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Incentivizing Deep Fixes in Software Economies
Malvika Rao, David F. Bacon, David C. Parkes, Margo I. Seltzer

Abstract—An important question in a software economy is how to incentivize deep rather than shallow fixes. A deep fix corrects the
root cause of a bug instead of suppressing the symptoms. This paper initiates the study of the problem of incentive design for open
workflows in fixing code. We model the dynamics of the software ecosystem and introduce subsumption mechanisms. These
mechanisms only make use of externally observable information in determining payments and promote competition between workers.
We use a mean field equilibrium methodology to evaluate the performance of these mechanisms, demonstrating in simulation that
subsumption mechanisms perform robustly across various environment configurations and satisfy important criteria for market design.

Index Terms—market design, mean field equilibrium, software engineering, payment mechanisms.
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1 INTRODUCTION

RATHER than the Turing machine “input tape to output
tape” model of computation, today’s software systems

have evolved to be those of continuous interaction with
other large systems and with the physical world. The size
and complexity of software systems have increased to such
an extent that it is straining our ability to effectively manage
them. This is illustrated by Figure 1 which depicts the
dependency graph of an open source software.1

In the meantime, traditional software engineering tech-
niques have failed to scale accordingly, leading to increased
inefficiencies and errors. A study commissioned by the U.S.
National Institute of Standards and Technology concluded
that software errors alone cost the U.S. economy approxi-
mately $59.5 billion annually [1]. What is more, software is
often deployed with discovered bugs (as well as undiscov-
ered ones) because there are simply not enough resources
to address all issues [2], [3], [4]. Through an empirical study
of 277 coding projects in 15 companies, Wright and Zia [5]
determine that software maintenance actually introduces
more bugs: each subsequent iteration of fixes has a 20-50%
chance of creating new bugs. All of this points to the need
for a new paradigm in creating and evolving such systems.

In fact software systems have come to resemble eco-
nomic systems, where behaviour is decentralized, interde-
pendent, and dynamic. This suggests that the principles
of market design and mechanism design have an impor-
tant role in complementing traditional engineering tech-
niques. We see this in market-based platforms such as Boun-
tysource [6] and TopCoder [7]. Markets enable us to directly
target incentives issues as well as elicit valuations from
users so that they can influence the direction of software
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University of Maryland College Park taught by Prof. Ben Shneiderman
during Spring 2011 https://wiki.cs.umd.edu/cmsc734 11/index.php?
title=Analyzing Open Source Project Networks.

development. Moreover markets can aggregate supply and
demand, thereby providing the scale needed to solve long
neglected engineering problems, with prices guiding the
efficient allocation of resources.

Software economies refer to a vision for a software de-
velopment process in which supply and demand drive the
allocation of work and the evolution of the system [8]. The
idea of a software economy is to promote equilibria in which
all fixes and features for which there is enough value have
been implemented. A private software economy deals with
the internal incentives of managers and employees [9]. A
public software economy involves end users, who are able
to express value for bug fixes as well as missing features. A
public software economy must contend with a much larger
scale than a private economy, including a large user base, a
large number of potential workers, and conceivably a large
number of bugs and missing features.

We are interested in a specific question arising in the
public software economy. We want to understand how to
design incentives to obtain deep rather than shallow fixes to
bugs, at least where the disutility of users warrants a deep
fix. A deep fix attempts to correct the root cause of the prob-
lem so that another bug with the same root cause is found
only after a long time or not at all. In contrast a shallow
fix suppresses the symptoms of a bug at a superficial level
and other bugs with the same root cause may appear soon
after. While this presents a known problem in software en-
gineering, there has been little prior work on improving in-
centives in the literature. This paper initiates the first study
of this problem, proposing subsumption mechanisms, where
deeper fixes can subsume or replace shallower fixes, and
where a worker’s payoff increases if a fix subsumes other
fixes. A subsumption mechanism employs an installment-
based payment rule that stops paying the worker when a
fix is subsumed, transferring the remaining reward to the
contributor of a deeper fix. The idea is that deeper fixes are
less likely to be subsumed and more likely to subsume prior
fixes, thereby enabling the worker to earn a higher payment
and promoting competition for deep fixes.

We study a stylized, dynamic model of the software en-
gineering ecosystem comprising workers, users, root causes
of bugs, bugs and fixes, user values, and worker costs. The
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Fig. 1. Dependency graph of an open source software

user base reports bugs and offers money for suitable fixes.
Workers are tentatively matched to bugs, and decide which
fix to submit given considerations about cost, payment,
and market dynamics. The market design determines how
money from users is allocated to fixes. Crucially, we insist
for practical reasons that the market process can only use
information that is externally observable. For example, we
allow for regression tests on code that has been corrected
with submitted fixes, without allowing the possibility of
code inspection. Some examples of externally observable
information include the time taken for the next bug to
appear, and the number of bug reports that are addressed by
a fix. Our model is flexible and its elements can be viewed as
building blocks that can be reconfigured to encode different
issues in the software economy.

Current practice in software testing is consistent with
our paradigm. For example, black box testing tests the
functionality of the software without examining its internal
workings. Regression testing tests whether a new fix ad-
dresses bug reports without reintroducing old bugs. Tools
such as SVN and Github provide operations such as forking,
merging, and syncing. In a similar spirit, a subsumption test
in our work requires that past versions of the software are
merged with the new fix and tested to see which bugs are
fixed.

Examples of market-based platforms for software devel-
opment include Bountysource, which is a funding platform
for open-source software with 39, 699 community members.
Here users post bounties on issues they want solved while
developers devise solutions and claim rewards. The mini-
mum reward that can be contributed is $5 and a reward paid
for a solution can amount to over $5000. Once a bounty is
posted, a developer chooses the issue and begins work on
it. Upon completion the developer submits a claim. During
a two week verification period, backers vote to accept or
reject the claim. If the claim is accepted the developer is
paid the bounty. If an issue is closed without any resolu-
tion the bounty is refunded. Bountysource also organizes
fundraisers to raise money for new features or costly issues
requiring a significant amount of work.

A somewhat different type of platform, based on crowd-
sourcing contests, is Topcoder with over a million active
members. Here companies that require software solutions
are matched to a global community of programmers, and

the latter compete in a contest with cash awards to provide
the best solution that can address a specific client request.
The Topcoder community works on a variety of products,
including web and mobile application development, user
experience design, predictive analytics, algorithm optimiza-
tion, technical prototyping, as well as regular coding tasks
(e.g., bug fixes, feature requests, testing, etc.). Bountify [10]
is also a platform based on crowdsourcing contests. It fo-
cuses on coding tasks and questions – the website states,
“The best tasks to post on Bountify are those with verifiable
solutions. Clearly define your problem and specify the de-
liverables. Be specific about what you want and ensure that
you can verify the correctness of the possible solutions you
receive.” [11]. The reward range that can be offered is $1
to $100. A client posts the task and the attached bounty
which expires after a week. Programmers must submit
solutions within this timeframe. The client then chooses
the best solution and awards the bounty to the winner.
The client pays the full amount of the bounty to Bountify
immediately upon posting the task. Interestingly the client
is not refunded if none of the solutions submitted is ac-
ceptable. Instead the bounty is awarded to charity. Rather
than providing fixes or features, Bugcrowd [12] is a security
platform that has at its disposal a crowd of workers that
includes security researchers and hackers. The crowd works
to discover vulnerabilities in a client’s software. The client
only pays for those vulnerabilites judged to be valid, and
not for the effort expended to find them. Further, clients can
specify a budget and reward range for continuous testing
of their software. Bugcrowd helps clients set reward ranges
by offering a pricing model assembled from historical data.
For a comprehensive survey of crowdsourced platforms for
software development as well as the associated literature,
see [13].

The aforementioned platforms and practices are natural
precursors to the market-based system proposed in this
paper. Although we are inspired by these platforms, our de-
sign departs from them in several ways. Current platforms
tend to address software tasks that are small and modu-
lar. The solutions tend to be human-verified and payment
schemes consist of simple one-shot payments. As the growth
in crowdfunded and crowdsourced models of production
continues, it seems likely that platforms will become more
sophisticated, addressing complex design issues such as
incentivizing high quality work, handling inter-dependent
tasks, and automating the market. In this paper we take
that next step and design a system that incentivizes deep
fixes using externally observable information only.

Open source development underlies billions of dollars in
software production [14]. However, it is becoming increas-
ingly clear that more resources are needed to support open
source infrastructure. A recent study [15] points out that the
boom in startups relies on digital infrastructure made possi-
ble by open source software. A lack of adequate funding and
support can result in security breaches and interruptions in
service. This real-world problem was anticipated in earlier
economics research. Kooths et al. [16] argue that the lack
of price signals in open source software production means
that developers do not know users’ valuations. Therefore
the supply of open source goods does not fully align with
users’ needs. This raises the question of what are ways to
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design market mechanisms to fund digital infrastructure.
These issues are further motivating factors for the line of
research in the present paper.

In studying software economies we adopt a mean field
equilibrium (MFE) methodology, which is an approximation
methodology that is useful for analyzing the behaviour of
large systems populated with self-interested participants. In
large markets, it is intractable and implausible for individ-
uals (in this case workers) to best-respond to competitors’
exact strategies [17]. Instead the MFE approach assumes
that in the long run the temporal patterns in agents’ actions
average out. Hence, agents can optimize with respect to long
run estimates of the marginal distribution of other agents’
actions. Using this methodology, we study the software
engineering ecosystem under different parameterizations
of the environment and different incentive designs. Our
simulation results demonstrate that the basic premise in this
work has merit: by using externally observable comparisons
we can drive competition and get deeper fixes and higher
utility. We conclude by drawing lessons for market design.

1.1 Main contributions

• We contribute a dynamic model of the software
ecosystem. In addition, we introduce the bit string
language, a mathematical language that encodes the
relationship between bugs and fixes. This is the first
work to study incentives design for deep fixes.

• We introduce subsumption mechanisms – mecha-
nisms that incentivize deep fixes by using externally
observable information only. We design and analyze
variants on subsumption mechanisms, namely eager
subsumption, lazy subsumption, and eager with reuse.
These mechanisms are all based on the underlying
principle of checking whether submitted fixes sub-
sume prior fixes, but with variations in the timing
of checks and in whether replaced fixes are kept
around, checked again later and possibly reused.

• We frame the problem in the context of the mean
field methodology and obtain convergence compu-
tationally under different parameterizations of the
environment. This work is the first to apply the mean
field equilibrium concept to the software economy.

• We develop models of worker and user utility. The
expected worker utility is estimated by look-ahead
sampling and by using the mean field distribution
to understand how other workers may act in the
future. User utility is a metric that unifies several
performance measures, such as a user’s cost, wait
time for a fix, and the depth of a fix.

• Our main result via the simulation study is that
subsumption mechanisms perform robustly across
a variety of environment configurations and satisfy
important criteria for market design. In contrast, this
is not the case for mechanisms without subsumption.
In general, we find that installment-based payment
schemes (including subsumption mechanisms) cre-
ate incentives for deep fixes. Installment-based pay-
ment schemes that allow transfers, that is, unpaid
installments from a fix are added to the reward for
a later fix, perform even better. Transfers augment

a low payment for a fix, making deeper fixes more
profitable. Subsumption mechanisms pay in install-
ments and allow transfers conditional on subsump-
tion. The use of subsumption and fix-to-fix compar-
isons introduces competition amongst workers and
produces deeper fixes and higher user utility. Sub-
sumption mechanisms that reuse fixes achieve higher
user utility because they allow for fixes without new
payments. Surprisingly, mechanisms without install-
ment payments are also able to produce deep fixes,
but at low rewards only and with a high wait time.

• In conclusion we draw lessons for market design,
both from the simulation study as well as from
qualitative analysis of the mechanisms, and make
recommendations regarding the suitability of the dif-
ferent mechanisms for various market design criteria.

2 RELATED WORK

Prior literature has considered economic approaches to-
wards related aspects of the software engineering industry,
but with a different focus from this paper. For instance, the
use of market-based approaches in improving vulnerability-
reporting systems has been explored. Schechter [18] de-
scribes a vulnerability market where a reward is offered
to the first tester that reports a specific security flaw. The
reward grows if no one claims it. At any point in time
the product can be considered secure enough to protect
information worth the total value of all such rewards being
offered. Ozment [19] likens this type of vulnerability market
to an open first price ascending auction. While vulnerability
markets as well as existing bug bounty programs (e.g., the
Mozilla security bug bounty, and the recently launched
“Hack the Pentagon” bug bounty program [20]) motivate
testers to report flaws, such systems do not capture users’
valuations for fixes. In particular this literature does not
consider how to incentivize deep fixes – our work is the
first to study this problem. Other papers examine the role of
incentives in information security and privacy, and propose
policies to improve the level of security and privacy [21],
[22], [23], [24], [25], [26], [27], [28]. None of the aforemen-
tioned papers study large market dynamics or use the MFE
methodology.

Hosseini et al. [29] address the problem of efficient bug
assignment. They model the bug triager as an auctioneer
and programmers as bidding agents in a first-price sealed
bid auction. Agents bid on bug reports, where a bid value
is based on the developer’s past history of fixing bugs, the
developer’s expertise and speed, severity of the bug, and
so forth. The bug is allocated to the agent with the highest
bid. Le Goues and colleagues [3], [30], [31] share our view of
software as an evolving, dynamic process. However where
we approach software engineering from a market design
perspective, they are influenced by biological systems and
apply genetic programming for automated code repair. Sev-
eral papers [32], [33], [34], [35] have studied open-source
movements from the perspective of community formation
and contribution. For instance, Athey and Ellison [32] look
at the dynamics of how open-source projects begin, grow,
and decline, addressing issues such as the role of altruists,
the evolution of quality, and the pricing policy. In contrast,
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Fig. 2. Overview of our model of the software ecosystem

our work focuses on solving incentives problems that arise
in the production of fixes. Other research has examined soft-
ware from the point of view of technological innovation [36],
[37], as well as from the point of view of the design and
modularity of software [38], [39].

Mean field equilibrium derives its name from mean field
models in physics, where large systems display macroscopic
behaviour that is easier to analyze than their microscopic
behaviour. MFE have been studied in a variety of settings in
economics [40], [41], [42], [43] and control theory [44], [45],
[46].

Our work is most closely related, from a methodological
perspective, to a series of recent papers that analyze MFE
in various market settings. Motivated by sponsored search,
Iyer et al. [47] consider a sequence of single-item second
price auctions where bidders learn their private valuations
as they win auctions. The authors show that the agent’s
optimal strategy in an MFE is to bid truthfully according
to a function of the expected utility. In a related paper,
Gummadi et al. [48] examine both repeated second price and
generalized second price auctions when bidders are budget
constrained. The authors show that the effect of long-term
budget constraints is an optimal bidding strategy where
agents bid below their true valuation by a shading factor.
Other settings have also been analyzed in the mean field
context [17], [49], [50], [51]. These papers present a theoreti-
cal analysis whereas we take a computational approach and
study a richer domain model.

The structure and performance of different contest archi-
tectures have been widely studied [52], [53], [54]. A series
of papers [55], [56], [57] model crowdsourcing contests as
all-pay auctions. However crowdsourcing contests are an
altogether different scenario to ours. In our model, submis-
sions are not simultaneous, and nor can we directly observe
the quality of submissions and judge which submission is
best. Instead the incentives in place ensure that the system
evolves over time based only on competition and externally
available information in a way that retains deeper fixes.

This work is a significantly extended version of a pre-
liminary contribution presented at a workshop [58].

3 THE MODEL OF THE SOFTWARE ECOSYSTEM

The model of the software ecosystem consists of two parts
that interact with each other: a model of software bugs
and fixes and a model of the world (see Figure 2). We first
describe the system of bugs and fixes, before presenting the
dynamics of the entire ecosystem.
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Fig. 3. Each root cause in set R generates bugs b, which in turn may
receive fixes f .

3.1 Modeling bugs and fixes

We consider an abstract model of software as a set R of
independent root causes of some fixed cardinality, where
each root cause generates a series of related bugs. To draw
an analogy with a real world scenario, a root cause may
be thought of as a specific component or functionality of a
software; for example, one root cause might be a synchro-
nization error in the user interface component, while an-
other root cause might be a buffer overflow in the graphics
component. We develop a bit string model that captures how
a particular root cause can generate bugs, and that encodes
the relationships amongst bugs and fixes.

Each root cause is associated with a bit string length l > 0.
The set of bugs belonging to this root cause are modeled
through the set of 2l − 1 non-zero bit strings of length l.
The set of permissible fixes for this set of bugs is modeled
as the set of 2l bit strings, including the 2l − 1 non-zero bit
strings that address the bug as well as the zero bit string that
models a worker who chooses not to submit a fix (referred
to as the null fix). Each bit string encodes a different bug,
and similarly a different fix. A larger length l signifies a root
cause that generates more bugs.

The bit string representation of bugs and fixes combined
with the rules defining their relationships gives us a com-
pact mathematical language that we can use to capture
a complex, interdependent phenomenon such as the one
studied in this work. In our model, fixes pertaining to a
particular root cause cannot be used to fix bugs generated
by other root causes. Thus all relationships and properties
are relevant for only those bugs and fixes that belong to the
same root cause. In what follows, we refer to a bit whose
value is 1 as an ON-bit.

Definition 1. [Valid fix] A fix f ∈ {0, 1}l is valid for bug
b ∈ {0, 1}l if it includes all the ON-bits in b, i.e. f ≥ b bit-wise.
Thus an AND operation between f and b must result in b.

We refer to the set of valid fixes for a bug plus the null
fix as the set of feasible fixes for the bug. Different bugs can
have different numbers of feasible fixes. Bug 1110 has only
3 feasible fixes. In contrast bug 0001 has 23+1 feasible fixes.
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Example 1. A root cause with l = 4 can generate the set of bugs
{0001, 0010, . . . , 1111}. Consider bug b = 1110. Bug b is fixed
by two fixes: f1 = 1110 and f2 = 1111. Fix 0111 cannot fix b.
The set of feasible fixes for b is {1110, 1111, 0000}.

Definition 2. [Fix depth] The fix depth of fix f refers to the
number of ON-bits in the bit string of f ∈ {0, 1}l, and is denoted
|f |.

Continuing with the above example, f1 and f2 have fix
depths equal to 3 and 4 respectively. We can now define, in
the context of the bit string representation, what constitutes
a shallow or deep fix with respect to a given bug.

Definition 3. [Shallow fix] Given a bug b, a shallow fix f is a
valid fix for which |f | = |b|.

Definition 4. [Deep fix] Given a bug b, a deep fix f is a valid
fix with |f | > |b|.

In other words, a shallow fix is the fix that meets the
minimal requirement of having the same ON-bits as the bug
being fixed and no more. A deep fix is a valid fix that is
not a shallow fix. The deepest fix not only fixes the bug in
question but all bugs of that root cause.

Example 2. Consider bug b = 1100 generated by a root cause
with bit string length l = 4. A shallow fix for b is f1 = 1100. A
deep fix for b is f2 = 1101 or f3 = 1110. The deepest possible fix
is f4 = 1111.

Next we define an ordering relationship between fixes.
This will be crucial for reasoning about subsumption mech-
anisms.

Definition 5. [Ordering relation] A fix fk is deeper than a
fix fi, written fk � fi, if fk ≥ fi interpreted bitwise, with
fk[j] > fi[j] for at least some j ∈ {0, . . . , l − 1}.

The ordering relation provides a partial order, as shown
in Example 2, where we have f4 � {f2, f3} � f1. Here f2
and f3 are incomparable.

The bit string language is an abstraction of the ways
in which bugs and fixes may relate and interact with one
another in our setting. There are several plausible practical
interpretations of the bit string model. For example, one
interpretation may consider each ON-bit as corresponding
to a location in code, and therefore a fix with more ON-bits
would fix more code locations than one with fewer ON-bits.
In this interpretation, a bug with a particular ON-bit could
imply that a problem has occurred in that specific location
and the stipulation that a valid fix must at least include the
same ON-bits as the bug it addresses makes sense – a fix
must at least fix the code location where the problem has
occurred.

So far we have described how bugs and fixes relate to
one another in the context of the bit string model. Mov-
ing on, we consider those properties that are externally
observable, and to that end, introduce a key concept, that
of subsumption.

Definition 6. [Subsumption relation] A fix fk subsumes an-
other fix fi with respect to a set of bugs B, written fk % fi, if the
set of bugs fixed in B by fk strictly contains the set of bugs fixed
in B by fi.
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Fig. 4. Root causes R generate bugs, which may receive fixes. Bugs
and fixes are represented as bit strings.

Continuing with Example 2, suppose bug b receives fix
f2. Now suppose the root cause generates another bug
b′ = 0110 which receives the fix f ′ = 1110. Fix f ′ subsumes
f2, since f ′ fixes all the bugs fixed by f2 as well as b′.
However f ′ % f2 does not imply f ′ � f2. Clearly, we have
f2 � f ′. But it may be that f ′ � f2 or that f ′ and f2 are
incomparable, as is the case here.

3.2 Temporal dynamics

We study a setting with discrete time periods, and a large
population of workers who submit fixes. Users discover and
report bugs, and may offer payment for fixes.

In each time period and for a given root cause, we
randomly sample from all 2l − 1 bugs associated with
the root cause, regardless of whether some of those bugs
might be already fixed (i.e., sampling with replacement).
A new bug enters the system only if the sampled bug is
as yet unfixed and unreported. Note that an un-reported
bug may be preemptively fixed by a fix already submitted
for a different reported bug. This reflects a natural situation
where a root cause may generate several bugs initially, but
fewer and fewer as fixes accumulate because an increasing
number of bugs are preemptively fixed.

Example 3. Consider a fix 1001, which fixes the set of bugs
{1001, 1000, 0001}. Any bug that is not fixed by fix 1001 may
appear after this fix is submitted on a particular root cause, such
as a bug 1110.

Upon generation, a bug is associated with a total amount
of reward that is provided by the user or users who report
the bug (see Section 3.3.) A root cause x ∈ R that has
not generated a new bug in some period of time (this time
period is a parameter of the model) is called inactive and is
regenerated with probability βx ∈ (0, 1]. When a root cause
is regenerated, it is removed and replaced with a new root
cause (i.e., one with all bugs yet to be generated) of the same
bit string length. This removal and replacement models the
root cause as having received deep enough fixes that it is
now unlikely to generate more bugs, and that the user base
shifts its attention to a new set of bugs. Moreover it may
be that certain modules are no longer the focus of the user
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Fig. 5. A sequence of fix-verify cycles.

base and therefore retired, eliminating that root cause, and
allowing for new modules and root causes to be created.2

The market dynamics are simulated through a sequence
of fix-verify cycles that occur over time (see Figure 5). Each
fix-verify cycle takes place in a single time period t at a given
root cause. Thus at each time period t we go round-robin
through root causes, executing fix-verify cycles at each root
cause. A fix-verify cycle for a particular root cause proceeds
as follows:

1) The root cause is queried once to see if it generates a
new bug, this bug also associated with a total available
payment as provided by the associated user.

2) A worker is selected at random and tentatively as-
signed to an unfixed or newly generated bug.

3) The worker submits a feasible fix, maximizing expected
utility given a model of the future.

4) The fix is verified by the market infrastructure in regard
to the assigned bug.

5) The total amount to be paid to the worker over some
time horizon is calculated. The worker is paid in a sin-
gle step, or in installments, depending on the specifics
of the payment rule.

We make four main modeling assumptions. First, a total
payment amount is associated with a bug at the time the
bug is generated. No further payments are added to this
bug later in time. This is a reasonable modeling assumption
since different payments can be flexibly associated with a
bug when generated, capturing user base disutility. Second,
only one new bug is introduced per root cause per period
and only one worker is matched to a bug for any given root
cause. These two assumptions simplify the analysis, avoid-
ing the possibility of two fixes being submitted on the same
root cause in any one period. While work within a particular
root proceeds in sequential order, work across different roots
may happen in parallel. Third, a matched worker submits a
fix in the same time period that the worker is assigned the
bug. This is a reasonable modeling assumption given that
time periods are long enough. Fourth, the likelihood that
the same worker is repeatedly assigned bugs belonging to
the same root cause is low, hence the worker considers only
those scenarios where future work on the same root cause is

2. The presence of multiple, regenerating root causes ensures an
infinite stream of bugs, also supports the stationarity in long-run
statistics that motivate the MFE approach.

performed by other workers. In settings with a large number
of workers and root causes, this assumption is sound.

3.3 Users and workers
The users in our model are not strategic. Rather, users
are modeled as being willing to make a payment that
corresponds to a disutility for a bug or a value for a fix.
This disutility is associated with a specific bug and thus
associated with a root cause that the user cares about. A
user may represent the aggregate utility of the user base for
a fix but for simplicity we refer to a single user.

Let r ∈ [rmin, rmax] denote a user’s instantaneous disu-
tility associated with a bug. A user’s realized value for the
sequence of fixes that occur following the report of a bug
is a function v(r, t̂) of the disutility r and the wait time t̂,
where v is decreasing in t̂ and v(r, 0) = r, and is given
by v(r, t̂) = δt̂r for discount factor δ < 1. Thus the longer
a user must wait for a fix, the lower the realized value. A
user’s realized value is at most r.

If disutility r = rmin then the user is called a short-term
user, whereas if r > rmin then the user is a long-term user. In
the time period that a fix is first submitted, both short-term
and long-term users get an initial installment of realized
value, defined as v(rmin, t̂). This represents the value of
any fix, even a shallow fix. This is also the total value of
a short-term user, modeling the idea that the user was only
interested in a shallow fix. A long-term user receives the
remaining value v(r, t̂)−v(rmin, t̂) in h∗ equal installments,
or fewer since payments are halted if an additional bug
appears on this root cause subsequent to t̂.

The utility of a user is the total value net the cost of
payment. Since users are not strategic payment is assumed
to equal the amount of the instantaneous disutility r. The
maximum utility a user can get is zero (representing realized
value r, net payment r), and the utility is generally negative.

The utility model has the following properties:
1) If the fix never occurs, the user utility is −r.
2) If the fix occurs right away and all installments are

received, the user utility is −r + r = 0.
3) Fixes that occur after a user’s bug report have some as-

sociated disutility, and thus the user utility is negative.
In this way, the user utility is a metric that unifies several

performance measures, including the wait time for a fix, the
side-effects of a fix (a deep fix pre-empts future bugs), and
the loss in value in any given period without a fix. In our
model the user commits to a payment even if the work is
not done.

A worker, chosen at random, is given the option of work-
ing on a bug, in what is referred to as a tentative assignment
(or tentative match). The worker’s decision problem is to
determine which fix to submit, if any. A decision about
whether or not to invest effort now does not foreclose the
ability to work in the future because we assume that a fix (if
any) is produced within the current period and because we
assume a worker ignores the possibility of being matched to
the same root cause in the future.

To produce a fix, worker wj incurs cost cj(|fk|), which
is a non-decreasing function of the number of ON-bits in
fk. A simple example is a linear cost function, with cj =
|fk|. We assume the worker discounts any future payments
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according to discount factor, δ < 1, indicating a preference
for earlier payments over later ones. The utility derived by
a worker from submitting a fix on a bug is equal to the
discounted sum of the payments received, starting from the
time period in which the fix is submitted, net the worker’s
cost for the fix fk.

Given a model of the behaviour of other workers, a
model of the environment by which bugs and user pay-
ments are generated, and a particular design for an incentive
mechanism, a worker chooses a fix (perhaps null) to maxi-
mize total expected, discounted utility. In what follows, we
describe the principal mechanisms that we study, and make
explicit the way in which the worker computes the expected
utility.

4 SUBSUMPTION MECHANISMS

Consider an instantiation of the model where Step 4 of the
fix-verify cycle involves a specific kind of correctness check.
In a subsumption mechanism, this step involves a check for
whether the current fix subsumes any previous fixes. If
so, the subsumed fixes are replaced by the current fix. In
addition, the worker’s payment may increase if the fix sub-
sumes previous fixes. In this way, a worker now competes
with other workers who fix subsequent bugs on the same
root cause. Thus the model captures indirect competition
because a later worker might produce a deeper fix for a
subsequent bug k, that not only fixes k but also subsumes
some other worker’s fix for an earlier bug on the same root
cause. To allow for this take-over of earlier payment, the
payments in a subsumption mechanism occur over a fixed
number of installments over time.

Generally, a subsumption mechanism is defined as a
mechanism that uses subsumption relations in at least one
of two ways:

i to make externally observable comparisons between
fixes, where one fix may subsume another;

ii to determine payments according to the subsumption
ordering of fixes.
We focus on three variations on subsumption mecha-

nism design, referred to as eager, lazy, and eager with reuse.

4.1 Eager subsumption

Eager subsumption performs externally observable checks
for subsumption using only the bugs and fixes seen so far.
Consider a fix fk for bug k at time t. Fix fk subsumes
a prior fix fi if it fixes all bugs fixed by fi from the set
of bugs seen until time t. If fix fi is subsumed then it is
discarded. Since subsumption is concluded without waiting
to see the entire range of bugs and fixes, eager subsumption
only approximates the ordering relationship between fixes.

For eager subsumption, we use a simple payment rule
that pays out equal installments of the total payment over
a fixed number of time periods, h∗. Let i < k be the index
into all fixes fi that occurred at a time prior to fk on this
root cause. Let Q(t) represent the set of all bugs at time t on
this root cause that were generated, remained unfixed, and
are now fixed by fk. Let r̂i(t) denote the total payment still
to be made to the worker associated with fix fi in periods t
and forward.

The total payment remaining to be made for a fix fk for
bug k submitted at time t is,

r̂k(t) =
k−1∑
i=1

r̂i(t)I{fk%fi} +
∑

q∈Q(t)

rq + rk, (1)

where r̂i(t) is the remaining unpaid payment (if any) at time
t of a previous fix fi subsumed by fk, rq is the payment
associated with an unfixed bug q that fk fixes, and rk is the
payment associated with bug k. This total payment is made
in installments over h∗ periods. The payment in period t′,
with t ≤ t′ ≤ t+ h∗, is,

pk(t′) =
r̂k(t)

h∗
. (2)

In particular, the worker is paid an installment each time
period until all h∗ installments are exhausted or until the
worker’s fix is subsumed by a new fix, whichever occurs
sooner. In the latter case, the remainder of the worker’s
payment is transferred to the subsuming fix. Hence if the
worker’s fix is only subsumed after h∗ time periods have
passed, or not subsumed at all during the lifetime of the
root cause, the worker is paid r̂k in its entirety. If a root
cause is regenerated while a worker still has outstanding
payments, the worker is paid the remainder in full.

Eager subsumption can give false positives in regard to
the ordering of fixes.

Example 4. Suppose bug b1 = 0001 is reported, attracting
fix f1 = 0011. Next suppose bug b2 = 1000 comes along on
the same root cause, with fix f2 = 1001. The eager mechanism
concludes that f2 subsumes f1 as it fixes all bugs seen so far. Thus
f1 is discarded and replaced by f2. f2 receives payments from the
reward on b2 plus transfer from f1. Now suppose bug b3 = 0010
arrives. f1 can fix b3 but not f2. Had f1 been retained it would
have precluded the appearance of b3. Instead b3 enters the market
and awaits a new fix.

4.2 Lazy subsumption

Lazy subsumption decreases the number of false positives
by delaying judgement. Although a check for subsumption
is performed when a new fix is submitted by a worker,
subsumption relations are finalized only when a root cause
regenerates. Thus, given the same instance, the partial order-
ing of fixes ultimately obtained with lazy subsumption may
be different than the one obtained with eager subsumption.

To illustrate, let us consider a single fix fk for bug k
submitted at time t. Suppose fk fixes all bugs fixed by a
prior fix fi that have appeared until time t. At this point
eager subsumption would decide that fk has subsumed fi,
whereas with lazy subsumption this decision is deferred.
Continuing, assume that fi has not subsumed any fixes.
Payments towards fi are stopped and fi is replaced by fk,
whose payments begin. But in contrast to eager subsump-
tion, fi is not discarded permanently, but is instead removed
from the system and placed on a waiting list. Moreover fk’s
payments do not yet include the transfer of the remaining
unpaid amount r̂i(t) from fi.

The total payment with lazy subsumption is also given
by Equation 1. At time t the worker responsible for fk begins
to receive installments of the portion of the total payment
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represented by the second and third terms in Equation 1,
that is,

∑
q∈Q(t) rq + rk. However while installments for

the rest of the payment begins, the payments associated
with the first term in Equation 1 are frozen until the root
cause regenerates at time t∗. Only then does the mechanism
determine, based on all bugs generated and fixes submitted
up until time t∗, whether fix fk subsumes fi. At that
point only, the lazy subsumption scheme redistributes the
payment r̂i(t) to the right party: if fk is found to have
subsumed fi at the time the root is regenerated, then r̂i(t)
is transferred to the worker who submitted fk, otherwise it
is retained by the worker who submitted fi.

Example 5. Suppose bug b1 = 0001 is reported, attracting fix
f1 = 0011. Next suppose bug b2 = 1000 arrives, attracting
fix f2 = 1001. The lazy mechanism considers that f2 may have
subsumed f1. Thus f1 is placed on a waiting list. Payments to
f1 are frozen and f2 receives payments from the reward on b2
but not the transfer from f1. Now suppose that bug b3 = 0010
arrives. f1 is reused to fix b3. At the end of the root’s lifetime, lazy
determines that f2 did not subsume f1 and f1 gets the remaining
payments that were frozen.

An interesting feature of lazy subsumption is that it
reuses fixes that are on the waiting list. In Example 5, lazy
subsumption would attempt to reuse f1 when b3 appears.
If f1 can be successfully reused, then it is simply reinstated
into the current, working set of fixes and the bug does not
enter into the economy and no new payment amount is
brought into the market. Hence, only if none of the fixes
on the waiting list can fix b3 does the mechanism revert to
the standard scenario where the bug is listed and a new pay-
ment is associated with it. It is via reuse that subsumption
relations, and consequently the partial ordering of fixes, are
updated during a root’s lifetime.

Thus, the process of determining subsumption in the
lazy mechanisms proceeds in two stages, consisting of an
eager check followed by a lazy check:

1) When a new fix is submitted a check is done, as in eager
subsumption, to ascertain if the new fix subsumed any
prior fixes based on the bugs and fixes seen so far. The
purpose of this check is to freeze payments that may
be subsumption transfers– if the new fix has subsumed
prior fixes then their payments are frozen. Although
any subsumption transfers (the first term in Equation 1)
are frozen, the new fix starts to receive installments
from payments associated with any previously unfixed
bugs (the second and third terms in Equation 1).

2) When a root regenerates, subsumption relations are
finalized by examining the final partial ordering of
fixes. The purpose of this check is to determine how
to distribute the frozen payments. This step is carried
out by retrospectively stepping through the arrival
times of fixes and computing payments according to
the subsumption relations revealed by the final, partial
ordering across fixes.

The difference with the eager mechanism, given the
same system state, is twofold: i) the stricter criteria of
judging subsumption means that the first term in Equation 1
might lead to a smaller payment, and ii) there is a delay
in paying out subsumption transfers, thus the per time

period payment does not include the first term in Equation 1
until the root regenerates. Note that subsumption checks are
performed only in the case where a new fix is submitted
by a worker. No such checks are performed when a fix
from the waiting list is reused to fix a bug and reinstated
into the current, working set of fixes. The goal here is
simply to alleviate the mistakes that can be made by eager
subsumption in determining subsumption without having
seen more of the set of bugs that a root cause may generate.
More than one fix in the waiting list may be able to fix
a new bug– in this instance we use a tie-breaking rule,
giving priority to the most recent waiting fix. Because lazy
subsumption finalizes subsumption relations when a root
cause regenerates, which may happen before all bugs are
generated, the subsumption relations concluded by the lazy
approach remain an approximation of the true ordering
relation amongst fixes.

4.3 Eager with reuse

This hybrid mechanism works in a similar way to the
eager subsumption mechanism and uses the eager payment
rule, with total payments given by Equation 1. However
it deviates from the eager mechanism in that subsumed
fixes are not discarded. Instead they are kept on a waiting
list and reused as is done in lazy subsumption. What this
means is that there are time periods when a new bug is
fixed via a reused fix and the bug does not enter the market
or get associated with a new payment amount. The effect
is as if a new bug was not generated at all, and instead
was preemptively fixed by an existing fix in the system
(which would have been the case had the reused fix not
been removed from the set of current fixes in the first place).
Accordingly, any eager installments that are being paid out
proceed as if a bug was not generated in this time period.

Example 6. Continuing with Example 4, f2’s payments include
the remaining unpaid payment of f1 as well as the payment for b2.
Payments are made as per the eager subsumption rule. However
in eager with reuse, fix f1 is not discarded, instead it is reused
when b3 appears and therefore a new payment is not associated
with bug b3.

4.4 Baseline, non-subsumption mechanisms

In this section, we present instantiations of the fix-verify
cycle that do not involve subsumption. These provide base-
lines against which to compare the subsumption mecha-
nisms.

• Myopic mechanism: The worker is paid in full as soon
as submitting a valid fix. Let Q(t) represent the set
of all generated bugs at time t on this root cause that
are now fixed by fk. The total payment for a fix fk
for bug k submitted at time t is,

r̂mk (t) =
∑

q∈Q(t)

rq + rk (3)

where rq is the payment of a formerly unfixed bug q
that fk has now fixed, and rk is k’s reward.

• Installment mechanism: The total payment available to
be paid for a fix is described by Equation 3. However
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the worker is paid in a fixed number, h∗, of equal in-
stallments that stop as soon as a new bug of the same
root cause appears. Any remaining payment goes
unused and can be considered to be “wasted”.The
payment in time period t′, where t ≤ t′ ≤ t + h∗, is
equal to r̂mk (t)/h∗.

• Installment with transfer: This mechanism functions
like the installment mechanism, but takes one step
closer to eager subsumption by allowing transfers
of payments from one fix to another. Installments
that remain unpaid when a new bug appears are not
thrown away. Rather, they are added to the payment
for the new bug. The total payment available to be
paid for a fix fk for bug k submitted at time t is,

r̂nk (t) = r̂i(t) +
∑

q∈Q(t)

rq + rk, (4)

where r̂i(t) is the remaining unpaid payment at time
t of the previous fix fi whose installments were
interrupted by k, and the other terms are as defined
in Equation 3. Because bugs appear in sequence, and
payments are interrupted as soon as the next bug
appears, there can only be one such earlier fix that is
currently receiving payments. The payment in time
period t′, where t ≤ t′ ≤ t+ h∗, is equal to r̂nk (t)/h∗.

4.5 Discussion

Recall that a new, unreported bug may be preemptively
fixed by a fix already existing in the system for a reported
bug. We refer to the set of submitted fixes that are currently
present in the system as the set of active fixes. The compo-
sition of the set of active fixes differs amongst the different
mechanisms.

Because the myopic and installment mechanisms do not
perform fix-to-fix comparisons and thus do not eliminate
any submitted fixes from the system, the set of active fixes
comprises all fixes submitted so far on a root cause. Hence
at time t all fixes submitted at a root cause up until time t
are used to preemptively fix new bugs in the myopic and
installment mechanisms.

In the case of eager subsumption, subsumed fixes are
permanently deleted from the system. Therefore the set of
active fixes at time t is equal to the set of all fixes submitted
so far minus those fixes that have been subsumed by time t.
As a result, the preemptive power of eager subsumption
may be lower than that of the myopic and installment
mechanisms, specifically when there are false positives as
shown in Example 4.

Turning to eager with reuse and lazy subsumption,
although subsumed fixes are removed from the system,
they are not permanently deleted as they are in eager
subsumption. Rather, subsumed fixes are stored in a waiting
list. The set of active fixes at time t is the same as in eager
subsumption: it comprises the set of all fixes submitted so
far minus those fixes that have been subsumed by time t.
However, when a new bug is generated that could not be
preemptively fixed by any active fix, the eager with reuse
and lazy mechanisms check whether any fixes stored in the
waiting list may be reused. The effect is that new bugs are
introduced into the market at time t only if no fix in the set

of all fixes submitted at a root up until time t (i.e., the set of
active fixes and the set of subsumed fixes) has already fixed
them.

5 MEAN FIELD EQUILIBRIUM

In a subsumption mechanism, workers must contend with
competing workers who may subsume their fixes, thereby
curtailing their payment installments. Thus the worker faces
a naturally strategic situation. The deeper the fix submitted
the less likely it is to be subsumed and payments curtailed.
But, deeper fixes cost the worker more. A worker in this
market must decide how to best-respond to competitors’
play in order to maximize expected utility.

We study subsumption mechanisms in a mean field
equilibrium (MFE). MFE is an approximation methodology
suited to large market settings, where keeping track of the
strategies of individual agents becomes prohibitive. As the
number of agents grows large, it is reasonable to assume that
agents optimize instead with respect to long run estimates
of the marginal distribution of other agents’ actions. In
particular, each worker best-responds as if in a stationary
environment. The equilibrium aspect of MFE is that it insists
on a consistency check: the statistics of the marginal distri-
bution must arise as a result of agents’ optimal strategies.

5.1 Adapting MFE to our setting

Recall that a worker assigned a bug must decide which fix
to submit, if any. In a subsumption mechanism this strategic
decision amounts to estimating the subsumption time of
each valid fix, since this affects the distribution over future
payments as a result of submitting a fix now.

Each worker models the future as though there is an
i.i.d. distributionD of fix depths submitted by others, where
the set of possible fix depths is {0, . . . , l} (including null
fixes). In addition, a worker assumes that all fixes associated
with a particular fix depth occur with equal probability.
This induces a probability distribution over the set of all
2l possible fixes. Finally, a worker infers the conditional
distribution on feasible fixes for a specific bug (noting that
only some fixes can be valid).

For concreteness, we can consider eager subsumption,
and normalize time, so that a fix is considered to be submit-
ted in period t′ = 0. Let yjk denote a worker’s utility for
submitting fk to fix bug k. The worker’s expected utility is:

E[yjk] = Eh

[
h∑

t′=0

δt
′
pk(t′)− cj(|fk|)

]
(5)

where pk(t′) is the payment in time period t′, and h =
min(h∗, H) where H is a random variable representing
subsumption time, defined as the number of time periods
before fk is subsumed.

Subsumption times vary amongst the fixes submitted,
because each fix precludes a different set of bugs, which
affects the time till the next bug (and its fix) appears.
Moreover each fix permits a different set of future fixes that
can subsume the fix. For any particular system state, the
worker chooses a fix f∗ such that,
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Fig. 6. Look-ahead sampling to compute an approximately optimal, best
response given a worker is matched with bug b. Fixes f1 through fk
are possible fixes by this worker, and for each one the worker rolls out
possible futures.

f∗ = arg max
fk

Eh

[
h∑

t′=0

δt
′
pk(t′)− cj(|fk|)

]
(6)

The fix that maximizes the worker’s expected utility is
determined by estimating the distribution on subsumption
time, and thus estimating equation (5). To estimate the
utility of each feasible fix, a worker samples possible future
trajectories assuming that workers behave according to be-
lief D, given the environment model that dictates how bugs
and new root causes are generated, and arrives at a sample
over possible subsumption times and thus an estimated,
total expected discounted utility.

In particular, given a fix f∗ submitted in the current time
period, bugs not fixed by f∗ might appear in future time
periods. A future fix to one of these bugs might subsume f∗,
thereby curtailing the number of payment installments. In
order to estimate the expected utility of a fix f∗, the worker
simulates the software economy environment according to
the MFE a number of times. Several trajectories are sampled
in order to realize subsumption time and arrive at an esti-
mate of the utility the worker can expect when submitting
fix f∗ (see Figure 6). We stop sampling trajectories once the
worker’s estimated utility converges to within a confidence
interval. This look-ahead sampling technique is inspired
by the sparse sampling algorithm for estimating optimal
policies in Markov decision processes [59].

Let Φ(D) be the long-term, empirical distribution given
that workers assume model D, and apply their optimal
strategy, given the dynamic model of the root cause and
bug environment.

Definition 7. An MFE in the software economy is a distribution
D on fix depths such that Φ(D) = D.

Continuing, for a given environment and mechanism,
we estimate the MFE following the approach described in
the algorithm in Figure 7. To determine convergence of the
system to a MFE we compare distributions using a likeli-
hood ratio test (details are in the Appendix). The test for
convergence is performed once after letting the algorithm
run for a long period. This period of time is determined

1: Initialize time period t = 0.
2: Initial distribution on fix depths (worker beliefs), D0.
3: while convergence not reached do
4: t = t+ 1.
5: for each root cause do
6: Regenerate root cause according to its regeneration

probability.
7: Try to generate a new bug.
8: if bug generated then
9: Generate payment by sampling from reward dis-

tribution.
10: Assign a worker at random to bug.
11: Verify fix submitted by worker, if any.
12: Update the empirical distribution on fix depths

and compute Dt+1.
13: Make payment installments on this root cause.
14: end if
15: Update user’s realized utility.
16: end for
17: end while

Fig. 7. Algorithm to estimate MFE

at design time, where we look for a number of periods
such that reliably, over and over again when we rerun the
experiment, the test passes. This avoids the multiple testing
problem.

6 SIMULATION STUDY

The goal of the simulation is to understand the characteris-
tics of the model and mechanisms proposed in this paper.
We hope to draw lessons for market design and distill useful
insights for practitioners. Some questions that motivate our
study are as follows: How do the simple mechanisms of
myopic and installment fare relative to eager subsumption?
Does reuse improve performance? What is the relative per-
formance of the three subsumption mechanisms?

Because there are several parameters in the model of
the software ecosystem, where each can take on a range of
values, and because any combination of parameter settings
yields a different environment, there are a large number of
environments that can be used for simulations. We hope to
study a more comprehensive set of environments in future
work. For the present paper, we consider the following
environment parameters: Root causes are associated with
bit string length 4. Bugs are generated from a uniform or
geometric distribution. The worker uses either a linear or
exponential cost function, and the worker’s cost c for the
first ON-bit is sampled uniformly at random from different
ranges. The number of installments h∗ is either 5 or 10.
Unless otherwise stated, the discount factor is 0.8. Users are
either all short-term, or a mixture of short-term and long-
term with user disutility sampled uniformly at random from
different ranges.

The performance of the mechanisms is measured accord-
ing to the following metrics, which are averaged over all ob-
servations for each root cause over a number of periods after
the system has converged in simulation to an approximate
MFE:
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• Percentage of immediate fixes: percentage of all bugs
generated at a particular root cause that receive any
non-null fix in the same time period that they appear;

• Percentage of immediate deep fixes: percentage of all
generated bugs that receive a deep fix in the same
time period that they appear;

• User cost: total payment (equivalent to instantaneous
disutility r) paid out towards fixes by all users of a
particular root cause;

• User utility: average user utility per bug generated,
averaged over all bugs seen during a length of time;

• Variance in worker utility: variance in the worker util-
ity per bug fixed, averaged over all bugs seen during
a length of time.

A good mechanism produces a high percentage of imme-
diate and deep fixes, provides high user utility, involves low
levels of instantaneous disutility, and exhibits low variance
in worker utility which guarantees that the utility workers
get from participating is stable.

6.1 Simple mechanisms

We first compare the performance of eager subsumption,
which is the simplest subsumption mechanism, against the
myopic and the installment mechanisms. In this simulation,
we adopt the following Environment I:

Bugs are generated uniformly at random, the number of
installments is 10, and the worker cost function is linear,
with each worker randomly sampling cost for initial bit,
c ∼ uniform(1, 2). This environment is parameterized
by the instantaneous disutility r for users.

To understand the ratio of the instantaneous disutility
to cost in this environment, suppose the disutility is 10.
Then, for an average initial bit cost of 1.5, we have a ratio of
10/1.5 = 6.67.

At relatively low levels of instantaneous disutility (and
thus low payments), the eager and installment mechanisms,
which make payments for a valid fix over time, do not
cover the worker’s cost. This is because installments are
discounted over time, and because payments may be in-
terrupted early due to a new bug appearing or when a fix
is subsumed. Bugs accumulate until the combined payment
for covering multiple bugs with a single fix is high enough.
That bugs linger is seen in Figure 8, which shows that less
than 100% of bugs receive immediate fixes at lower payment
values. In comparison, myopic pays the entire payment
when a valid fix is submitted. This leads to more immediate
fixes.

On the other hand, the equilibrium strategy of a worker
in the myopic mechanism is to produce the shallowest
possible fix. This is a best response because the worker is
paid in full as soon as he submits any valid fix. Because
of this, the performance of the mechanism levels off once
fixes are affordable, and remains unresponsive to a further
increase in payment (see Figures 9 and 10). The installment
mechanism fares better than the myopic mechanism when
the payment is high but lags behind eager subsumption at
lower payments. Without transfers, the installment mech-
anism cannot augment the low payment for a current fix
with any remaining unpaid payment from a past fix. These

results show the need for something more than the basic
myopic and installment mechanisms.

6.2 Installment with transfer and eager with reuse
Figure 11 shows the results when we include installment
with transfer in place of myopic. Installment with transfer
provides higher user utility than the installment mechanism.
This is as expected, because the amount transferred can
accumulate for bugs appearing later on a root cause. For
the parameter settings considered here, the performance of
installment with transfer bridges the gap between that of
installment and eager subsumption.

In order to create opportunities for the reuse of sub-
sumed fixes, we modify the environment. Environment II
is defined as:

Bugs are generated according to a geometric distribu-
tion, and worker cost is an exponential function in
the depth of a fix. When bugs are generated uniformly
at random and worker cost is linear, reuse is often
precluded because we get bugs of a high bit string value,
receiving deeper fixes, arising earlier in a root’s lifetime.
For reuse to occur, we require fixes that are deep enough
to be reused, but not so deep that they are hard to
subsume. The worker’s cost for the first ON-bit is c = 1,
and we set the number of installments to be h∗ = 10.
Bug generation is sped up, so that a root cause is queried
five times, to see if it generates a new bug in a time
period, instead of just once. This captures a scenario
where a technology is newly adopted and may contain
a large quantity of bugs initially. This environment is
parameterized by the instantaneous disutility range for
users.

See Figures 12 and 13. Installment with transfer produces
a lower percentage of deep fixes than the other mechanisms.
Like the installment mechanism, installment with transfer
stops paying a worker as soon as the next bug appears. It
follows that the portion of the payment that the worker can
expect to keep is partly influenced by the rate of arrival
of bugs. Moreover submitting the deepest possible fix on a
root cause may not be profitable given the worker’s cost and
available payment. Hence the worker’s expected payoff for
submitting deeper fixes is reduced.

Environment III is defined as:
Workers have an exponential cost function, with each
worker’s cost c ∼ uniform(2.5, 3), bugs generated
from a geometric distribution, and the number of in-
stallments is 10. In this environment we consider a
higher worker cost than heretofore. This environment
is parameterized by the instantaneous disutility range
for users.

See Figures 14 and 15. In this setting, eager with reuse
does best with regard to user utility, whereas the eager
mechanism performs better in terms of percentage of deep
fixes. By deleting fixes that turn out to be false positives,
eager reduces its ability to preemptively fix new bugs in-
stead of generating them. This places eager subsumption at
a disadvantage with respect to metrics such as user utility.
Eager with reuse enhances the eager mechanism’s perfor-
mance with the ability to reuse subsumed fixes instead of
discarding them.
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Fig. 8. The percentage of immediate fixes in simple mechanisms in Environment I, for different instantaneous disutility ranges.
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Fig. 9. The percentage of immediate deep fixes in simple mechanisms in Environment I, for different instantaneous disutility ranges.
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Fig. 10. The user utility in simple mechanisms in Environment I, for different instantaneous disutility ranges.
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Fig. 11. User utility in Environment I for the eager, installment, and installment with transfer mechanisms.
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Fig. 12. The percentage of immediate deep fixes in Environment II, for different instantaneous disutility ranges, and comparing eager with reuse,
instalment with transfer, and eager.
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Fig. 13. The user utility in Environment II, for different instantaneous disutility ranges, and comparing eager with reuse, instalment with transfer, and
eager.
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Fig. 14. The percentage of immediate deep fixes in Environment III, varing the instantaneous disutility range, and comparing eager, installment with
transfer, and eager with reuse.
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Fig. 15. User utility in Environment III, varying the instantaneous disutility range, and comparing eager, installment with transfer, and eager with
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6.3 Lazy subsumption
For this simulation we work with environment IV:

Bugs are generated from a geometric distribution, the
number of installments is 10, and the worker cost model
is an exponential function, with each worker randomly
sampling c ∼ uniform(3, 4). To compare the three
subsumption variants, we consider an environment
with relatively high worker cost. This environment is
parametrized by the user instantaneous disutility range.

See Figures 16 and 17. As a consequence of reusing
subsumed fixes, the eager with reuse and lazy subsumption
mechanisms achieve lower user cost, resulting in higher
user utility. Recall that the lazy mechanism finalizes sub-
sumption relations only when a root cause regenerates, and
then redistributes payments. In order to better understand
the performance of lazy subsumption, we adjust for the
effect of discounting on later payments (by increasing re-
distributed amounts by a small quantity), thereby levelling
the playing field. In general lazy subsumption performs as

well as eager with reuse for the metrics examined in this
study. Because the lazy mechanism uses more conservative
checks, it is harder to subsume fixes and likewise harder
to be subsumed. As a result lazy subsumption exhibits a
smaller variance in worker utility than eager with reuse.
For instantaneous disutility ranges 4− 9, 6− 11, and 8− 13,
lazy subsumption has variance 0.3, 0.4, and 0.29 while eager
with reuse has variance 1.0, 1.75, and 2.18 respectively.

6.4 Robustness across environments
We also conducted a test of the robustness of the different
designs across ten different environments, E1, E2, . . . , E10,
ordered from simple to more complicated environments.
These environments can be viewed in the context of differ-
ent software engineering scenarios. For instance, environ-
ment E1 might represent academic researchers who need
help with issues in a scientific software that they use for
experiments. They are short term users, as fixes are only
needed for a specific set of experiments. The workers may
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Fig. 16. User utility in Environment IV, varying the instantaneous disutility range, and comparing the lazy, eager, and eager with reuse mechanisms.
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Fig. 17. User cost in Environment IV, varying the instantaneous disutility range, and comparing the lazy, eager, and eager with reuse mechanisms.

be research assistants who have fixed low salaries. Moreover
the disutility of bugs is low compared to safety critical
systems. Environments E2 and E3, involving higher user
disutility and variable worker cost respectively, might repre-
sent short-term or seasonal needs of businesses. One exam-
ple of this is web compatibility issues where, for example,
retailers would like their websites to appear the same way in
different web browsers. To this end they might need bugs to
be fixed but are not concerned with the long-term evolution
of the web browser code. Environment E6, with a fast rate of
bug generation, might represent the scenario where a new
technology is adopted. Initially the technology gets a lot of
attention and many issues are uncovered. Over time most of
the bugs are fixed, the technology matures, and is eventually
overtaken by competition, leading to decreased activity.
Environments E8, E9, and E10 might represent large-scale,
critical systems with high cost workers. Examples include
medical visualization software where patients’ health is at
stake, airline booking software where a bug could leave
thousands stranded, banking and financial software where

a glitch could affect millions across the world, and so forth.
The environment settings are as follows:
E1. Short-term users, fixed instantaneous disutility chosen

in the range [2, 5], same cost workers with c = 1, h∗ =
5.

E2. Short-term users, fixed instantaneous disutility chosen
in the range [11, 15], same cost workers with c = 1,
h∗ = 5.

E3. Short-term users, fixed instantaneous disutility chosen
in the range [5, 7], worker randomly samples c ∼
uniform(1, 2), h∗ = 5.

E4. Long-term as well as short-term users, with in-
stantaneous disutility sampled according to r ∼
uniform(4, 8), worker randomly samples c ∼
uniform(1, 2), h∗ = 10.

E5. Long-term as well as short-term users, with in-
stantaneous disutility sampled according to r ∼
uniform(25, 29), worker randomly samples c ∼
uniform(1, 2), h∗ = 10.

E6. Faster rate of bug generation.
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E7. Low cost workers, where each worker randomly sam-
ples c ∼ uniform(1, 1.5), long-term and short-term
users with instantaneous disutility sampled according
to r ∼ uniform(5, 11), h∗ = 5.

E8. High cost workers, where each worker randomly sam-
ples c ∼ uniform(2, 2.5), long-term and short-term
users with instantaneous disutility sampled according
to r ∼ uniform(8, 14), h∗ = 5.

E9. High cost workers, where each worker randomly sam-
ples c ∼ uniform(2.5, 3), long-term and short-term
users with instantaneous disutility sampled according
to r ∼ uniform(11, 17), h∗ = 5.

E10. High cost workers, where each worker randomly sam-
ples c ∼ uniform(3, 4), long-term and short-term users
with instantaneous disutility sampled according to r ∼
uniform(9, 13), h∗ = 10.

See Figures 18 and 19. As the environments get more
complex we see a shift in the kinds of mechanisms that
dominate with respect to percentage of immediate deep
fixes as well as user utility. The myopic mechanism performs
well in the first few environments, but later the installment
with transfer and the subsumption mechanisms take over.
The utility of long-term users depends on receiving both
immediate and deep fixes. As we have seen, simple mech-
anisms such as myopic and installment do not provide the
right incentives. Hence mechanisms that permit transfers,
and reuse subsumed fixes, perform best in environments 5-
10, in particular the eager with reuse mechanism.

6.5 Myopic mechanism and short-term users

In a counterintuitive result, the myopic mechanism gives
deep fixes at low payments. For this, we consider Environ-
ment V:

Bugs are generated uniformly at random, the worker
cost function is linear with c ∼ uniform(1, 2) for
all workers, the number of installments is 10, and
the instantaneous disutility is a constant (and varied
in different trials). In this regime all users are short-
term. This environment is parameterized by the fixed
instantaneous disutility of users.

See Figures 20, 21 and 22. In these figures, we “zoom
in” to observe what happens at low payments with short-
term users. Because the myopic mechanism pays the entire
payment at once it promotes immediate fixes (see Figure 20).
Because this environment has only short-term users, the my-
opic mechanism achieves the maximum user utility when all
bugs receive immediate fixes (see Figure 22).

Further, accumulated payments from cases where the
fix remains too costly provide an incentive for the worker
to produce a deep enough fix in order to collect the ac-
cumulated amount. Thus, we also see deep fixes with the
myopic mechanism. However, as the payment increases and
completely covers the worker’s cost for a fix, the incen-
tives for deep fixes go away. The worker simply gives the
shallowest possible fix to claim the payment, and there is
no accumulation. In particular, as the payment increases
beyond the amount shown in these figures, we revert to
the case examined earlier in Figures 8, 9 and 10 , where the
eager mechanism was dominant.

7 CONCLUSION

A market mechanism for bug fixes must take into consider-
ation some important design criteria. These are:

1) Robustness of performance in regard to user utility
and percentage of deep fixes, submitted quickly, across
different software environments.

2) Selecting a small, good set of fixes, and eliminating
redundant fixes.

3) Making judgments about the relative quality of differ-
ent contributions with minimum knowledge about the
domain.

Subsumption mechanisms satisfy all three design crite-
ria. Table 1 compares the mechanism designs according to
the set of submitted fixes that are checked when determin-
ing whether a new bug already has a fix. Table 2 orders
the mechanisms from simple designs without competition
between workers for payments to the subsumption mech-
anisms, which promote competition. Table 3 compares the
different designs according to whether there is a transfer
of payments, and whether fixes are compared against one
another.

In regard to performance, the eager subsumption mech-
anism is of particular merit if we care primarily about the
percentage of bugs that receive immediate and deep fixes.
On the other hand, if user utility is more important, then
eager with reuse and the lazy mechanism are good choices.
At low reward levels, and with short-term users, the myopic
mechanism performs best with respect to the metrics, per-
centage of immediate fixes, percentage of immediate deep
fixes, and user utility.

As described in Table 1, subsumption mechanisms iden-
tify and remove fixes that have been judged to be subsumed,
thereby striving to eliminate redundant submissions. As a
result, a system evolves under the subsumption designs to
a minimal yet good set of fixes. By comparison, the install-
ment mechanisms do not identify and remove redundant
fixes. This can have a negative side effect of leading to a
bloated system that keeps around all fixes ever submitted.

The different mechanisms give rise to different types
of competition dynamic, as shown in Table 2. Workers in
the myopic mechanism produce deep fixes at low payment
levels only. Beyond these levels workers are unresponsive
and simply submit the shallowest possible fix since no
competition is involved. The installment and installment
with transfer mechanisms stop paying when the next bug
appears. Hence workers in these mechanisms must contend
with aspects of the environment such as bug generation
rate. Because subsumption mechanisms involve competition
amongst workers as well as transfers and fix-to-fix compar-
isons (Table 3), their performance is robust across different
environments.

Regarding knowledge requirements, the check for
whether one fix subsumes another in the subsumption
mechanisms does not strictly require the assumption of
different underlying root causes– rather, it relies on mak-
ing externally observable comparisons. In contrast, the in-
stallment mechanisms have a high knowledge requirement
because they need to know that a set of bugs belongs to the
same root. Curtailing workers’ payments without a priori
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Fig. 18. Robustness check: Percentage of deep fixes across the ten different environments.
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Fig. 19. Robustness check: User utility across the ten different environments.

knowledge that a set of bugs belongs to the same root cause
does not seem reasonable in practice.

We further consider the performance of our mechanisms
in environments (E1, E2, . . ., E10) that can be mapped to
realistic software engineering settings. Our results show that
as environments get more complicated, involving more crit-
ical systems and higher development costs, there is a shift
in the types of mechanisms that function well according to
metrics such as percentage of immediate deep fixes and user
utility. In these more complex environments, mechanisms
that permit transfers and reuse subsumed fixes perform

best.
In conclusion, subsumption mechanisms satisfy all three

market design criteria and perform robustly across all envi-
ronment configurations examined in the empirical analysis.

7.1 Limitations and future work

This work initializes the study of how to incentivize deep
fixes. The present paper evaluates subsumption mecha-
nisms by comparing their performance in simulation with
respect to a set of metrics. It would be interesting to consider,
for a simpler model, the design of the optimal mechanism,
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Fig. 20. Percentage of immediate fixes in Environment V, varying the fixed instantaneous disutilities, comparing the eager and myopic mechanisms.
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Fig. 21. Percentage of immediate deep fixes in Environment V, varying the fixed instantaneous disutilities, and comparing the eager and myopic
mechanisms.
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Fig. 22. User utility in Environment V, varying the fixed instantaneous disutilities, and comparing the eager and myopic mechanisms.
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TABLE 1
Comparing mechanisms by the set of fixes used to preempt bugs from entering the market.

All fixes submitted so far (equal the set of active fixes) Myopic
Installment
Installment with transfer

All fixes submitted so far (subsumed fixes are reused) Eager with reuse
Lazy subsumption

Set of active fixes (subsumed fixes are deleted) Eager subsumption

TABLE 2
Comparing mechanisms by the kind of competition dynamic that they create.

No competition Myopic
Environment as adversary Installment

Installment with transfer
Competition and MFE Eager subsumption

Eager with reuse
Lazy subsumption

TABLE 3
Comparing the essential features of the payment rule in each mechanism.

Fix to fix comparisons No fix comparisons
Transfers Eager subsumption

Eager with reuse Installment with transfer
Lazy subsumption

No transfers N/A Myopic
Installment

where optimality is defined with respect to a suitable mea-
sure or a specific class.

We make several simplifying assumptions to obtain a
minimal, tractable model and to focus on capturing the
essence of the problem. Building on this work, an interesting
direction would be to relax these assumptions. For instance
a worker might be allowed to choose what bug to fix instead
of being assigned one at random. Making users strategic
and allowing payments to change over time would also be
an interesting path to pursue. Another experiment could
treat the length of time for which payments are deferred as
a parameter, thereby characterizing a tradeoff between the
eager mechanism at one end and the lazy mechanism at the
other end of the spectrum. Future work might consider a
family of subsumption mechanisms parameterized by time
period, and such that subsumption relations are concluded
after t time periods.

Because of the complexity of the design space, we have
evaluated the model and mechanisms in simulation. One
of us [60] has also carried out theoretical analysis of a
simplified variation of the computational model presented
here. It would be fruitful to further explore a theoretical
approach in order to derive theoretical characterizations
regarding the properties of the equilibrium, the performance
of the mechanisms, market conditions, and so forth.

Equally interesting would be to take the abstract model
presented in this paper to a more practical context. For
example, future work might try to apply subsumption
mechanisms to an existing system or use real-world data
to validate our model. This would shed light on what are
useful settings for the parameters in our model as well as
highlight instances of the problem that might arise more
frequently in practice. The model of the software ecosystem
consists of several parameters and each of these parameters

can take on a range of values. Various combinations of
parameter settings can produce a large number of environ-
ments to use for simulations. Building on the foundation
laid in this paper, we hope to conduct a wide-ranging series
of simulations in future work, focusing on those parameter
settings inferred through real-world data.

Because the problem addressed and the system designed
in this paper depart from existing systems in several ways,
obtaining relevant real-world data would require that we
adapt and deploy subsumption mechanisms to work in
practice. Deployment raises several interesting challenges.
For instance, fixes addressing various reported issues may
not always be completely independent and may build on
one another in layers of work carried out over time [61].
How to adapt subsumption mechanisms to take into ac-
count different contributions that comprise a single solution
is an interesting problem left to future work. Another con-
sideration is a fast-changing code base which might make it
difficult to compare the effect of a new fix on past versions.
In addition a real-world implementation would need to
map the parameters in this abstract model to equivalent
concrete values. For example, the lazy mechanism defers
payments until the end of a root cause’s lifetime. In reality
this period of deferral could be interpreted in different ways
with different consequences: it could be a predetermined
period of time such as two weeks, or when the rate of
bug generation in the relevant module falls below a certain
threshold indicating that the root cause has been mostly ad-
dressed and alternatively is no longer much in use, or when
the next version of the software is released, and so forth.
Preliminary experiments with real users and workers might
help to inform what values to set in a final deployment.

In practice bug reports consist of reproducible steps and
test cases. If a bug report describes a specific bug then a
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developer might not realize that a deeper fix is possible in
this instance. Incentivizing testers to write failing test cases
for more general bugs would help to shift attention to the
possibility of deeper fixes. That is, if bug X is a subset
of bug Y then we would like developers to focus efforts
on bug Y . This would create a test-driven environment
where subsumption mechanisms might be implemented
more effectively.

In this work we have focused on financial incentives.
However in peer production environments, such as that
of open source software, volunteers self-organize and con-
tribute to projects without being paid. Studies have shown
the open source developers are driven by a diverse set of
motivations, monetary and non-monetary in nature [62]. In
fact it has been argued that it is the presence of these diverse
motivations that results in peer production communities
successfully completing complex projects [63]. It would be
interesting to consider the implications for the incentives
design presented in this paper in the context of peer produc-
tion. How can financial incentives be introduced without
affecting the characteristics of peer production? How can
we adapt our model to work with non-monetary incentives,
or otherwise to work with a mix of monetary and non-
monetary incentives? A reconciliation of the different types
of incentives is left to future work.

In general, the problem of incentivizing deep, or equiv-
alently high quality and lasting, fixes is not unique to soft-
ware engineering. Subsumption mechanisms may also find
application in settings other than software engineering that
share the aspect of a modular and open design structure,
where the quality of the system may evolve over time.
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