
Addendum to the paper “Isolation with Flexibility: 
A Resource Management Framework for Central Servers,”

published in: Proceedings of the 2000 USENIX Annual Technical Conference
(San Diego, California), USENIX Association, 2000, pp. 337-350.

David G. Sullivan, Margo I. Seltzer
Division of Engineering and Applied Sciences
Harvard University, Cambridge, MA 02138
{sullivan,margo}@eecs.harvard.edu

Alternate Solution to the Lower-Limit Problem
In Section 3.3 of the paper, we describe how curren-
cies—like all mechanisms for providing isolation—
impose lower limits on resource allocations. These lim-
its prevent lottery scheduling from fully supporting the
semantics of UNIX’s nice utility. To solve this prob-
lem, we developed a utility that allows users to transfer
some of their user currency’s funding to another cur-
rency (the “nice” currency) that is then used to fund a
resource-intensive task (see Section 4.6 and Figure 4 of
the paper).

One problem with this original solution is that the
transferred resource rights are never restored. When all
resource principals funded by the “nice” currency exit,
the currency, and all of its backing tickets, are
destroyed. However, because the kernel cannot know
that these backing tickets originally belonged to the user
currency, the user currency’s funding remains at a
reduced level. As a result, an additional utility would be
needed to allow users to regain their currency’s original
funding. 

To overcome this problem, we developed an alter-
nate utility that succeeds in performing a temporary
transfer of resource rights. It uses a ticket exchange
(Section 3.2 of the paper) to take away a small percent-
age of the user currency’s resource rights and give them
to the “nice” currency. As Figure A1 shows, the fact that
we use a ticket exchange means that the user currency’s
original backing tickets are not modified. Instead, the
user currency receives negative tickets that reduce its
resource rights by the amount being transferred (see
Section 3.2.2 of the paper). When all principals funded
by the “nice” currency exit, the currency is destroyed as
before. But because its backing tickets are part of an
exchange, the exchange is undone and the negative tick-
ets held by the user currency are also destroyed. The
user currency thereby regains the funding that it held
before the transfer of resource rights took place.

Our source distribution (ftp://ftp.eecs.har-
vard.edu/pub/vino/vino-usenix2000) includes

both versions of the utility. In the directory src/
utils/vino/usr.bin/vnice, vnice.c contains the
source for the new solution, and vnice.old contains
the source for the original solution.

300

alice

100 100 10

base

task1 task2 hog

100

bob

300

alice

100 100 10

base

task1 task2 hog

100

bob

Figure A1: Using a Ticket Exchange to “Nice” a Task. The
user bob tries to lower the priority of hog, a CPU-intensive pro-
cess, by giving it only 10 tickets (top). However, if task2
becomes idle or exits, hog will still receive all of bob’s resource
rights. The vnice utility uses a ticket exchange to temporarily
transfer a small percentage of bob’s resource rights to a new
currency, nice, and the new currency is used to fund hog (bot-
tom). When the nice currency is destroyed, the tickets involved
in the exchange will be revoked, and the bob currency will
regain its original funding.

300

alice

100 100

base

task1 task2

10

nice

100

hog

100

bob

-10


