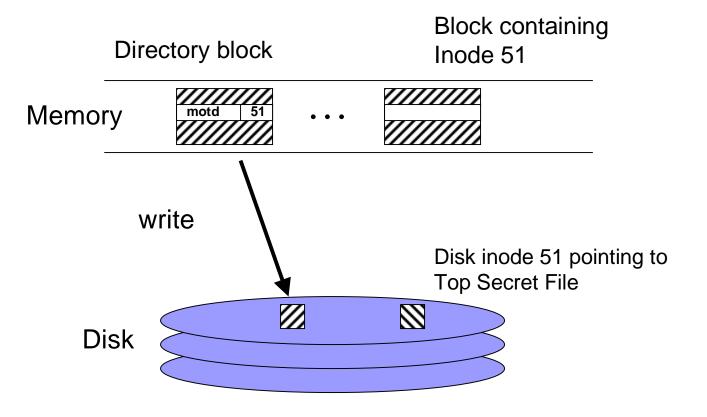
Journaling vs. Soft Updates Chris Stein Harvard University June 21, 2000

joint work with Margo Seltzer[†], Greg Ganger^{*}, Kirk McKusick [‡], Keith Smith[†], and Craig Soules^{*}


> [†] Harvard University, ^{*}Carnegie Mellon University, [‡]Author and Consultant

Talk Outline

- The Problem:
 - Meta-data consistency in file systems
- Two solutions:
 - Journaling and Soft Updates
- Evaluation
- Conclusions

Meta-Data Update Problem

• The file system meta-data contains inodes, directory blocks, and allocation bitmaps with interdependencies that must be cared for during disk updates.

Approaches to Meta-Data Management

- Synchronous Writes
 FFS
- Ordered Writes
 - Soft Updates
- Logged Writes
 - Journaling

Properties of Meta-Data Ops

- Integrity:
 - The file system is always recoverable.
- Durability:
 - Updates are persistent once the call returns.
- Atomicity:
 - No partial meta-data operations are visible after recovery.

Soft Updates Overview

- Implementation:
 - Delayed meta-data writes.
 - Kernel maintains dependency information and uses it to order writes.
- Properties:
 - Meta-data operations are not durable or atomic.
 - Looser guarantees than FFS about when updates will reach disk.
 - No recovery necessary after a crash.

Journaling Overview

- Implementation:
 - Log logical meta-data operations.
 - Write meta-data in-place asynchronously.
 - Write-ahead logging (WAL) protocol guarantees recoverability.
- Properties:
 - Log is scanned for recovery.
 - Meta-data operations are atomic.
 - Durability can be toggled on/off.

Feature Comparison

	Integrity	Durability	Atomicity	Recovery
FFS	X	X		fsck disk scan (minutes)
Sync Journaling	X	X	X	log-based (seconds)
Async Journaling	X		X	log-based (seconds)
Soft Updates	X			immediate
FFS-async				may be impossible

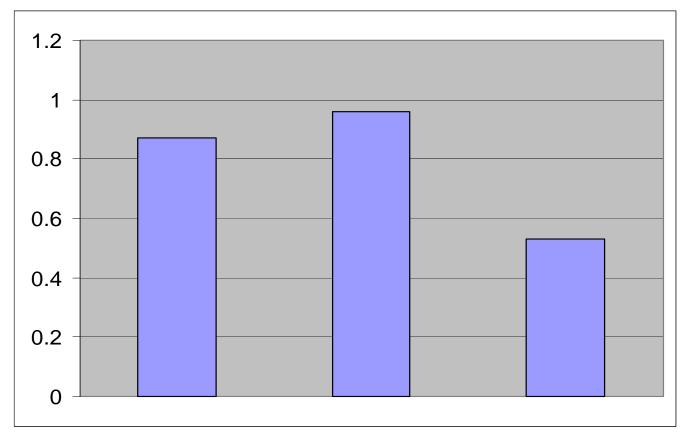
Experimental Setup

- Software:
 - Modified FreeBSD kernel. Taken from the current tree on Jan. 26th, 2000.
 - 2 journaling file system implementations (LFFS-WAFS, LFFS-file).
- Hardware:
 - 500 MHz Xeon Pentium III
 - 512 MB RAM
 - 3 x 9GB 10,000 RPM Seagate Cheetahs

Microbenchmarks

- Create, Write, Read, Delete.
- Results
 - Read/write performance identical for all systems.
 - All async systems have similar create throughput.
 - Soft Updates has great delete performance due to its ability to background work.

Macrobenchmarks

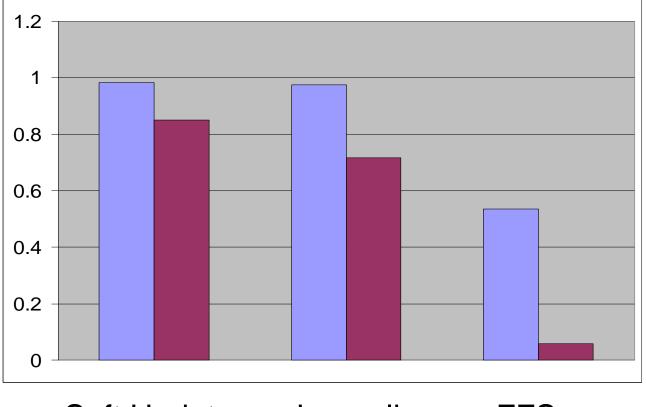

- SSH-build
 - Unpacks, configures, and builds ssh.
- NetNews
 - Simulates the work of a news server.
- SDET
 - Emulates user interactive software development workload.
- PostMark
 - Designed to model the workload seen by ISPs under heavy load. Combination of e-mail, news, and e-commerce transactions.

NetNews

- Simulates the work of a news server.
- Tremendous load, both in terms of the amount of data and the number of meta-data operations.

NetNews: Results

Throughput Relative to FFS-async


Soft Updates Journaling FFS

PostMark

- Designed to model the workload seen by ISPs under heavy load.
- Simulates a combination of e-mail, news, and e-commerce transactions.
- Different results for small and large file sets.

PostMark: Results

Throughput Relative to FFS-async

Soft Updates Journaling FFS

Conclusions

- Durability is expensive, integrity need not be.
- Configuration changes can have a significant impact on performance, with no change in features.