
Isolation with Flexibility:
A Resource Management Framework

for Central Servers

David G. Sullivan and Margo I. Seltzer
VINO Research Group

Harvard University, Cambridge, MA
{sullivan,margo}@eecs.harvard.edu

Resource Management on Central Servers
• Users are increasingly competing for the resources of

central servers.
– virtually hosted Web sites
– centralized databases
– thin-client computing

• Resource management goals:
– provide resource principals with resource shares that

reflect their relative importance
– meet applications’ differing resource needs

Lottery Scheduling Framework [Waldspurger & Weihl]

• Tickets encapsulate resource rights.
– Proportional-share approach

• Currencies issue tickets.
– Use to group and isolate resource principals

300 100

margo dave

100 100 200

base

task1

300 33 67

task2 task3

key

ticket

currency

task

• The resource shares protected by isolation may not
correspond to the actual needs of applications.

Secure Isolation vs. Flexible Allocation

task1 task2

diskcpu diskcpu

• The resource shares protected by isolation may not
correspond to the actual needs of applications.

• Ideal: give resource principals the flexibility to safely
adjust their own allocations while preserving secure
isolation.

Secure Isolation vs. Flexible Allocation

task1 task2
disk

disk

cpu

cpu

Our Extended Framework
• Increased flexibility in adjusting resource rights

• Multiple resources

• Access controls

• Hard and soft resource shares

Talk Outline
• Problem description

• Extended lottery-scheduling framework
– securely managing multiple resources
– isolation with increased flexibility

• Prototype implementation

• Performance results

• Conclusions

Securely Managing Multiple Resources
• Resource-specific tickets

– CPU tickets, disk tickets, etc.

• Access controls
– encapsulated in a broker associated with each currency
– A currency’s mode, like a UNIX file mode, specifies

who may perform various operations on it.

• Soft and hard resource shares
– soft: A receive twice the share of B.
– hard: C should receive 20% of the resource.

Flexible Allocation vs. Secure Isolation
• Currencies impose both upper and lower limits on resource

allocations.

• Other resource-management frameworks impose similar
limits through currency-like abstractions.
– Rialto’s activities [Jones et al., 1997]
– Eclipse’s reservation domains [Bruno et al., 1998]
– Software Performance Units [Verghese et al., 1998]
– Resource containers [Banga et al., 1999]

Problem: Currencies Impose Upper Limits

• Essential to providing isolation

• May be unnecessarily restrictive

300 100

margo dave

100 100 200

base

task1

300 33 67

300 100

margo dave

100 200 200

base

300 50 50

task2 task3 task1 task2 task3

• Allow applications to safely modify their resource rights

• Take advantage of applications’ differing resource needs

• Other principals’ resource rights are not affected.

50

Solution: Ticket Exchanges

150

200

200

50 150

I/O
hog CPU hog

cpu tickets:

disk tickets:

Carrying Out an Exchange
• Problem:

– Exchanged tickets should have a fixed base value.
– The value of subcurrency tickets can change.

200

margo dave

base

200 200 200

100 50 75 1002550

memory tickets
disk tickets

100 50

task2task1

Carrying Out an Exchange
• Need to use base-currency tickets.

But how can we remove the tickets that are traded away?

200

margo dave

base

200 200 200

100 100 100 100

50 100

memory tickets
disk tickets

task1 task2

Carrying Out an Exchange
• Solution: use negative tickets that reduce a principal’s

base value.

200

margo dave

base

200 200 200

100 100 100 100

50 -100 -50 100

memory tickets
disk tickets

task1 task2

• Difficult to support the semantics of nice

• hog can still end up with all of my resource rights.

Problem: Currencies Impose Lower Limits

300

margo

100 100 10

base

100

dave

task1 task2 hog

Solution: Transfer Resource Rights
• Employ the same ticket-exchange system call.

• See Petrou et al., 1999 for an alternate solution.

300

margo nice

100

dave

100 100

10

100

task1 task2 hog

base

-10

Talk Outline
• Problem description

• Extended lottery-scheduling framework
– securely managing multiple resources
– isolation with increased flexibility

• Prototype implementation

• Performance results

• Conclusions

Extended Framework in VINO
• Full support for tickets and currencies

• System-call interface and utilities for creating currencies,
funding them, unfunding them, etc.

• One currency per user
– maintain a mapping from user id to currency id
– re-fund process when it changes its real uid

Managing Multiple Resources
• CPU Time

– original randomized lottery algorithm
– compensation tickets and ticket transfers

• Disk Bandwidth
– YFQ algorithm (Bruno et al., 1999)
– similar to weighted fair queuing

• Memory (limited solution)
– only give memory tickets to privileged processes

that explicitly request them
– pageout daemon skips pages owned by processes with

less than their guaranteed shares

• Each program starts with 1000 tickets per resource.

• Also run one extra cpuhog and four extra iohogs.

0
5

10
15
20
25
30
35

100 200 300 400 500 600 700 800

Number of Tickets Exchanged

%
 Im

pr
ov

em
en

t

cpuhog iohog

Ticket Exchanges: CPU and Disk

Resource Rights Are Preserved

0
10
20
30
40
50
60
70

0 100 200 300 400 500 600 700 800
Number of Tickets Exchanged

P
er

c.
 o

f C
P

U

0
10
20
30
40
50
60
70

0 100 200 300 400 500 600 700 800

Number of Tickets Exchanged

P
er

c.
 o

f D
is

k
B

an
dw

id
th

guaranteed extra

left bars = exchanging copy
right bars = non-exchanging

Ticket Exchanges: Memory and Disk
• small: 4-MB database (70,000 entries)

big: 64-MB database (220 entries)

• Limit memory (11.1 MB for users) and run four iohogs

small big

-40

-20

0

20

40

100 200 300 400 500 600 700 800
Base Value of Disk Tickets Exchanged

%
 Im

pr
ov

em
en

t

At start: mem. tickets worth 1375 and disk tickets worth 1667.
Small proposes exchange after 10,000 queries.

small big

Trading 200 Memory Tickets from Big to Small

-20
0

20
40
60
80

100
120
140
160

100 200 300 400 500 600 700 800
Base Value of Disk Tickets Exchanged

%
 Im

pr
ov

em
en

t

Trading 400 Memory Tickets from Big to Small

small big

At start: mem. tickets worth 1375 and disk tickets worth 1667.
Small proposes exchange after 10,000 queries.

Conclusions

• We can provide isolation with greater flexibility.

• The best resource allocations for an application depend on
the activity of the applications with which it is competing.

• Applications can achieve performance improvements by
taking advantage of their differing resource needs.

