
USENIX Association

Proceedings of the
6th USENIX Conference on Object-Oriented

Technologies and Systems
(COOTS '01)

San Antonio, Texas, USA
January 29 - February 2, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

 HBench:JGC – An Application-Specific Benchmark Suite for Evaluating JVM
Garbage Collector Performance

Xiaolan Zhang and Margo Seltzer

Division of Engineering and Applied Sciences
Harvard University

Abstract

As Java becomes a viable platform for server applications, performance becomes a greater concern. An important
aspect of Java Virtual Machine performance is its dynamic memory management system (garbage collection or
GC). Traditional GC benchmarking often focuses on a set of fixed applications. As a result, when an actual appli-
cation’s memory behavior differs from that of the standard benchmarks, the benchmark results do not help the
user judge which GC implementation suits her application the best. In this paper, we present HBench:JGC, an
application-specific benchmarking suite, based on the idea that a system’s performance be measured in the context
of a specific application. HBench:JGC employs a methodology that characterizes the application memory usage
and the GC implementation independently and carefully combines both characterizations to form a single metric
that reflects a particular application’s performance in the presence of a particular GC implementation. We evalu-
ate our approach on Sun Microsystems’s JDK1.2.2 classic JVM with a sequential mark-sweep GC. Our results
demonstrate HBench:JGC’s unique predictive power and its ability to provide meaningful metrics that lead to a
better understanding of GC performance.

1. Introduction

In recent years, there has been a rapid increase in the
adoption of Java technology in a variety of environ-
ments, ranging from JVMs embedded in web-browsers
to high-performance server products. As Java becomes
a viable platform for server applications, performance
becomes a greater concern. An important piece of Java
Virtual Machine performance is its dynamic memory
management system (garbage collection or GC). His-
toric data show that it is quite common for garbage
collection to account for 20% or more of an applica-
tion’s total running time [9]. Sometimes garbage col-
lection is the performance bottleneck. Understanding
GC performance and selecting the right GC implemen-
tation, therefore, can lead to significant savings in the
total running time of the application.

The traditional GC benchmarking approach is to pick a
set of programs, run them with different GC algo-
rithms, and compare the total elapsed times. This ap-
proach has been used by Smith and Dorisett, as well as
by Zorn [12][15]. This approach is inadequate, since
the optimal GC algorithm varies with the application
[15], and the set of benchmark programs may not rep-
resent the actual memory behavior of the application
of interest.

Another approach to benchmarking and selecting GC
algorithms for a given application is to manually con-
struct a small program that models the memory behav-
ior of the application in question and when run, pro-
duces the same memory footprint. This approach re-
quires a high level of skill and is error-prone,
especially when the application’s memory behavior is
complicated.

HBench:JGC is a benchmark suite that allows one to
measure GC performance in the context of the applica-
tions in which users are interested without having to
model the applications manually. The underlying prin-
ciple is to separate the characterization of application
memory usage from that of the GC implementation.
HBench:JGC includes a GC-independent profiler that
traces an application’s memory behavior. It uses a set
of microbenchmarks to measure the performance of a
GC implementation in an application-independent
way. The two characterizations are then fed to an ana-
lyzer, which calculates the predicted GC time. Fig-
ure 1 depicts the schema of HBench:JGC.
HBench:JGC has the added advantage that one can use
it to predict an application’s garbage collector per-
formance on a target GC implementation without ac-
tually running the application with the particular col-
lector, as long as its performance characteristics are
available. The GC-independence of the application
characterization facilitates this unique flexibility. We

can predict the application’s performance on different
GC implementations by feeding performance charac-
teristics of different GC implementations to the ana-
lyzer.

Section 2 describes the design of HBench:JGC in de-
tail. Section 3 describes its prototype implementation.
Section 4 presents experimental results on applying
HBench:JGC to evaluating GC performance. Section 5
discusses open issues and future work. Section 6 de-
scribes related work and Section 7 concludes.

2. HBench:JGC Design

HBench:JGC is part of HBench, an application-
specific benchmarking framework designed to address
the problem that standard benchmark results do not
reflect a particular application’s performance on a par-
ticular system [11]. HBench:JGC is based on
HBench’s vector-based methodology. The principle
behind the vector-based methodology is that a sys-
tem’s performance is determined by the performance
of the individual primitive operations that it supports
and that an application’s performance is determined by
how much it utilizes the primitive operations of the
underlying system. The running time of a given appli-
cation can be estimated by carefully combining the
two characterizations. A simple form of this combina-
tion process would be to add up the costs of all primi-
tive operations executed by the application. By sepa-
rating characterizations of the application from that of
the underlying system and by incorporating application
characteristics into the benchmarking process, HBench
can provide performance metrics that reflect the ex-
pected behavior of a particular application on a par-

ticular platform, as well as allow meaningful compari-
sons between different platforms.

Although originally designed as part of the
HBench:Java benchmark suite [14], the methodology
of HBench:JGC described in this paper is applicable to
GC implementations for other languages such as Lisp,
Scheme, Smalltalk, and C++.

2.1. GC Characterization

2.1.1. Basic GC Concepts

Like all memory management systems, a garbage col-
lector implementation supports two primitive opera-
tions, namely, object allocation and reclamation.

The garbage collector manages the collection of free
space from which new objects are allocated. The free
space can be represented as a list of free blocks, a sin-
gle chunk of contiguous space, or a combination of the
two.

When the allocator fails to satisfy an allocation re-
quest, it initiates a garbage collection run. A garbage
collection run typically starts with a marking phase,
when live objects are identified and marked. This
phase may be followed by one or more phases (typi-
cally called the sweep phases) that free the space oc-
cupied by the dead objects, making it available for
allocation. A non-copying collector does not move the
live objects, whereas a copying collector typically
compacts the live objects to one end of the heap in
order to create a large contiguous free space at the
other end of the heap. Examples of non-copying col-

Java
Application

Application
Profiles

Application
Characterization

GC
System

Micro
Benchmark

Results

GC
Characterization

3URILOLQJ 3RVW
3URFHVVLQJ

0LFUR
%HQFKPDUNLQJ

3RVW
3URFHVVLQJ

Analyzer

Control Information

Predicted
GC Time

Figure 1. Schematic View of HBench:JGC Process

lectors include the most widely adopted mark-sweep
garbage collector [1] and its variants. Examples of
copying collectors include the Lisp 2 collector [8],
which is a mark-compact collector, and Cheney’s two-
space copying collector [3]. For a complete treatment
of this topic, readers are encouraged to refer to the
book by Jones et al. [7].

2.1.2. A GC Implementation Taxonomy

Independent of the GC algorithms (e.g., copying vs.
non-copying), we can classify GC implementations
according to the four attributes described in Table 1.
The first attribute represents the axis between stopping
all execution for garbage collection and running the
collector completely in parallel with program execu-
tion [2]. The second attribute describes the internal
architecture of the collector itself, whether it is se-
quential (single-threaded) or parallel (multi-threaded).
The third attribute describes the granularity of collec-
tion, whether collection occurs in a single, complete
pass (batch-oriented) or whether just some of the
available memory is reclaimed during each iteration
(incremental). The fourth and last attribute distin-
guishes generational garbage collectors [10] from non-
generational collectors. Generational collectors im-
plement a set of heaps that are cleaned with varying
frequency depending on the age of the objects stored
in the heap. Each heap corresponds to a different age
group.

The four attributes in the taxonomy are largely or-
thogonal, with a few exceptions. For example, a GC
algorithm can be both stop-the-world and parallel, but
it cannot be both concurrent and batch mode.

In this paper we consider only sequential, stop-the-
world, batch-mode and non-generational garbage col-
lectors. We chose to start with this type of collector
because it involves the fewest variables and thus al-
lows faster prototyping of the analytical models and
more controllable experimentation. Furthermore, this

type of collector is still in wide use. For example,
Sun’s standard JDK1.1 and JDK1.2 Java Virtual Ma-
chines use this type of collector. Section 5 discusses
how we envision enhancing our approach to cope with
concurrent, parallel, incremental and generational gar-
bage collectors.

2.1.3. Object Allocation

For a given memory management algorithm, the cost
of object allocation is typically determined by the fol-
lowing two factors:

1. the size of the allocation,

2. the state of the heap, such as the number of
free blocks and their sizes.

We can represent this cost with a function
Calloc(heap_state, allocation_size). Depending on the
memory management algorithm, Calloc carries different
forms. In the case of copying garbage collectors, the
free space is a contiguous area, and allocation can be
implemented by a simple pointer advancement.
Therefore, in the case of a copying collector, Calloc is a
constant function. In the case of non-copying
collectors, such as a non-copying mark and sweep
collector, the allocation time depends on the state of
the free-block lists maintained by the collector. If we
characterize the heap state with simple statistical
measures, such as a normal distribution with a given
mean and standard deviation, or a uniform distribution
with a given range, we can represent Calloc in a concise
way. Furthermore, we can measure Calloc using
microbenchmarks that initialize the heap according to
the statistical measures.

2.1.4 Object Reclamation

An interesting aspect of garbage collection perform-
ance is that the cost of dead object reclamation de-
pends on the amount of live data on the heap, since the
way a garbage collector identifies live objects is to
traverse the connected object graph from a set of root
objects.

We divide the cost of object reclamation into three
parts: the fixed cost (Cfixed), the per-live-object cost
(Clive), and the per-dead-object cost (Cdead). Cfixed corre-
sponds to the fixed cost associated with a garbage col-
lection run, such as the initialization of data structures.
Cfixed normally depends only on the heap size. Clive is the
overhead measured per live object (objects that survive

Attributes of GC Implementations

Stop-the-world ↔ Concurrent

Sequential ↔ Parallel

Batch ↔ Incremental

Non-generational ↔ Generational

Table 1. GC Implementation Techniques

the collection). For non-copying collectors, Clive is
typically constant. For copying collectors, Clive is a
function of the size of live objects, as live objects are
compacted (copied) at the end of a collection run. Cdead
corresponds to the per-object cost of releasing the
space of a dead object. In most cases, this involves
updating bookkeeping information for the freed object,
and thus Cdead is usually constant for a given collector
algorithm. In summary, the cost of object reclamation
can be represented by three functions, Cfixed(heap_size),
Clive(object_size), and Cdead. Let Nl be the distribution
function of the sizes of live objects, i.e. Nl(s) is the
number of surviving objects with size s. Let Nd be the
distribution function of dead object sizes. The total
cost of garbage collecting a heap of size h can then be
calculated using the following formula (1):

∑∑ +⋅+=
s

ddead
s

llivefixedGC sNCsNsChCT)()()()(

The above reasoning makes the simplifying assump-
tion that every live object is traversed exactly once
during marking. For cases where an object is refer-
enced by several live objects, the object will be visited
multiple times by the collector. We characterize this
additional cost by adding a second variable, di, the fan-
in degree of an object, in the per-live-object overhead
function Clive. The middle term of the formula thus be-
comes:

∑∑ ⋅
s d

ililive

i

dsNdsC),(),(

The situation is further complicated by the fact that
certain copying collectors need to update an object’s
references, if the objects it points to are copied to a
different place. We characterize this additional cost by
adding yet another variable, do, the fan-out degree of
an object, in the per-live-object overhead function Clive.
The middle term now becomes:

∑∑∑ ⋅
s d d

oiloilive

i o

ddsNddsC),,(),,(

The difficulty of characterizing object reclamation
costs lies in deriving the three cost functions Cfixed, Clive,
and Cdead using results from microbenchmarks. Our
experience indicates that the simplified formula (1) for
estimating GC time works well in practice for a mark-
sweep GC algorithm. In the future, we will include the
refinements discussed above if necessary.

2.2. Application Characterization

The following metrics describe an application’s mem-
ory usage behavior:

1. Object allocation rate (both in terms of the num-
ber of objects and the number of bytes);

2. Object death rate (both in terms of the number of
objects and the number of bytes);

3. Object age (the time an object remains alive);

4. Connectivity of the live object graph, i.e., the
number of references to an object (fan-in degree)
and the number of references it contains (fan-out
degree).

Some of the metrics, such as object allocation rate, can
be obtained quite easily. Some other metrics, such as
object age, are difficult to measure and can only be
estimated using profiling tools.

One significant challenge in characterizing an applica-
tion’s memory behavior is that of GC (and JVM) inde-
pendence. For example, if we use the number of ob-
jects per second as the unit for object allocation speed,
it is not portable to other JVM or GC implementations,
as this unit is system dependent. To solve this prob-
lem, we use objects per bytecode as our basic unit for
both object allocation rate and object death rate.

2.3. Predicting GC Time

Object allocation cost is an important part of the per-
formance metric of GC systems. It is, however, not
directly measurable for a given application. As a first
step, this paper focuses on predicting the time the ap-
plication spends on garbage collection, or the time
between the start and finish of a garbage collection
run. Unless otherwise specified, GC time refers to the
cost of object reclamation, and does not include allo-
cation costs.

The total GC time of an application can be determined
by two factors: the number of GC runs and the time for
each GC run.

With the knowledge of object allocation rate and ob-
ject death rate, one can estimate the amount of live
data at a given execution point, from which one can
then calculate the number of GCs deterministically,
assuming a heap that is fixed-size or one whose growth
policy is known a priori.

The time for each GC run can be estimated using for-
mula (1) described in section 2.1.3. The total GC time
is the sum of times of all individual GC runs.

3. HBench:JGC Implementation

As depicted in Figure 1, the major components of
HBench:JGC are: the profiler that traces an applica-
tion’s memory behavior, the set of microbenchmarks
whose measurement results form the characterization
of the given garbage collection implementation, and
finally, the analyzer that estimates the GC time given
both application and GC characterizations. The follow-
ing three subsections describe each component in more
detail.

3.1 Profiler

Sun Microsystems’s JDK 1.2.2 provides an interface
called the Java Virtual Machine Profiling Interface
(JVMPI) [6] that allows one to attach a profiling agent
to the JVM at startup time. The agent can register for
events in which it is interested through callback func-
tions and intercept the events as they occur.

We are interested in the following events: GC start and
finish, object allocation, free and move, heap dump
and object dump. Object allocation and free events can
be used to estimate object lifetimes and the number of
free/live objects at a given execution point. Heap
dumps help determine the object connectivity such as
fan-in and fan-out degrees. Our current implementa-
tion includes all the events except heap and object
dump.

3.2. Microbenchmarks

The goal of microbenchmarking is to measure the
fixed and per-object costs of memory reclamation. Our
first microbenchmark deals with singular linked list
data structures. We are in the process of creating mi-
crobenchmarks that model more complicated object
types with different fan-in and fan-out degrees.

The microbenchmark first populates the heap with an
array of linked lists of objects. The size of array, the

length of the list, and the object size can all be dy-
namically configured with command-line options. The
microbenchmark then explicitly invokes garbage col-
lection at three different times:

1. When all objects on the heap are alive;

2. When all objects on the heap are reclaimable, i.e.,
after the microbenchmark sets the pointers to the
heads of the linked lists to null;

3. When the heap is entirely empty, i.e., after the GC
following step 2.

To measure Cfixed, we run the microbenchmark with
different heap sizes, fixing the other two parameters.
We then plot the GC times measured in step 3 above
against the heap sizes. The resulting regression for-
mula is the approximate function for Cfixed.

Similarly, to measure Clive, we run the microbenchmark
with a varying numbers of objects, fixing the other two
parameters. The GC times measured in step 1 above
are then plotted against the number of objects for a
given object size s and the resulting regression func-
tion defines Clive(s). Since Clive might also depend on
object sizes, we again repeat the microbenchmark for
different object sizes.

The same process is performed to measure Cdead, except
that in this case the GC times of step 2 are used.

3.3. Analyzer

Given both the application and GC characterizations,
the analyzer tries to estimate the time the application
spends on garbage collection. The analyzer also needs
certain configuration information, such as the heap
size, in order to determine the total GC time. Note that
heap sizes may change dynamically. For example, if
the memory system cannot satisfy the allocation re-
quest even after a GC, or if the percentage of free
space is below a certain threshold, the heap is ex-
panded. The policies as to when and how much to ex-
pand the heap should be specified to the analyzer.

4. Experimental Results

4.1. Experimental Setup

We ran our experiments on Sun Microsystems’s
JDK1.2.2 classic version on three different machine
configurations. Table 2 shows the hardware properties.

Sun Microsystems’ JDK1.2.2 classic JVM uses a
mark-sweep (with compaction) collector. Mark-sweep
collection is one of the classical garbage collection
algorithms that remains in wide usage today. Due to its
conservative nature, it is popular for type-unsafe lan-
guages such as C/C++. The collector of the JDK1.2.2
classic JVM is a variation of the classical mark-sweep
collector — it occasionally moves live objects around
the heap. Although compaction does not occur often
for the applications we tested, it does generate some
uncertainties that make it harder to predict the GC
time.

We use Java applications included in the SPECJVM98
benchmark suite [13] to evaluate the predictive power
of our approach. Most SPECJVM98 applications in-
duce extensive GC activities, except _222_mpegaudio,
which is excluded from our set of test applications.
Table 3 shows the number of bytes allocated by each
test application quoted from the benchmark’s docu-
mentation. The actual numbers appear to differ but the
magnitude is the same.

SPEC Application Allocation (MB)

_201_compress 334

_202_jess 748

_209_db 224

_213_javac 518

_227_mtrt 355

_228_jack 481

Table 3. GC Activity of Test Applications

4.2. Microbenchmark Results

We report the GC times of the three steps described in
Section 3.2. Unless otherwise specified, all data points
reported in this section are means of 10 runs of the
microbenchmark. In most cases, the standard deviation
is within 1%.

4.2.1. GC on Empty Heap

Figure 2 shows the garbage collection times of an
empty heap (see step 3 in section 3.2) on the Sun
SPARC workstation. The regression formula indicates
that GC times of empty heaps are linearly dependent
on the size of the heap and that the per-megabyte cost
of an empty heap GC for this particular GC implemen-
tation is 3.75ms. The y-intercept (0.02) is negligible.
We therefore derive the following formula for Cfixed(h)
(described in Section 2.2) for this GC algorithm:

hhC fixed ⋅= 75.3)(,

where h is the size of the heap in megabytes. The
value of the slope (3.75) remains the same (variations

CPU Memory (MB) Operating System JVM Version GC Algorithm

Pentium Pro 200MHz 128 Windows NT 4.0

Pentium III 550 MHz 256 Windows 2000

UltraSPARC IIi 333 MHz 128 Solaris 7

1.2.2 Classic Mostly mark-sweep

Table 2. Test Configurations

y = 3.75x - 0.02

0

100

200

300

400

500

600

0 50 100 150

Heap Size (MB)

G
C

 T
im

e
(m

s)

Figure 2. GC Time of Empty Heap on Sun
SPARC. We use an object size of 28 bytes,
and 512 lists each with 512 objects. The
number of objects and the size of objects re-
main fixed as the total heap size varies.

within 5%) for different object sizes and numbers of
objects.

Similar results were obtained for the other machine
configurations, albeit with a different slope value.

4.2.2. GC on Fully Reclaimable Heap

Figure 3 shows the garbage collection times of a fully
reclaimable heap (see step 2 in section 3.2). The GC
time again shows a linear dependence on the size of
the heap, and the slope value (3.73) is close to the
slope value of Cfixed (3.75). If we remove the fixed cost
Cfixed (empty heap), the remaining time is essentially
independent of heap size. Since all objects on the heap
are free and are reclaimed by the collector, this re-
maining time, when divided by the number of dead
objects, represents the per-dead-object cost Cdead. In
this particular case, Cdead takes on a value of
108.6/(512*512), or 0.4 ns/object. Again, similar re-
sults are observed from runs on the other machine con-
figurations.

Theoretically, Cdead is independent of object size, since
dead objects are neither scanned nor copied. However,
to our surprise, our measurements suggest that Cdead is
indeed dependent on object size. Figure 4(a) shows the
results on the Sun SPARC workstation. The GC time
seems to grow as the object size increases, until the
object size hits 60 bytes, and stays at around 180ms
thereafter. We do not have a conclusive explanation
for this behavior but we hypothesize that the depend-
ence on the object size is due to memory cache effects.

Our experiments on the other two machine configura-
tions seem to confirm our hypothesis. Figures 4(b) and
4(c) show the results on the Pentium Pro and Pentium
III machines respectively. In both cases, Cdead shows
similar dependence patterns. Cdead is independent of
object size, except when the object size is less than 28
bytes. The memory effects seem to be smaller for
these two configurations than for the Sun SPARC
workstation.

y = 3.73x + 108.61

y = 3.75x - 0.02

0
100
200
300
400
500
600
700

0 50 100 150

Heap Size (MB)

G
C

 T
im

e
(m

s)

Free Heap

Empty Heap

Figure 3. GC Time of Fully Reclaimable
Heap With Respect to Heap Size on Sun
SPARC. We use an object size of 28 bytes,
and 512 lists each with 512 objects. The
number of objects and the size of objects re-
main fixed as the total heap size varies.

0

50

100

150

200

0 50 100 150

Object Size (Bytes)

G
C

 T
im

e
(m

s)

(a). Results on Sun SPARC

0

100

200

300

400

0 50 100 150

Object Size (Bytes)
G

C
 T

im
e

(m
s)

(b). Results on Pentium Pro

0

50

100

150

0 50 100 150

Object Size (Bytes)

G
C

 T
im

e
(m

s)

(c). Results on Pentium III

Figure 4. GC Time (Excluding Fixed
Overhead) of Fully Reclaimable Heap
with Respect to Object Size. The GC time
is calculated from the regression formula as
shown in Figure 3.

4.2.3. GC on Fully Live Heap

Figure 5 shows the garbage collection times of a fully
live heap (see step 1 in section 3.2). In this case, all
objects on the heap are live and survive the garbage
collection. Similar to the case of a fully reclaimable
heap, the GC time shows a linear dependence on the
size of the heap. If we exclude the fixed cost Cfixed, the
remaining time is independent of heap size. The GC
time, when divided by the number of total objects on
the heap, yields the per-live-object cost Clive. In this
particular case, Clive takes on a value of
229.1/(512×512), or about 0.9ns/object. Again similar
results are observed from runs on other machine con-
figurations.

Figures 6 (a), (b) and (c) show Clive as a function of
object size on the Sun SPARC workstation, the Penti-
um Pro machine, and the Pentium III machine, respec-
tively. We observe patterns similar to those of the fully
reclaimable heap case, albeit with different threshold
values. For the Sun SPARC workstation case, the
value of Clive seems to grow as the object size in-
creases, until the object size hits 60 bytes and stays at
approximately 380ms thereafter. For the Pentium Pro
machine case, the value of Clive seems to oscillate be-
tween 600ms and 700ms after the object size hits 28
bytes. Similarly, for the Pentium III machine case, the
value of Clive oscillates between 220ms and 250ms after
the object size hits 28 bytes. Since no objects are cop-
ied, Clive should be independent of object size. We
therefore attribute this observed dependence on object
size to memory cache effects. This effect is also de-

tected with two anomalous data points for the Pentium
Pro configuration: at object sizes of 60 bytes and 124
bytes. There is also a similar anomalous data point for
the Pentium III at object size of 124 bytes. We are still
investigating what exact memory effect causes the
anomalies.

0

100

200

300

400

500

0 50 100 150

Object Size (Bytes)

G
C

 T
im

e
(m

s)

(a). Results on Sun SPARC

(124, 467.0)
(60, 521.2)

0

200

400

600

800

1000

0 50 100 150

Object Size (Bytes)
G

C
 T

im
e

(m
s)

(b). Results on Pentium Pro

(124, 175.6)

0
50

100
150
200
250
300

0 50 100 150

Object Size (Bytes)

G
C

 T
im

e
(m

s)

(c). Results on Pentium III

Figure 6. GC Time (Excluding Fixed
Overhead) of Fully Reclaimable Heap
with Respect to Object Size. The GC time
is calculated from the regression formula
as shown in Figure 5.

y = 3.75x - 0.02

y = 3.79x + 229.08

0
100
200
300
400
500
600
700
800

0 50 100 150

Heap Size (MB)

G
C

 T
im

e
(m

s)
Empty Heap

Live Heap

Figure 5. GC Time of Fully Live Heap
with Respect to Heap Size on Sun
SPARC. We use an object size of 28 bytes,
and 512 lists each with 512 objects. The
number of objects and the size of objects
remain fixed as the total heap size varies.

4.3. Predicting GC Time

In this section we demonstrate how the microbench-
mark results can be used to predict garbage collection
time for a given Java application.

First, we calculate the values of the three functions
that characterize a GC algorithm, namely, Cfixed, Clive,
and Cdead. Table 4 shows the coefficient values of the
three functions for the JVM on the Sun SPARC
workstation. For objects with size larger than 132
bytes, the values for 132 bytes are used.

Next we obtain characterizations of the applications’
memory behavior. Our current profiler implementation
generates information such as the number of live ob-
jects, the number of dead objects, and the object size
distribution. Assuming that live and dead objects have
the same size distribution, we can approximate the GC
time function TGC (section 2.1.4) with the following
formula

where n(s) is the normalized object size distribution
function, i.e. n(12) is the percentage of objects with
size equal to 12 bytes, L is the number of live objects
and D is the number of dead objects. Figure 7 shows
the accumulative object size distribution function for
the test applications. Applications such as db and
mtrt are dominated by one object size, whereas other
applications use multiple object sizes. In general, the

majority (more than 90%) of objects are small, i.e.,
less than 100 bytes, except for compress.

So far our formula has not taken into consideration the
cost of the occasional copying performed by the col-
lector. For our test cases, copying only occurred in two
applications in four GC invocations (out of a total of

0

20

40

60

80

100

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Object Size (Bytes)

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

(%
)

db
mtrt
javac
jack
compress
jess

Figure 7. Cumulative Object Size Distribution in Number of Objects

∑ ⋅⋅+

∑ ⋅⋅+=

s
snsdeadCD

s
snsliveCLhfixedCGCT

)()(

)()()(

Object Size
Cfixed

Per MB
Clive

Per Object
Cdead

Per Object

12 3.75 7.04E-04 3.02E-04

20 3.75 7.51E-04 3.49E-04

28 3.75 8.67E-04 4.03E-04

36 3.75 9.55E-04 4.71E-04

44 3.75 1.07E-03 5.49E-04

52 3.75 1.24E-03 6.15E-04

60 3.75 1.30E-03 6.83E-04

68 3.75 1.38E-03 6.85E-04

76 3.75 1.44E-03 6.83E-04

84 3.75 1.41E-03 6.85E-04

92 3.75 1.59E-03 6.85E-04

100 3.75 1.40E-03 6.82E-04

108 3.75 1.33E-03 6.87E-04

116 3.75 1.40E-03 6.91E-04

124 3.75 1.33E-03 6.92E-04

132 3.75 1.46E-03 7.17E-04

Table 4. GC Characteristics on 333MHz
UltraSPARC IIi

thirty-five GC invocations). Three of those four GC
invocations were explicit garbage collections made by
the application, which trigger unnecessary copying.
Currently we approximate this copying overhead by

dividing the number of bytes copied over the memory
bandwidth, and we use the actual number of bytes cop-
ied. In the future, we will enhance our analyzer to es-
timate this information from the application memory

0

50

100

150

200

1 2 3 4 5

GC Run

T
im

e
(m

s)

Actual

Predicted

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

GC Run

T
im

e
(m

s)

Actual

Predicted

(a). _201_compress (b). _202_jess

0
50

100
150
200
250
300
350

1 2 3 4 5

GC Run

T
im

e
(m

s)

Actual

Predicted

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

GC Run

T
im

e
(m

s)

Actual

Predicted

(c). _209_db (d). _213_javac

0
100
200
300
400
500
600
700
800
900

1 2 3 4

GC Run

T
im

e
(m

s)

Actual

Predicted

0
50

100
150
200
250
300

1 2 3 4 5 6 7 8

GC Run

T
im

e
(m

s)

Actual

Predicted

(e). _227_mtrt (f). _228_jack

Figure 8. Predicted versus Actual GC Times. All tests were run on the Sun SPARC worksta-
tion using a heap size of 32MB, except for javac and mtrt, which were run on a heap size of
64MB to eliminate the variation on the number of GCs from different runs.

characterization, assuming that the algorithm that de-
cides when to perform a copy is known. We will also
explore techniques to design microbenchmarks that
would trigger a copy and measure the cost directly.

Figure 8 shows the predicted versus actual GC running
times for the six SPEC applications on the Sun SPARC
workstation. A summary of the percentage time differ-
ence between the predicted and the actual GC times is
presented in Table 5.

For compress (Figure 8(a)), there are five garbage
collections during the execution of the compress appli-
cation. The predicted GC times match the actual times
quite closely (with 0.2% error rate), showing that our
prediction model works well in this case. In the fourth
GC run, the collector copied certain live objects to the
beginning of the heap, which accounts for the boost in
the GC time. The result shows that our approximation
on the copying time works well in this case also.

Figures 8(b), 8(c), 8(e) and 8(f) show the results for
jess, db, mtrt and jack, respectively. The pre-
dicted times track the actual times quite closely. No
copying occurred in these cases.

Figure 8(d) shows the results for javac. The pre-
dicted times track the actual times nicely except for the
3rd, 5th, and 7th GC runs. It turns out that these three
GCs were invoked explicitly by the application at times
when the heap space had not been exhausted and most
objects on the heap were live objects. The explicit GCs
also trigger unnecessary copying of live objects. In this
case, our approximation on the copying cost does not
work well. This might be due to the fact that the ap-
proximation does not include the overhead for initiat-
ing a copy, therefore it underestimates the cost in cases
when many small objects are copied.

In summary, HBench:JGC is able to predict the actual
GC times within 10% for five out of the six applica-
tions (Table 5). In the case of javac, the error rate is
–6.4% if we disregard the three explicit GCs. The re-
sults demonstrate that the vector-based methodology
used by Hbench:JGC is a promising technique for pre-
dicting application performance. In addition, we be-
lieve that when equipped with a better profiler and
analyzer, the prediction accuracy of HBench:JGC can
be improved further.

5. Discussion and Future Work

In this section we discuss issues that might arise when
using HBench:JGC on more sophisticated GC imple-
mentations such as those presented in Section 2.1.2,
and how we plan to address these issues.

Concurrent garbage collection presents some technical
challenges. With concurrent garbage collection, the
application can continue to allocate new objects and
access objects on the heap while a garbage collection
is in process. Measuring the GC time is difficult be-
cause the GC time is dispersed in application execu-
tion time. We plan to approach this problem in the
following way. We run a standard Java application
without garbage collection, and then we run the same
application with an additional thread that continuously
allocates objects and invokes garbage collection. The
performance degradation observed when the applica-
tion is run with the additional GC intensive thread
should be a good approximation of the GC time.

Many concurrent collectors are also incremental.
Therefore, we will need to estimate the percentage of
the heap that is scanned by the collector. In most
cases, an incremental collector sets an upper bound on
the number of root objects to be processed, from which
one can estimate the number of objects on the heap to
be scanned.

Predicting the performance of parallel garbage collec-
tors can be potentially difficult because the speed-up
of a parallel GC run over its sequential counterpart
depends not only on the degree of parallelism, but also
on how balanced each thread’s load is and the interac-
tions between the threads such as lock contention.
Analyzing performance of multi-threaded applications
in general is still an active area of research.

SPEC
Application

Stdev
(%)

Time Difference
(%)

_201_compress 0.5 0.2

_202_jess 0.4 -2.2

_209_db 0.8 8.3

_213_javac 0.5 -15.8(-6.4*)

_227_mtrt 9.5 3.1

_228_jack 0.5 -0.2

* Results if we discard 3 explicit GCs.

Table 5. Summary of Predicted vs. Ac-
tual GC Times

To apply HBench:JGC to generational garbage collec-
tors, we model the collector performance for each gen-
eration, and then combine them together to form the
total GC time. To achieve that, our profiler needs to be
enhanced with the capability to estimate the object life
expectancy. Furthermore, our analyzer should be able
to predict when objects are promoted to older genera-
tions, i.e., it needs to know the age threshold for
promotion. Some GC implementations make this
knowledge public. For implementations that do not,
we need to design our microbenchmark suite such that
it can deduce the age threshold by creating and delet-
ing objects at different rates.

Currently, the memory cache effect is included in our
cost functions as a function of object size. Our results
indicate that in some cases, this simple model might
be insufficient. We are investigating ways to model
the memory cache hierarchy explicitly.

Our short-term goal is to experiment on more garbage
collector implementations and include more applica-
tions in our experiments. In the long run, we expect to
refine our model to cope with more sophisticated GC
implementations and incorporate HBench:JGC into the
HBench:Java suite, in order to more accurately predict
a Java application’s total running time.

6. Related Work

Many researchers have studied the performance of
dynamic memory management [5][15]. This literature
provides a good foundation for understanding the in-
herent cost of dynamic storage allocation. Our ap-
proach differs in the goals we try to achieve. We em-
phasize predictability — the ability to predict applica-
tion performance on different GC implementations
without running the application on target implementa-
tions. In contrast, past research has focused on com-
paring the cost of memory management by running a
set of popular applications on target memory manage-
ment implementations.

Knuth [8] presents a comprehensive analysis and com-
parison of the time complexity of several dynamic
storage management algorithms. This systematic ap-
proach to benchmarking memory management algo-
rithms offers insight into the efficiency of these algo-
rithms and helps explain the performance differences.
However, the analysis assumes certain statistical prop-
erties for both memory allocation and liberation pat-
terns and only applies when the system reaches equi-
librium.

In [4], Cohen et al. compare performance of four com-
pacting algorithms using analytical models. The ana-
lytical models are parameterized by the amount of
work to be done, such as the number of cells (objects),
number of pointers (links) and related information, and
the time to perform the basic operations common to all
compactors, such as the time to test a conditional ex-
pression. Their goal is similar to ours in that they also
try to estimate GC execution times “without resorting
to empirical tests”. The main difference lies in the
level of abstraction used for the primitive (elementary)
operations. Their primitive operations are low-level
machine instructions, whereas we conglomerate all
machine instructions performed on an object into a
single per-object operation (e.g., per-live-object over-
head). Because their primitives are at such a low-level,
their models are more elaborate and require intimate
knowledge of the algorithms (i.e., the complete source
code). Furthermore, as computer architectures become
more advanced, machine-level optimizations and the
memory cache hierarchy could introduce significant
side effects such that the analytical model will no
longer be applicable. In our case, the cost of primitives
is measured explicitly by the microbenchmark and
therefore includes these side effects.

7. Conclusion

HBench:JGC is a vector-based, application-specific
benchmarking framework for evaluating garbage col-
lector performance. Our results demonstrate
HBench:JGC’s unique predictive power. By taking the
nature of target applications into account and offering
fine-grained performance characterizations of garbage
collectors, HBench:JGC can provide meaningful met-
rics that help better understand and compare GC per-
formance.

8. Acknowledgement

Many of the ideas presented in this paper were in-
spired by discussions with Dave Detlefs from Sun Mi-
crosystems Labs. We would also like to thank the
anonymous COOTS reviewers and our shepherd Chris
Small for their valuable comments and suggestions in
improving the paper.

9. Bibliography

[1] Boehm, H., and Weiser, M., “Garbage Collection
in an Uncooperative Environment.” Software–
Practice and Experience, pages 807-820, Sep-
tember 1988.

[2] Baker, H. G. Jr., “List Processing in Real Time
on a Serial Computer.” Communications of the
ACM, 21(4), pages 280-294, April 1978.

[3] Cheney, C. J., “A Non-Recursive List Compact-
ing Algorithm.” Communications of the ACM,
13(11), pages 677-678, November 1970.

[4] Cohen, J., and Nicolau, A., “Comparison of Com-
pacting Algorithms for Garbage Collection.”
ACM Transactions on Programming Languages
and Systems, 5(4), pages 532-553, 1983.

[5] Detlefs, D., Dosser, A., and Zorn, B., “Memory
Allocation Costs in Large C and C++ Programs.”
Software–Practice and Experience, 24(6), pages
527-542, June 1994.

[6] JVMPI, Java Virtual Machine Profiling Interface.
http://java.sun.com/products/jdk/1.2/docs/guide/j
vmpi/index.html.

[7] Jones, R., and Lins, R. D., Garbage Collection:
Algorithms for Automatic Dynamic Memory
Management. John Wiley & Son Ltd, New York,
1996.

[8] Knuth, D. E., Fundamental Algorithms, volume 1
of The Art of Computer Programming. Second
Edition, Addison Wesley, Reading, MA, 1973.

[9] Larose, M., and Feeley, M., “A Compacting In-
cremental Collector and its Performance in a
Production Quality Compiler.” In Proceedings of
the 1998 International Symposium on Memory
Management, pages 1-9, Vancouver Canada, Oc-
tober 17-19, 1998.

[10] Lieberman, H., and Hewitt, C., “A Real-Time
Garbage Collector Based on the Lifetimes of Ob-
jects.” Communications of the ACM, 26(6), pages
419-429, June 1983.

[11] Seltzer, M., Krinsky, D., Smith, K., and Zhang
X., “The Case for Application-Specific Bench-
marking.” In Proceedings of the 1999 Workshop
on Hot Topics in Operating Systems (HotOS VII),
pages 102-107, Rio Rico, AZ, March 29-30,
1999.

[12] Smith, F., and Morrisett, G., “Comparing Mostly-
Copying and Mark-Sweep Conservative Collec-
tion.” In Proceedings of the 1998 International
Symposium on Memory Management, pages 68-
78, Vancouver Canada, October 17-19, 1998.

[13] SPECJVM98 Benchmarks. August 19, 1998 re-
lease. http://www.spec.org/osg/jvm98.

[14] Zhang, X., and Seltzer, M., “Hbench:Java – An
Application-Specific Benchmarking Framework
for Evaluating Java Virtual Machines.” In Pro-
ceedings of the ACM 2000 Conference on Java
Grande, pages 62-70, San Francisco, CA, June 3-
4, 2000.

[15] Zorn, B., “The Measured Cost of Conservative
Garbage Collection.” Software–Practice and Ex-
perience, 23(7), pages 733-756, July 1993.

