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Resource Management on Central Servers
• Users are increasingly competing for the resources of 

central servers.
– virtually hosted Web sites
– centralized databases
– thin-client computing

• Resource management goals:
– provide resource principals with resource shares that 

reflect their relative importance
– meet applications’ differing resource needs



Lottery Scheduling Framework [Waldspurger & Weihl]

• Tickets encapsulate resource rights.
– Proportional-share approach

• Currencies issue tickets.
– Use to group and isolate resource principals
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• The resource shares protected by isolation may not 
correspond to the actual needs of applications.

Secure Isolation vs. Flexible Allocation
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• The resource shares protected by isolation may not 
correspond to the actual needs of applications.

• Ideal: give resource principals the flexibility to safely 
adjust their own allocations while preserving secure 
isolation.

Secure Isolation vs. Flexible Allocation
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Our Extended Framework
• Increased flexibility in adjusting resource rights

• Multiple resources

• Access controls

• Hard and soft resource shares



Talk Outline
• Problem description

• Extended lottery-scheduling framework
– securely managing multiple resources
– isolation with increased flexibility

• Prototype implementation

• Performance results

• Conclusions



Securely Managing Multiple Resources
• Resource-specific tickets

– CPU tickets, disk tickets, etc.

• Access controls
– encapsulated in a broker associated with each currency
– A currency’s mode, like a UNIX file mode, specifies 

who may perform various operations on it.

• Soft and hard resource shares
– soft: A receive twice the share of B.
– hard: C should receive 20% of the resource.



Flexible Allocation vs. Secure Isolation
• Currencies impose both upper and lower limits on resource 

allocations.

• Other resource-management frameworks impose similar 
limits through currency-like abstractions.
– Rialto’s activities [Jones et al., 1997]
– Eclipse’s reservation domains [Bruno et al., 1998]
– Software Performance Units [Verghese et al., 1998]
– Resource containers [Banga et al., 1999]



Problem: Currencies Impose Upper Limits

• Essential to providing isolation

• May be unnecessarily restrictive
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• Allow applications to safely modify their resource rights

• Take advantage of applications’ differing resource needs

• Other principals’ resource rights are not affected.
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Carrying Out an Exchange
• Problem: 

– Exchanged tickets should have a fixed base value.
– The value of subcurrency tickets can change.
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Carrying Out an Exchange
• Need to use base-currency tickets.                                   

But how can we remove the tickets that are traded away?
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Carrying Out an Exchange
• Solution: use negative tickets that reduce a principal’s   

base value.
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• Difficult to support the semantics of  nice

• hog can still end up with all of my resource rights.

Problem: Currencies Impose Lower Limits
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Solution: Transfer Resource Rights
• Employ the same ticket-exchange system call.

• See Petrou et al., 1999 for an alternate solution.
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Talk Outline
• Problem description

• Extended lottery-scheduling framework
– securely managing multiple resources
– isolation with increased flexibility

• Prototype implementation

• Performance results

• Conclusions



Extended Framework in VINO
• Full support for tickets and currencies

• System-call interface and utilities for creating currencies, 
funding them, unfunding them, etc.

• One currency per user
– maintain a mapping from user id to currency id
– re-fund process when it changes its real uid



Managing Multiple Resources
• CPU Time

– original randomized lottery algorithm
– compensation tickets and ticket transfers

• Disk Bandwidth
– YFQ algorithm (Bruno et al., 1999)
– similar to weighted fair queuing

• Memory (limited solution)
– only give memory tickets to privileged processes      

that explicitly request them
– pageout daemon skips pages owned by processes with 

less than their guaranteed shares



• Each program starts with 1000 tickets per resource.

• Also run one extra cpuhog and four extra iohogs.
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Resource Rights Are Preserved
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Ticket Exchanges: Memory and Disk
• small: 4-MB database (70,000 entries)                            

big: 64-MB database (220 entries)

• Limit memory (11.1 MB for users) and run four iohogs

small big
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Trading 200 Memory Tickets from Big to Small
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Conclusions

• We can provide isolation with greater flexibility. 

• The best resource allocations for an application depend on 
the activity of the applications with which it is competing.

• Applications can achieve performance improvements by 
taking advantage of their differing resource needs.


