Issues in Automatic Provenance Collection

Uri Braun, Simson Garfinkel, David A. Holland,
Kiran-Kumar Muniswamy-Reddy, Margo I. Seltzer

Harvard University, Cambridge, Massachusetts
pass@eecs.harvard.edu

Abstract. Automatic provenance collection describes systems that ob-
serve processes and data transformations inferring, collecting, and main-
taining provenance about them. Automatic collection is a powerful tool
for analysis of objects and processes, providing a level of transparency
and pervasiveness not found in more conventional provenance systems.
Unfortunately, automatic collection is also difficult. We discuss the chal-
lenges we encountered and the issues we exposed as we developed an
automatic provenance collector that runs at the operating system level.

1 Introduction

Today’s provenance management systems usually take one of two approaches to
provenance collection: Either users enter it manually or applications explicitly
collect provenance and enter it into a database. There is, however, a third model:
automatic provenance collection. In automatic collection, the system observes the
actions of users and programs and derives provenance, storing it without user or
application involvement.

Automatic collection is a powerful approach, because it eliminates user er-
ror, consistently collects provenance across all applications, and captures more
complete provenance than systems relying on a user’s or application developer’s
assumptions about provenance. For example, automatic provenance collection in
the operating system allows us to: identify system configuration changes (e.g.,
new tools or libraries), identify environment variable modifications that alter
program behavior, debug faulty builds that are missing dependencies, identify
the source and creation of unusual files, and create scripts that produce objects.

In earlier work we described a prototype Provenance-Aware Storage System
(PASS), built on Linux, that automatically collects provenance at the operating
system level [18]. PASS is similar to systems such as ClearCase [5], GenePat-
tern [9], and Vesta [10]. These systems observe users’ and applications’ activities,
recording the provenance captured in these activities. PASS takes this one step
farther, observing all processes that run on a PASS-enabled operating system,
generating provenance for objects that do not have provenance (i.e., are un-
provenanced), and attaching complete system-level provenance to objects that
are created on a provenance-aware file system. We capture low-level details like
the operating system, kernel modules loaded, installed libraries, and process en-
vironment.



We found that automatic OS-level provenance collection is useful, comple-
menting existing approaches. However, we exposed a number of challenging
issues that arise from automatic collection. This paper introduces automatic
provenance collection and discusses the more interesting challenges that arise in
building these systems.

In Section 2 we define automatic provenance collection, placing it in the con-
text of existing provenance solutions. In Section 3 we discuss the problems that
arise when designing and building systems with automatic provenance collection.
In Section 4, we present use cases where disclosed and observed provenance sys-
tems together provide more powerful solutions than either independently. In Sec-
tion 5 we introduce provenance pruning, the deletion of provenance, and discuss
strategies for implementing it. In Section 6 we discuss the privacy implications of
automatic provenance collection. In Section 7 we discuss automatic provenance
systems and technologies from which we can borrow in constructing automatic
provenance systems, and in Section 8 we conclude.

2 What s Automatic Collection?

An automatic collecting system transparently records provenance for all activi-
ties it performs by observing the sequence of operations executed and translating
relevant ones into provenance. For example, when a process begins running, the
operating system identifies several process provenance attributes !, such as the
executable, operating system, loaded kernel modules, libraries, environment, and
command line.

The system continues to collect provenance about the running process, record-
ing (for example) input sources. Whenever the process creates or modifies an ob-
ject, the process’s provenance is assigned to the written object. We call this form
of provenance collection observed, because the system derives provenance from
the events that it observes. An observed provenance system does not necessarily
understand the semantics of its observations, so it must record everything that
is potentially part of an object’s provenance. This can lead to false provenance
if the observing system does not perform detailed information flow analysis.
Section 2.1 discusses existing systems that use observed provenance.

Most existing provenance systems use disclosed provenance. In disclosed
provenance systems, users or applications present provenance to the system,
using the provenance system merely as a storage and query engine. There are
several kinds of disclosed provenance. Manual provenance, sometimes called an-
notation, is entered by users. For example, the provenance of data entered man-
ually by a user must itself be manually entered. Specified provenance describes
an object’s intended provenance in a structured way, typically by directing the
system to produce the object via various transformations or workflows. For exam-
ples, workflow-based systems [23, 32] and makefiles capture intended provenance
by describing how a target is created from its sources. The workflow systems

1 'We think of processes as having provenance so that we can transfer a process’s
provenance to objects it creates.



frequently then generate true provenance from the execution of these workflows,
while make does not. Instead, the canonical software development environment
relies on a separate component, a source code control system, to store semantic
provenence. In these systems, the difference between successive versions precisely
identifies what changed, but the rationale is entered as manual provenance in the
form of commit messages.

2.1 Observed-Provenance Systems

There are several domain-specific observed provenance systems. GenePattern [9)
is a working environment for computational biology and biomedical research.
It tracks provenance for the objects created in the environment. Clearcase [5]
and Vesta [10] are environments designed for software development. Like our
provenance-aware storage system (PASS), both Clearcase and Vesta use a cus-
tomized file system to track provenance. Unlike PASS, both Clearcase and Vesta
center their design on disclosed provenance, assuming that users execute com-
mands specified in a control file. However, both allow some form of observation
in which the system observes a user’s actions creating a control file (script) to
re-derive objects. Running in this observed mode is not the norm and requires
explicit action by the user.

Observed provenance systems provide the benefit that provenance collection
is automatic, requiring no user intervention. Observed systems collect and main-
tain provenance of objects by default, so all new data becomes provenanced.
The major disadvantage of observed provenance systems is that they can only
capture provenance to which they are exposed, and this frequently produces
provenance with less semantic meaning than disclosed provenance systems. The
next section illustrates how disclosed provenance systems complement observed
provenance systems.

2.2 Disclosed-Provenance Systems

The vast majority of today’s provenance systems use disclosed provenance. These
systems require that the user describe a workflow, and then they provide an en-
gine that executes the workflow. The combination of the workflow specification
and the result created by running the engine on the workflow creates prove-
nance. The line between observed and disclosed systems is not always crisp. In
workflow-specification systems, the actual workflow engine is an observed prove-
nance system; however, it is an observed system that relies on an underlying
specification in order to function. Without the specification, the workflow en-
gine cannot generate provenance. For expository purposes, we classify these sys-
tems as disclosed provenance systems, because they require the user to disclose
explicitly the intended provenance of a result.

The myGrid [32] workflow enactment engine records provenance for each step
in a workflow, including inputs and outputs, storing the provenance in a central
provenance repository. The PASOA [23] project provides APIs that clients and
services use to record provenance during workflow execution. Chimera [7] offers



a virtual data system that provides a virtual data language (VDL) and a virtual
data catalog (VDC). The VDC implements a virtual data schema that defines the
objects and relations that can be used to capture descriptions of program invo-
cations and to record potential or actual invocations. The Earth System Science
Workbench (ESSW) [8] is a data management infrastructure used for processing
satellite imagery. The CMCS (Collaboratory for the Multi-scale Chemical Sci-
ences) [21] uses a portal and metadata-aware content store as a base for building
a system to support inter-domain knowledge exchange in chemical science. All
these systems rely on some sort of specification or explicit API for provenance
disclosure. Disclosed provenance systems also make use of user annotations. In
fact, some systems [29] rely mostly on user-provided annotations.

Disclosed provenance systems usually provide richer semantic knowledge than
observed systems. However, to obtain this benefit, users are restricted to using
provenance-aware tools and must conduct their work within the confines of ap-
plications that understand how to collect provenance. Thus, the responsibility
for provenance collection is dispersed throughout many different tools.

2.3 Observed Provenance Complements Disclosed Provenance

Observed and disclosed provenance provide complementary solutions. An ideal
solution provides the full semantic knowledge of disclosed provenance using the
automatic and transparent collection of observed provenance systems. While
there has been significant research on disclosed provenance systems, there has
been significantly less on observed provenance systems. To build systems with the
benefits of both approaches, we must understand and overcome the challenges
that automatic collection presents. We next discuss some of those challenges,
and then in Section 4, we return to examples of how observed and disclosed
systems complement one another.

3 Challenges

An observed provenance system faces the challenge of transforming observations
into disclosed provenance. This transformation requires solving several problems.
There may be several types of mismatches between the observed and desired
provenance. We use the term granularity to refer to the mismatch between the
operating system’s observation of a sequence of system calls and the scientific
user’s desire to record provenance on an experiment.

Reconciling these mismatches leads to challenges in creating and maintaining
provenance ancestry; automatic provenance collection can lead to cyclic ancestry,
which is conceptually unacceptable. Versioning is one way to cope with cyclic
ancestry, but it presents challenges similar to those found in automatically ver-
sioned file systems [25]. In the rest of this section, we explore each of these issues
in more detail.



3.1 Granularity

Granularity refers to the types of objects for which a system maintains prove-
nance. Coarse grain provenance might describe data and results produced by
an entire research initiative (e.g., the Human Genome Project). At the other
extreme, the programming languages and systems communities are sometimes
interested in extraordinarily fine-grained provenance, such as byte- or bit-level
provenance [17, 26].

Users are most frequently interested in coarse-grained provenance, such as an
experiment or analysis. However, automatic collection systems most naturally
operate at a finer grain.

Our prototype PASS collects system call events, recording provenance on
a per-file basis. This is the most natural model for an operating-system-based
provenance collector, but we can increase the utility of our system by creating
coarse-grained views that are interesting to users. If the coarse-grain view is the
only interesting view, it is best to perform this conversion (from fine-grain to
coarse-grain) at collection time, reducing the provenance overhead.

Automatically identifying and constructing these coarser-grain views remains
an open research problem for both data and the events that produce data. Our
PASS prototype supports user annotations, which are a manual way to provide
coarser views. We are exploring other approaches such as describing classes of
files for which provenance is unnecessary (e.g., temporary files), in which case
the output files of interest will have the provenance of the entire transforma-
tion. Identifying meaningful events (i.e., event granularity) poses a much larger
problem, as it is tightly coupled to versioning.

3.2 Versioning

A system that both tracks provenance and allows data modification is inherently
versioned. Each modification to a provenanced object changes the provenance
of the object and creates a new version of that object, regardless of whether the
system actually retains those different versions. On a system that does not explic-
itly track such versions, provenance provides the connections between versions
of objects and distinguishes those objects at different points in their lifetimes.
Like an automatic versioning file system, a provenance-aware system must
decide what constitutes a “modification” and thus when to declare new versions.
The simplest approach, used by Wayback [4], creates a version on every write call.
This simple approach is impractical for automatic provenance collection, because
it yields too many meaningless versions. Another method, used in versioning file
systems [15,25], is copy-on-write, where a new version is created on the first
write to a file between an open and close. A slightly different approach, copy-on-
change [12], creates new versions only if a write actually modifies the object. A
third alternative, used in a number of commercial and research systems [11, 13,
22,24], is to take snapshots, or checkpoints. In this model, a snapshot contains
the version of each file that existed when the snapshot was taken. These systems



typically take snapshots at regular intervals rather than being triggered by sys-
tem activity. In PASS, we do copy-on-write: we consider a version complete and
“frozen” on the last close (or on fsync) and on the next write a new version is
created. A new version is also created if a file is truncated to zero length.
Copy-on-write and copy-on-change both involve grouping related sets of mod-
ifications into a single new version. This is a form of event granularity abstrac-
tion: combining multiple observed write operations into a single conceptual write
operation. This merging process requires extreme caution in automatic prove-
nance collection, because it can lead to an even more vexing problem: cycles.

3.3 Cycles

Any modification grouping mechanism introduces the possibility of cycles in the
provenance. Cycles in provenance are nonsensical; an object cannot be descended
from itself. Cycles may even violate causality: an object may not be created by
another object it had somehow previously emitted. So automatic systems must
avoid creating provenance cycles. Unfortunately, avoidance is difficult.

Consider the common behavior of a program that first reads and then writes a
file. Either the write creates a new version of an object or it creates a provenance
cycle. This simple case is easy to resolve, but suppose this process repeats in a
loop. The provenance collector cannot observe the loop, only the read and write
actions; to avoid creating multiple versions it must infer the existence of the loop
and take appropriate steps.

Inferring loops in a single process is tractable, but systems of interacting
processes can also produce cycles. Local knowledge is not necessarily sufficient
to identify the situation, much less correct it. Consider two processes, P and Q:

P Q
read a
read b
write b
write a

If no new versions are created, these processes produce a cycle, yet nothing
about P or Q in isolation makes that evident. Simply creating additional ver-
sions does not adequately solve the problem; cyclic workloads produce too many
versions. (For example, consider a parallel, iterative algorithm.) The solution
is to abstract P and Q into a single higher-level conceptual entity, making the
cyclic data flow internal to this higher-level entity. Internal data flow need not
be provenanced.

Our prototype PASS maintains a global relationship graph and checks it for
cycles every time an edge is added. This allows it to create higher-level abstrac-
tions. Our current algorithm creates a new version of every process involved in a
cycle and then merges these versions together. The newly created merged object
becomes the parent of all the files involved, without creating new versions. This
handles many common cases with minimal overhead, but fails in some circum-
stances.



The cycle problem is inherent in any attempt to reduce the number of versions
generated and thus inherent in event granularity abstraction. The same problem
can and will appear in any automatic collection system. These problems do
not appear in disclosed provenance systems, because statements of disclosed
provenance are initiated by a human developer, who understands the granularity
of the operations. In observed systems, we must deduce the granularity to identify
the semantically correct grouping.

Cycle detection and elimination has been a major preoccupation of our recent
research; nonetheless, we still do not have a satisfactory algorithm; it remains
an open problem [2].

4 Integrating Observed and Disclosed Provenance

Systems that support both observed and disclosed provenance offer powerful
features that cannot be obtained using either type alone.

Consider running the GenePattern [9] system on top of PASS. GenePattern
possesses the semantic knowledge to record the exact analysis used to transform
input data to output results. However, it does not know what version of the
math library or what floating point processor was used. This information may
be available to GenePattern, but not always, nor in a portable or reliable fashion.
In contrast, PASS is integrated with the operating system, handling such issues
natively. Together, GenePattern and PASS can answer the query, “Why did this
identical transformation produce different results last week and this week?”

Alternatively, suppose that outside of the GenePattern environment a re-
searcher “fixed” an input file. No provenance query in GenePattern can detect
that the input file changed, explaining how identical analyses on “the same”
input file yield different results.

As discussed previously, a significant challenge for observed provenance sys-
tems is identifying a semantically meaningful level of granularity. When a dis-
closed provenance system sits atop PASS, that disclosed provenance system pro-
vides precisely the information PASS needs to construct these coarser views.

5 Pruning

Provenance adds storage overhead. Provenance Pruning is the act of selectively
removing provenance to save space. In general, pruning removes the provenance
for entire objects; however, at the end of this section we consider approaches
that erase only part of an object’s provenance.

Storage overhead can grow rapidly. Left unchecked there is nothing to prevent
the provenance from dwarfing the data it describes. Such large space overhead
can also harm query performance. For example, in recent work [18] we showed
that small changes to a source file in the Linux kernel generated approximately
two kilobytes of additional provenance when the kernel was rebuilt.

Some provenance can be pruned immediately at collection time. Users may
not be interested in recording configuration files, such as .bashrc and .profile,



as ancestors of the bash shell. Similarly, users may not be interested in some
output files, such as temporary files or /dev/null. In other cases, it would be
useful to identify entire processes and the objects they modify as not requiring
provenance. For example, makewhatis, which indexes man pages, examines all
of them before writing out the index file; the provenance of that index file is
thus quite voluminous and also completely uninteresting. Such specification of
unprovenanced objects allows the system to prune provenance before it is ever
recorded to disk.

There are also opportunities for provenance pruning after collection. Deleted
files without descendants are good candidates for pruning at any time. It is
useful to think of provenance as forming a tree where parent nodes are those
nodes accessed as input during the creation of their children. In such a tree,
the deletion of a leaf node can be accompanied by the deletion of that node’s
provenance, since, by construction, that node’s provenance cannot be needed by
any other node. We call this bottom-up pruning. It is interesting to ask if top-
down pruning ever makes sense. On a long-running system, it might be useful to
prune provenance to present the illusion that provenance history began at some
time T, later than the actual beginning of that system’s provenance. Alternately,
it might be useful to declare some node as the new eldest ancestor and remove
all its parental provenance.

Intermediate files provide another opportunity for pruning. Files that can
be easily recreated by capturing the entire process that created them are good
candidates for provenance pruning. For example, in a build environment, the
object files can be recreated if necessary, so it may not be neccessary to keep
their provenance.

5.1 Policies

The pruning strategies described in the previous section implement policy deci-
sions. Such policy decisions should be site-specific. Storage policies might place
limits on the absolute amount of provenance retained or limit provenance as a
proportion of the data it describes. Retention policies dictate when provenance
can be erased, e.g., when no file in its ancestry remains.

5.2 Other provenance reduction strategies

Supernodes Short of erasing provenance, it is sometimes possible to compact or
summarize existing provenance to save space. For example, it might be desirable
to compress the provenance for a subtree whose internal nodes have been deleted.
In this case, the system combines the provenance from internal nodes into a
supernode for the child.

Virtual Nodes Some collections of attributes might recur frequently. These
attributes can be combined and included in a virtual node and referenced where
applicable. We already use an approach similar to this in our PASS prototype. We



store command lines and environments in their own database and refer to them
by a unique ID number [18]. An alternate and more general representation would
be to represent them as a provenanced object or virtual node. This approach
provides a lossless storage reduction method.

Removing attributes Rather than combining attributes, we might chose to
remove attributes if we can identify that they are irrelevant. As in pruning,
attributes could be removed during collection or later on. Irrelevant attributes
could be removed during collection or during later pruning. Identifying attributes
that do not need to be recorded in provenance is another site-specific policy
decision.

5.3 Pruning in PASS

In our PASS prototype, we do not yet provide a pruning policy specification
mechanism. Instead, we provide a utility, ptrunc, the enables a user to explicitly
truncate provenance, eliminating uninteresting ancestry [18].

6 Privacy and Security

Automatic provenance collection presents serious privacy challenges, because
such a system collects significant information about its users. Replying to an
email message by pasting a paragraph from a web page might cause the system
to capture the sender of the original email and the time it was received; the time
the message was read; the web addresses the user visited; and any intermediate
drafts that were composed but not sent.

Information leakage is the primary privacy risk introduced by automatic
collection. By its very nature, automatically collected provenance is invisible
to users, and this invisibility provides an easy channel through which sensitive
information can be released. For example, consider a manager composing an
employee review that includes input solicited from the employee’s colleagues.
Presenting the review and its provenance to the employee reveals the identify
of the colleagues who contributed to the review [14]. A manager who had to
explicitly disclose the review’s provenance to the system would be unlikely to
make such a mistake.

Deciding what provenance should be captured, where it should be stored,
how that store should be protected, and when (if ever) the stored provenance
should be purged are current research areas. For example, provenance is some-
times stored in the document itself as a header [19] or in an alternative data
stream [16], making it easy to keep document and provenance together. This
approach enables privacy-friendly systems and applications that automatically
detect and prevent violations of privacy or data sharing policies [30]. On the
other hand, provenance that travels invisibly with a document might also com-
promise privacy if users are unaware of its existence.



While no provenance-aware storage systems are in widespread use, both the
Microsoft Word and Adobe Acrobat file formats store hidden data that reveals
elements of a document’s history, a kind of provenance. Experience with these
formats illustrates that automatic collection introduces significant privacy risks:

— In June 2000, The New York Times posted an Acrobat file on its website
containing names of Iranians who had assisted the CIA in the 1953 Iranian
coup. Although the paper had tried to remove the names from the Acrobat
file, the information was recovered and posted in an unredacted form on
another website [31].

— In June 2002, the US Justice Department released a “Workplace Diversity”
report that contained embarrassing information that the Department had
attempted to delete [6].

— In March 2004, the SCO Group distributed Microsoft Word files to journal-
ists containing hidden text that revealed the company’s legal strategy in its
anti-Linux lawsuits[27].

On the surface, automated provenance collection also violates many tradi-
tional principles of Fair Information Practice [20]. For example, the collection
limitation principle is violated, because no limits are placed on data collection.
The purpose specification is violated, because no purpose for the data is specified
at the time of collection. On the other hand, FIP principles such as individual
participation and security safequards could be used as requirements guidelines
when designing systems for automatically collecting provenance. Embracing au-
tomatic provenance collection necessitates understanding and addressing the pri-
vacy implications.

We understood early that provenance security was both crucial and under-
researched. We do not provide any access controls in our current prototype, and
our early adopters are all users who freely share their data and analyses. In par-
allel, we undertook a small pilot project to identify the key features a provenance
security model requires. That study revealed that we need two independent se-
curity models: one that provides conventional access control over provenance
attributes and a second that provides access control over the branches of the
ancestry tree [3]. We are currently implementing these models and studying the
challenges in composing the two models.

7 Related Work

In Sections 2.1 and 2.2 we discussed alternate approaches to provenance. In
this section, we discuss a few other approaches and related technologies that
influence observed provenance systems or from which we can take advantage of
prior knowledge.

7.1 Versioning File Systems

As mentioned earlier, the versioning challenges of observed provenance systems
are similar to those in versioning file systems. The Elephant file system creates



a new version of a file on every write and does not immediately erase old ver-
sions [25]. As such, it highlights many of the issues we encounter with versions.
Like PASS, Elephant must cope with the overhead associated with creating a
new version on every write, and makes pruning essential. Elephant supports three
pruning policies: keep all, one, or landmarks. Unlike PASS, Elephant versions
file (and directory) data, and it does not gather provenance information.

7.2 Observed Provenance

PASS is not the only system to collect low level operations and attempt to infer
semantic meaning from them. Both the Lineage File System and Transparent
Result Caching take this approach.

Transparent result caching (TREC) captures system calls and tracks pro-
cess lineage including parent processes, child processes, input files and output
files [28]. Unlike PASS, all tracing occurs in user space. Read and write system
calls are not intercepted. TREC relies instead on the open mode to infer whether
files are inputs or outputs, a tradeoff between performance and accuracy. Both
systems support makefile generation and detection of changed dependencies, but
PASS provides additional query support unavailable in TREC.

Like PASS, the Lineage File System focuses on executables, command lines
and input files as the source of provenance [14]. Unlike PASS, it ignores the
hardware and software environment in which such processes run. A second, and
perhaps more important, difference is that provenance collection is delayed in
the Lineage File System and it is performed by a user-level thread that writes the
lineage data to an external database. As a result, the tight coupling we require
between data and provenance is lost, as is a significant part of the benefit. Since
the Lineage File System stores its lineage records in a relational database, the
query language is SQL. In our implementation, we use a simple key /value storage
schema so that a variety of schema layers can be provided.

7.3 Exposing Semantic Knowledge

The observed systems considered thus far all try to infer semantic knowledge
from a collection of events. Another is to isolate the semantic knowledge as a
user specified component. Magpie combines observed provenance recorded in
trace logs with a user specified event schema to construct a worflow model [1].
The user specified event schema specifies the rules for combining related events.
For example, specifying which filesystem read and write operations correspond
to a specific webserver request. Magpie differs from PASS in its use of a user
specified event schema and the recording of provenance in seperate trace files.

8 Conclusions

Automatic provenance collection is an important and powerful technique that
complements existing provenance solutions. However, it carries challenges that



do not appear in these other systems. Our group has developed a provenance-
aware storage system prototype that is now ready for limited experimental use.
We encourage the community to try our prototype, develop an appreciation for
the power of automatic collection, and tackle some of the fundamental research
challenges that remain. This area holds great promise, but only through the
construction of a variety of systems that automatically collect provenance at
different levels, from the operating system to provenance aware applications,
will we identify the right solutions to the challenges outlined here.

References

1.

2.

11.

12.

13.

14.
15.

P. T. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for request
extraction and workload modelling. In OSDI, pages 259-272, 2004.

U. Braun, D. A. Holland, K.-K. Muniswamy-Reddy, and M. Seltzer. Coping
with cycles in provenance. http://www.eecs.harvard.edu/~syrah/pass/pubs/
cycles.pdf.

U. Braun and A. Shinnar. A Security Model for Provenance. Technical Report
TR-04-06, Harvard University, Jan. 2006.

Brian Cornell and Peter Dinda and Fabin Bustamante. Wayback: A User-level
Versioning File System for Linux. In Proceedings of the USENIX 2004 Annual
Technical Conference, FREENIX Track, 2004.

ClearCase. http://www.ibm.org/software/awdtools/clearcase.

R. Edmonds. Justice department hid parts of report criticizing diversity effort.
Associated Press, Oct. 31 2003.

I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. The Virtual Data Grid: A New
Model and Architecture for Data-Intensive Collaboration. In CIDR, Asilomar,
CA, Jan. 2003.

J. Frew and R. Bose. Earth system science workbench: A data management in-
frastructure for earth science products. In Proceedings of the 138th International
Conference on Scientific and Statistical Database Management, pages 180-189.
IEEE Computer Society, 2001.

GenePattern. http://www.broad.mit.edu/cancer/software/genepattern.

. A. Heydon, R. Levin, T. Mann, and Y. Yu. The Vesta Approach to Software

Configuration Management. Technical Report 168, Compaq Systems Research
Center, March 2001.

D. Hitz, J. Lau, and M. Malcolm. File System Design for an NFS File Server
Appliance. In Proceedings of the USENIX Winter Technical Conference, pages
235-245, January 1994.

K. Muniswamy-Reddy and C. P. Wright and A. Himmer and E. Zadok. A Versatile
and User-Oriented Versioning File System. In Proceedings of the Third USENIX
Conference on File and Storage Technologies (FAST 2004), San Francisco, CA,
March/April 2004.

E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In Proceedings of
the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-7), pages 84-92, Cambridge, MA,
1996.

Lineage File System. http://crypto.stanford.edu/~cao/lineage.html.

K. McCoy. VMS File System Internals. Digital Press, 1990.



16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

Microsoft. How to use ntfs alternate data streams. July 13 2004.

S. Muchnick. Advanced Compiler Design and Implementation, chapter 8. Morgan
Kaufmann, 1997.

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer. Provenance-
aware storage systems. In Proceedings of the 2006 USENIX Annual Technical
Conference, June 2006.

Nost. Definition of the flexible image transport system (FITS), 1999.
Organisation for Economic Co-operation and Development. Guidelines on the
protection of privacy and transborder flows of personal data, 1980.

C. Pancerella et al. Metadata in the Collaboratory for Multi-scale Chemical Sci-
ence. In Dublin Core Conference, Seattle, WA, 2003.

Z. N. J. Peterson and R. C. Burns. Ext3cow: The design, Implementation, and
Analysis of Metadat for a Time-Shifting File System. Technical Report HSSL-2003-
03, Computer Science Department, The Johns Hopkins University, 2003. http:
//hssl.cs. jhu.edu/papers/peterson-ext3cow03.pdf.

Provenance aware service oriented architecture. http://twiki.pasoa.ecs.soton.
ac.uk/bin/view/PASOA/WebHome.

S. Quinlan and S. Dorward. Venti: a new approach to archival storage. In Proceed-
ings of First USENIX conference on File and Storage Technologies, pages 89-101,
January 2002.

D. J. Santry, M. J. Feeley, N. C. Hutchinson, and A. C. Veitch. Elephant: The
file system that never forgets. In Workshop on Hot Topics in Operating Systems,
pages 2-7, 1999.

J. Seward. Valgrind, an open-source memory debugger for GNU/Linux. http:
//valgrind.org, 2005.

S. Shankland and S. Ard. Document shows SCO prepped lawsuit against BofA.
News.Com, Mar. 4 2004.

A. Vahdat and T. Anderson. Transparent result caching. Technical Report CSD-
97-974, 8, 1997.

M. Wan, A. Rajasekar, and W. Schroeder. An Overview of the SRB 3.0: the
Federated MCAT. http://www.npaci.edu/DICE/SRB/FedMcat.html, September
2003.

D. J. Weitzner, H. Abelson, T. Berners-Lee, C. Hanson, J. Hendler, L. Kagal,
D. L. McGuinness, G. J. Sussman, and K. K. Waterman. Transparent accountable
data mining: New strategies for privacy protection. Technical report, Massachusets
Institute of Technology Computer Science and Artificial Intelligence Laboratory,
2006.

E. Wong. Web site lists Iran coup names. The New York Times, June 24 2000.
J. Zhao, M. Goble, C.and Greenwood, C. Wroe, and R. Stevens. Annotating,
linking and browsing provenance logs for e-science.



