framework overhead, LLAMA
still outperforms GraphLab, but the results are much closer.

Triangle counting is an exception to this trend due to the
caching effects observed in GreenMarl, above. Because the
LiveJournal graph is too small to benefit from degree-sorting,
its access pattern is highly random and the triangle counting
algorithm scales poorly in the number of cores. GraphLab,

however, always scales well in the number of cores by design,
so for the smaller and unsorted LiveJournal data on the 64-core
BigMem machine GraphLab is able to catch up to LLAMA.
For larger graphs, such as Twitter, that benefit from sorting,
the vertex access pattern behaves better and LLAMA scales
well in the number of cores (similar to Figure 5).

GraphChi and X-Stream: LLAMA also significantly out-
performs both of these systems, both in and out of memory.
Performing better while in memory is not surprising due to
LLAMA’s use of CSR and mmap.

Table III shows the performance breakdown for one of the
out-of-memory cases – PageRank on Twitter on the Commod-
ity platform. LLAMA reads more data than GraphChi because
it uses 64-bit IDs instead of GraphChi’s 32-bit IDs, and thus
the graph structure is larger on disk. LLAMA nonetheless
outperforms GraphChi because the computation is CPU bound.
We confirmed this by repeating the same computation on a
hard disk instead of the faster SSD and found that LLAMA
(now limited to one thread in order to avoid seek thrashing)
still outperformed GraphChi but by less: only by 35% instead
of 200%.

While LLAMA spent 98% of its CPU time in the PageRank
function, GraphChi spent less than 12% of its CPU time in the
algorithm’s update function. Most of the remaining CPU time
is spent on buffer management: reading data and transforming
it into an in-memory representation. Harizopoulos et al. made
a similar observation for relational databases [23].

X-Stream consumes both more I/O and more CPU. Profiling
shows that it spends less than 25% in PageRank; the rest of the
time is divided between buffer management and reshuffling the
intermediate data between the scatter and gather phases of the
computation. This is in part because X-Stream does not have
a load phase. Note that if load times are included X-Stream
slightly outperforms LLAMA on in-memory LiveJournal on
the commodity machine, but falls behind for larger datasets
and if multiple workloads are run with one load phase.

Data Ingest: We ported LLAMA’s loader to GreenMarl,
which allows us to evaluate the overhead of building LLAMA’s
CSR with the extra indirection table relative to loading Green-
Marl’s CSR. Our “overhead” ranges from 14.7% to 20.1%.

LLAMA loads data 2.5–10x faster than GraphLab and
GraphChi when the input file is already sorted, which we
found to be the case for many real-world datasets we en-
countered. LLAMA auto-detects if a file is already sorted and
then loads it using a simple data transformation. GraphChi and
GraphLab always shard and sort the data.

If the data are not sorted, LLAMA marginally outperforms
GraphChi, as both do the external sort, but GraphChi must
then shard the data, which LLAMA does not need to do.

 100

 200

 500

 1000

 2000

 1 10 100

T
im

e
(s

ec
.,

LO
G

)

Snapshots

(a) Loading Time

 5

 10

 20

 50

 100

 200

 1 10 100

S
iz

e
(G

B
, L

O
G

)

Snapshots

(b) Database Size

 50

 100

 200

 1 10 100

T
im

e
(s

ec
.,

LO
G

)

Snapshots

LLAMA
GraphChi

(c) Flatten (merge all snapshots)

Fig. 3: Loading and Flattening Multiple Snapshots of the Twitter graph on the Commodity platform. The GraphChi
preprocessing time is shown for reference.

 100

 200

 500

 1000

 2000

 1 10 100

T
im

e
(s

ec
.,

LO
G

)

Snapshots

(a) BFS (Time)

 100

 200

 500

 1000

 2000

 1 10 100

T
im

e
(s

ec
.,

LO
G

)

Snapshots

(b) PageRank (Time)

 20

 50

 100

 200

 1 10 100
I/O

 (
G

B
, L

O
G

)

Snapshots

LLAMA
GraphChi

(c) PageRank (I/O)

Fig. 4: Computing Across Multiple Snapshots of the Twitter graph on the Commodity platform. The GraphChi preprocessing
time is shown for reference.

C. Multiversion Access

Next, we evaluate LLAMA’s multiversion support consisting
of incremental ingest, merging, and computation across mul-
tiple versions. We present out-of-core results on the Twitter
graph only, as the other datasets show similar trends, even
when running in memory.

We ran seven experiments, breaking the data into 1, 2, 6,
11, 51, 101, and 201 snapshots. The single snapshot case is the
same as in Section V-B. For n > 1 snapshots, we first loaded
a random 80% subset of edges as the first snapshot and then
used a uniform random distribution to assign the remaining
20% of the edges to the other n−1 snapshots. This simulates
an initial large ingest followed by multiple smaller ingests.

We chose to pick which edges to treat as updates uni-
formly at random as this provides us with the worst-case sce-
nario (without specifically constructing adversary workloads).
Bursty updates would only improve our locality and thus our
performance, which is a function of the number of snapshots
in which each vertex appears.

Figure 3 shows the load time, resulting database sizes,
and the merge time; we include the GraphChi numbers for
reference where appropriate. The database size grows steeply,
from almost 12 GB for one snapshot to 22 GB for 11

snapshots, and 187 GB for 201 snapshots. Most of this growth
is due to the multiversion vertex table; the continuation records
account for only 2.52 GB for 201 snapshots. We plan to
implement a tool to delete unneeded vertex tables, which
users can use if they do not require multiversion access to all
snapshots. This significantly decreases the total database size;
for example, deleting all but the most recent versions of the
vertex table decreases the database size to approximately 14.5
GB for 201 snapshots, yielding only 21% overhead relative to
a single snapshot.

The total load times increase on average but not with a clear
monotonic pattern, because there are two competing forces:
writing out the database files takes longer as they get larger, but
since the total amount of data is constant, with more snapshots
each delta is smaller and sorts faster. In particular, the dip in
the load time reflects the point at which the delta snapshots
became small enough to sort in memory.

Figure 4 shows that the computational performance de-
creases slightly as we introduce more snapshots, but it does
so quite gradually. The most dramatic slowdown occurs in the
first 11 snapshots – that is, the slow down between 1 and
11 snapshots is greater than the slowdown between 11 and
201 snapshots: PageRank slows down on average by 1.2%
per snapshot from 1 to 11 snapshots, then by 0.08% for the

 2

 5

 10

 20

 50

 100

 200

 500

 1000

 2000

 1 2 4 8 16 32 64

T
im

e
(s

ec
.,

LO
G

)

Cores

(a) BFS

 20

 50

 100

 200

 500

 1000

 2000

 1 2 4 8 16 32 64

T
im

e
(s

ec
.,

LO
G

)

Cores

LLAMA-1
LLAMA-11
GraphLab
GreenMarl
GraphChi
X-Stream

(b) PageRank

Fig. 5: BFS and PageRank Scaling as a Function of Core Count on the BigMem platform for the Twitter graph.

next 100 snapshots, and then by 0.04% for the remaining 100
snapshots. BFS slows down first by 1.8% per snapshot for the
first 10 snapshots, then by 0.25% per snapshot for the next
100, and then only by 0.09% for the final 100 snapshots.

The computation must read more data, because adjacency
lists are fragmented and contain continuation records, requir-
ing more random I/O. The increase in size of the multiversion
vertex table does not contribute to decreased performance.
Scanning the vertex table requires the same number of I/Os
regardless of the number of snapshots as the number of
pages read stays the same. Although the access becomes less
sequential, this does not impact performance significantly on
modern SSDs with high random I/O speeds.

The time to merge all the snapshots into one (Figure 3c)
increases only slightly with the number of snapshots. This is
an I/O bound operation; the amount of I/O does not increase
significantly with the number of snapshots, so the performance
curve is nearly flat.

For write intensive workloads, we assume a model where we
are constantly merging snapshots to bound the total number.
For example, if we create a snapshot every 10 seconds (which
would correspond to 50,000 new edges in a Twitter graph
or 550,000 in a Facebook graph [31]), we find that merging
less than 100 snapshots takes 120 seconds on our platform.
Then in the steady state, we expect to have no more than 24
snapshots (the 12 being merged and the 12 newly created ones
while the merge takes place), which occupies 45 GB if all
vertex table versions are present.

D. Scaling in the Number of Cores

We now turn to scalability. Figure 5 shows the performance
of BFS and PageRank on the Twitter graph as a function of
the number of cores on the BigMem platform.

The plot includes two lines for LLAMA: LLAMA-1, with
the entire graph in a single snapshot, and LLAMA-11, which
loads it into 11 snapshots as explained in Section V-C (we

 500

 1000

 2000

 5000

 10000

 20000

 1 2 4 8 16 32 64

T
im

e
(s

ec
.,

LO
G

)

Cores

LLAMA-1
GraphLab
GreenMarl
GraphChi

Fig. 6: Triangle Counting as a Function of Core Count on
the BigMem platform for the Twitter graph.

chose 11 snapshots for this experiment as the most dramatic
slowdown in multiversion access occurs within the first 11
snapshots). Both LLAMA and LLAMA-11 scale as well as
GreenMarl and similarly to GraphLab, the two other in-
memory systems.

GraphChi scales well for a small number of cores for both
BFS and PageRank, but the curve then levels off. Profiling
GraphChi shows that preloading vertices before computation
improves dramatically from one to four cores and then only
minimally afterwards – and as shown in Table III, this buffer
management is the dominant part of GraphChi’s execution.
This is expected since the Linux page cache does not scale
well past 4 to 8 cores [32].

X-Stream likewise scales only for a small number of cores
on the BigMem platform. Profiling shows that the runtime of
its routines, now hitting the buffer cache instead of the disk,
improves for up to four cores and then levels off, also because

 100

 1000

 10000

 25 26 27 28 29

T
im

e
(s

ec
.,

LO
G

)

Scale (log of the #nodes)

(a) Loading Time

 10

 100

 1000

 10000

 25 26 27 28 29

T
im

e
(s

ec
.,

LO
G

)

Scale (log of the #nodes)

(b) BFS

 10

 100

 1000

 10000

 25 26 27 28 29

T
im

e
(s

ec
.,

LO
G

)

Scale (log of the #nodes)

LLAMA-1
LLAMA-11
GraphChi
X-Stream

(c) PageRank

Fig. 7: R-MAT, varying the number of vertices on the Commodity platform using. Only the graph with 225 vertices fits in
memory; the sizes of the remaining graphs range from 100% to 900% of memory.

 0

 500

 1000

 1500

 20 30 40 50 60

T
im

e
(s

ec
.)

Degree

(a) Loading Time

 0

 500

 1000

 20 30 40 50 60

T
im

e
(s

ec
.)

Degree

(b) BFS

 0

 1000

 2000

 3000

 20 30 40 50 60
T

im
e

(s
ec

.)

Degree

LLAMA-1
LLAMA-11
GraphChi
X-Stream

(c) PageRank

Fig. 8: R-MAT, varying the average vertex degree on the Commodity platform using. Only the graph with 20 edges per
vertex fits in memory; the sizes of the remaining graphs range from 100% to 200% of memory.

of the page cache scalability limitation. This in turn affects
the performance of the rest of the system that depends on the
loaded data.

Triangle Counting: Figure 6 shows the performance of tri-
angle counting on the BigMem platform for LLAMA, Green-
Marl, GraphLab, and GraphChi. We did not run LLAMA-
11 because our triangle counting implementation requires all
snapshots to be merged into one, which then results in the
same performance as LLAMA-1 displayed in the figure.

All four systems scale well, LLAMA, GreenMarl, and
GraphLab converging at comparable runtimes when using all
64 cores, and GraphChi performing 40% slower. Single-core
GraphLab is slower than LLAMA, but it then scales 10x.
GraphChi scales only 5.2x; LLAMA and GreenMarl scale 6x.
The culprit is sorting the vertices by their degree, which is
not very scalable – the actual triangle counting runtime not
including this step scales by a factor of 20!

Out-of-Core Scalability: LLAMA’s and LLAMA-11’s out-
of-core performance on the Commodity platform both improve
on average by 25% as they scale from 1 to 4 cores (not shown
in a figure). GraphChi scales well on the Commodity platform,
halving the runtime from 1 to 4 cores, but its runtime at 4 cores
is still more than twice LLAMA’s runtime.

In contrast, X-Stream does not scale at all on the Commod-

ity platform. X-Stream performs significantly more I/O than
either LLAMA or GraphChi, and it is I/O bound (despite its
high CPU usage, which is partly due to spin-locking while
waiting for I/O). Thus, adding more cores does not help
improve performance.

E. Scaling in the Graph Size

Finally, we evaluate how LLAMA’s performance scales as
a function of the number of vertices and the average degree
in the out-of-core scenario. We study both of these trends
separately on two series of synthetically generated R-MAT
graphs, focusing on PageRank and BFS on the commodity
machine.

In Figure 7, we fix the average vertex degree to 16 as
recommended by Graph500 [33] and vary the number of
vertices from 225 ≈ 33.6× 106 to 229 ≈ 536.9× 106, which
produces LLAMA graph sizes ranging from 4.5 GB to 72.0
GB. In Figure 8, we fix the number of vertices to 225 and vary
the degree from 20 to 60, producing LLAMA graphs ranging
in size from 5.5 GB to 15.5 GB. We chose these ranges so
that the leftmost point on the graph fits in memory, while the
other points (potentially far) exceed memory. We therefore
only compare to other out-of-core systems. We generated the
graphs using probabilities a = 0.57, b = 0.19, c = 0.19

(recommended by Graph500) to produce graphs with the scale-
free property found in many real-world graphs. The figures
also include two lines for LLAMA, one for the graph loaded
into a single snapshot and one for 11 snapshots.

LLAMA-1 and LLAMA-11 scale well both with the number
of vertices and with the vertex degree, even to graphs that are
9 times the size of memory, consistently outperforming the
other tested systems, for all the same reasons discussed in
Section V-B.

VI. RELATED WORK

We now place LLAMA’s contributions in the context of
existing graph analytic engines. LLAMA is currently a single-
machine graph analytics system, so we begin by discussing
other single-machine systems. We then expand to include
distributed analytic engines that deal with graphs exceeding
the memory of a single machine by sharding across multiple
machines. Finally, we compare LLAMA to other multiver-
sioned data structures.

A. Single Machine Graph Analytics

GraphChi [7] was one of the first analytic systems able
to process out-of-memory graphs using commodity hardware.
GraphChi and LLAMA employ two different design philoso-
phies: GraphChi shards the data into subsets small enough
to fit in memory and then reads the subgraphs from disk in
a mostly sequential access pattern, pushing information to a
user-provided vertex program. In contrast, LLAMA programs
pull data on demand, leaving access locality to the user,
thereby enabling, but not requiring sequential access. Addi-
tionally, LLAMA uses mmap rather than file I/O which incurs
less overhead, especially when data mostly fit in memory.

TurboGraph [6], with its Pin and Slide computation model,
is a more recent vertex-centric graph processing framework
designed for SSDs. It improves on GraphChi by extracting
more parallelism, fully overlapping CPU processing and I/O.
Both TurboGraph and LLAMA reduce CPU time (relative to
systems like GraphChi), but each in different ways: Turbo-
Graph pins whole pages and processes them, while LLAMA
leverages the operating system’s virtual memory mechanism
and access locality. We were not able to compare to Turbo-
Graph, because it does not run on our Linux platforms.

X-Stream [8] uses an edge-centric gather-and-scatter model
that takes as input a binary formatted edge-list requiring
no preprocessing. X-Stream sequentially streams through the
edges, which makes it useful for whole graph analysis. In
contrast, LLAMA efficiently supports point queries as well as
whole-graph analysis.

Lin et al. [21] argued for, and demonstrated, the feasibility
of using a simple mmap-based approach for graph processing,
in which a program iterates over an mmap-ed binary edge
list file. They achieved execution times far superior to both
GraphChi and TurboGraph. LLAMA uses mmap in a similar
fashion, improving upon it by using a mutable, Compressed
Sparse Row representation, that supports efficient incremental
ingest and point-queries, while sharing a simple programming

model. A CSR occupies approximately only half of the space
of an edge list, which means that more of the graph fits in
memory, producing significantly less I/O, so we expect to
perform noticeably better on larger graphs.

Galois [4], Grace [1], Green-Marl [3], and Ligra [5] are
a few recent examples of graph analytics systems that target
(primarily) in-memory analysis. Many of their contributions,
such as Galois’ fine-grained priority scheduler and Ligra’s
automatic switching between different implementations of op-
erators, are orthogonal to our work. Of these, Galois can also
run out-of-core by executing a GraphChi-like vertex program
iterating over a persistent CSR, but it does not currently
support all the features of GraphChi.

B. Distributed Graph Analytics

An alternative to out-of-core execution is to leverage
memory from multiple machines. GraphLab [24], [2] and
Pregel [25] are the most widely-known examples of such sys-
tems. Both use vertex-centric computation. PowerGraph [27],
now GraphLab v. 2.2, runs more restricted gather-and-scatter
(GAS) vertex programs but improves on the original GraphLab
by sharding the graph by edges rather than vertices. PE-
GASUS [34] is a recent example of a Hadoop-style graph
processing framework. Kineograph [19] adds the ability to
incrementally ingest data into a distributed system and produce
timely, consistent results. While LLAMA is currently limited
to a single machine, we believe that we can leverage its out-
of-core execution to “page” data to remote machines instead
of to the persistent store, turning it into a distributed engine.

C. Multiversioned Graphs

LLAMA’s mutability provides multiversioning functionality
not found in the engines discussed so far. DeltaGraph [35] is
an index structure that handles mutation by creating snapshots,
represented by a set of deltas and event-lists. Like DeltaGraph,
Chronos [36] optimizes for efficient queries across snapshots.
Instead of deltas, it batches versions of vertices together. In
contrast to optimizing for running queries spanning multiple
snapshots, LLAMA is optimized for efficient incremental
ingest.

VII. CONCLUSION

LLAMA demonstrates that a modified CSR representation,
capable of supporting updates and working on datasets that
exceed memory, can provide performance comparable to in-
memory only solutions and better than existing out-of-memory
solutions. LLAMA’s ability to efficiently produce snapshots
makes it ideal for applications that receive a steady stream
of new data, but need to perform whole-graph analysis on
consistent views of the data. Its ability to handle relatively
large graphs on a small, commodity machine further extends
its utility.

ACKNOWLEDGEMENTS

We would like to thank James Cuff for his help with
benchmarking on the BigMem machines, Adam Welc for

insightful discussions, and Tim Harris, David Holland, Stratos
Idreos, and Yaniv Yacoby for their helpful comments. Also,
we would like to thank Oracle’s Scalable Synchronization
Research Group, the Green-Marl team, and the Spatial team
for their feedback and support.

This material is based upon work supported by Oracle
Corporation and NSF grant #1302334.

REFERENCES

[1] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and M. Hari-
dasan, “Managing large graphs on multi-cores with graph awareness,”
in USENIX ATC. Berkeley, CA, USA: USENIX Association, 2012.

[2] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed GraphLab: A framework for machine learning
in the cloud,” CoRR, 2012.

[3] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-Marl: a DSL
for easy and efficient graph analysis.” in ASPLOS. ACM, 2012, pp.
349–362.

[4] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics.” in SOSP, M. Kaminsky and M. Dahlin, Eds. ACM,
2013, pp. 456–471.

[5] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing
framework for shared memory.” in PPOPP, A. Nicolau, X. Shen, S. P.
Amarasinghe, and R. Vuduc, Eds. ACM, 2013, pp. 135–146.

[6] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu,
“TurboGraph: a fast parallel graph engine handling billion-scale graphs
in a single pc.” in KDD, I. S. Dhillon, Y. Koren, R. Ghani, T. E. Senator,
P. Bradley, R. Parekh, J. He, R. L. Grossman, and R. Uthurusamy, Eds.
ACM, 2013, pp. 77–85.

[7] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: large-scale graph
computation on just a PC,” in OSDI. Berkeley, CA, USA: USENIX
Association, 2012, pp. 31–46.

[8] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-Stream: edge-centric
graph processing using streaming partitions.” in SOSP, M. Kaminsky
and M. Dahlin, Eds. ACM, 2013, pp. 472–488.

[9] J. Dongarra, P. Koev, X. Li, J. Demmel, and H. van der Vorst,
10. Common Issues. SIAM, 2000, ch. 10, pp. 315–336. [Online].
Available: http://epubs.siam.org/doi/abs/10.1137/1.9780898719581.ch10

[10] J. Leskovec, J. M. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explanations.” in
KDD. ACM, 2005, pp. 177–187.

[11] L. Yang, L. Qi, Y.-P. Zhao, B. Gao, and T.-Y. Liu, “Link analysis using
time series of web graphs.” in CIKM. ACM, 2007, pp. 1011–1014.

[12] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the web,” Stanford University, Tech. Rep.,
1998.

[13] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and R. Kan-
neganti, “Incremental organization for data recording and warehousing,”
in VLDB. Morgan Kaufmann, 1997, pp. 16–25.

[14] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil, “The log-
structured merge-tree (LSM-tree),” Acta Informatica, vol. 33, no. 4, pp.
351–385, 1996.

[15] K. Bharat, A. Z. Broder, M. R. Henzinger, P. Kumar, and S. Venkatasub-
ramanian, “The connectivity server: Fast access to linkage information
on the web.” Computer Networks and ISDN Systems, vol. 30, no. 1-7,
pp. 469–477, 1998.

[16] “SNAP: Stanford network analysis platform,” http://snap.stanford.edu/
snap, January 2014.

[17] D. A. Bader, J. Berry, A. Amos-Binks, D. Chavarrı́a-Miranda, C. Hast-
ings, K. Madduri, and S. C. Poulos, “STINGER: Spatio-temporal
interaction networks and graphs (STING) extensible representation,”
Georgia Institute of Technology, Tech. Rep., 2009.

[18] “Neo4j: the graph database,” http://neo4j.org, April 2014.
[19] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on a

memory cloud,” in SIGMOD. New York, NY, USA: ACM, 2013, pp.
505–516.

[20] N. Martı́nez-Bazan, M. A. Aguila-Lorente, V. Munts-Mulero,
D. Dominguez-Sal, S. Gmez-Villamor, and J.-L. Larriba-Pey, “Efficient
graph management based on bitmap indices.” in IDEAS. ACM, 2012,
pp. 110–119.

[21] Z. Lin, D. H. P. Chau, and U. Kang, “Leveraging memory mapping for
fast and scalable graph computation on a PC.” in BigData Conference,
X. Hu, T. Y. Lin, V. Raghavan, B. W. Wah, R. A. Baeza-Yates, G. Fox,
C. Shahabi, M. Smith, Q. Yang, R. Ghani, W. Fan, R. Lempel, and
R. Nambiar, Eds. IEEE, 2013, pp. 95–98.

[22] M. M. Michael, “Hazard pointers: Safe memory reclamation for lock-
free objects.” IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 6, pp.
491–504, 2004.

[23] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker, “OLTP
through the looking glass, and what we found there.” in SIGMOD, J. T.-
L. Wang, Ed. ACM, 2008, pp. 981–992.

[24] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “GraphLab: A new framework for parallel machine learn-
ing.” in UAI, P. Grünwald and P. Spirtes, Eds. AUAI Press, 2010, pp.
340–349.

[25] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale graph
processing.” in SIGMOD, A. K. Elmagarmid and D. Agrawal, Eds.
ACM, 2010, pp. 135–146.

[26] “The OpenMP API specification for parallel programming,” http://
openmp.org/wp, April 2014.

[27] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
erGraph: Distributed graph-parallel computation on natural graphs,” in
OSDI. Berkeley, CA, USA: USENIX Association, 2012, pp. 17–30.

[28] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining.” in SDM, M. W. Berry, U. Dayal, C. Kamath, and
D. B. Skillicorn, Eds. SIAM, 2004.

[29] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group
formation in large social networks: membership, growth, and evolution,”
in SIGKDD, 2006, p. 4454.

[30] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in WWW. New York, NY, USA: ACM,
2010, pp. 591–600.

[31] “Data never sleeps 2.0,” http://www.domo.com/learn/
data-never-sleeps-2, April 2014.

[32] D. Zheng, R. Burns, and A. S. Szalay, “A parallel page cache: IOPS
and caching for multicore systems,” in HotStorage. USENIX, 2012.

[33] “Graph 500 benchmark,” http://www.graph500.org/specifications, Octo-
ber 2010.

[34] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: mining
peta-scale graphs.” Knowl. Inf. Syst., vol. 27, no. 2, pp. 303–325, 2011.

[35] U. Khurana and A. Deshpande, “Efficient snapshot retrieval over histor-
ical graph data.” in ICDE, C. S. Jensen, C. M. Jermaine, and X. Zhou,
Eds. IEEE Computer Society, 2013, pp. 997–1008.

[36] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran,
W. Chen, and E. Chen, “Chronos: A graph engine for temporal graph
analysis.” in EuroSys. ACM, 2014.

