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Abstract

With the introduction of Windows NT, Terminal Server
Edition (TSE), Microsoft finally brings to Windows the
“thin-client” computing model the X Window System
has offered Unix for a decade. TSE’s two most salient
features are the provision of multi-user login service
and the provision of that service remotely, over a net-
work link. These features distinguish TSE from previ-
ous Microsoft operating systems not only by functional-
ity, but also by how its performance ought to be mea-
sured. Because TSE’s primary service is interactive,
user-perceived latency is more important than ever. In
this paper, we examine the resource consumption and la-
tency characteristics of shared usage on a TSE system.
We find that the introduction of remote, multi-user access
has added to the minimal level of resource consumption,
that the efficiency of TSE’s RDP protocol is generally
good but degrades on dynamic user interface elements,
and that TSE can exhibit poor latency performance when
subjected to high processor, memory, and network load.

1 Introduction

With Microsoft’s introduction of Windows NT, Termi-
nal Server Edition (TSE), the Windows platform has
acquired the multi-user, remote access capabilities that
have been available for Unix since X-Windows appeared
a decade ago. Microsoft seems to have awoken to the
possibility that “thin-client” computing is a viable and
even desirable alternative to their vision of “Windows
on Every Desktop”. Report after industry report has
revealed a thirst among IT managers for the lower to-
tal cost of ownership offered by thin-client computing.
Microsoft hopes to quench that thirst with TSE, which
they bill as a way to extend the life of older hardware,
bring Windows applications to non-Windows desktops,
and rein in per-user management costs [11, 12].

1.1 Inside TSE

The TSE environment is composed of three major
components [13]:

Terminal Server - The TSE core is a fork of the NT
4.0 Server codebase diverging sometime after the release
build of 4.0 Server. Key parts of the OS were modi-
fied to support multiple concurrent users. Kernel objects
are virtualized across user sessions, the Virtual Memory
Manager supports per-session mappings of kernel ad-
dress space, and the kernel supports code page sharing
across sessions. The “Terminal Service” was introduced
to manage user sessions.
Remote Display Protocol (RDP) - RDP runs over
TCP/IP and makes user sessions available remotely. It in-
cludes control messages (e.g., keystrokes, mouse events)
sent from the clients to the server and display messages
sent from the server to the clients. Server-side RDP
support includes per-user replacements for display, key-
board, and mouse drivers, which bind to an RDP stack
instead of local hardware devices to enable remote dis-
play and control.
Terminal Clients - Terminal clients communicate with
the Terminal Server using RDP. They display graphics
delivered from the server on local video hardware and
capture local keyboard and mouse input for delivery back
to the server. Clients are available for Windows for
Workgroups, CE, 95, 98, NT 3.51, and NT 4.0.

1.2 Evaluating TSE

Along with the new functionality offered by TSE come
new requirements for measuring its performance. As a
multi-user, interactive, remote access operating system,
TSE cannot be evaluated with the same metrics used for
either its predecessors or for other operating systems.

For example, it is not sufficient to assign a simple
Winstone, SYSmark, or SPECmark value to a machine
running TSE. Ultimately, those interested in deploying
TSE need to know the maximum number of concurrent
users their servers can support, and they need benchmark
results to be expressed in these terms. Moreover, the
particular characteristics of the TSE environment make
it incompatible with most existing benchmarks. TSE is:

Multi-User - TSE is designed to support heavy, concur-
rent use on today’s hardware [1]. Benchmarks designed
for single-user operating systems are not appropriate be-



cause a single user multi-tasking is not equivalent to mul-
tiple users uni-tasking or multi-tasking. On single-user
systems, although asynchronous background tasks may
consume system resources, system load is still typically
limited only by the rate at which the human user inter-
acts with the foreground application. Furthermore, on a
multi-user system there can be many foreground appli-
cations (one for each user), so latency demands must be
met by more than just a single process.
Interactive - Unlike HTTP or database servers for which
throughput is critical, TSE’s primary service is interac-
tive login. As argued by Endo et. al, latency, not through-
put, is the paramount performance criterion for this type
of system [5]. Any useful metric should yield informa-
tion necessary to gauge whether the system satisfies the
latency demands of users.
Remote Access- On single-user systems like Win-
dows 98 and NT Workstation, user interface richness
and sophistication consume and are constrained by
locally available video subsystem bandwidth. In the
TSE environment, the video subsystem at the server
is irrelevant and the GUI is instead constrained by
network bandwidth, the efficiency of RDP, and the video
hardware at the terminal.

This paper analyzes the resource demands of TSE’s
multi-user and remote display capabilities. In particular,
we evaluate resource consumption of processor cycles,
memory, and network bandwidth. Then, we examine the
effect of load on TSE’s ability to maintain low latency to
yield a smooth user experience.

In Section 2, we describe our experimental environ-
ment. In Section 3, we consider resource consumption
of the processor, memory, and network. In Section 4,
we evaluate TSE’s latency characteristics under load. In
Section 5, we review related work, and we conclude in
Section 6.

2 Experimental Environment

Our testbed consisted of a server, a client, and a net-
work listening host connected to a NetGear EN104TP
10Mbps Ethernet hub. The server was a Celeron-333,
Intel 440EX AGPset, 48MB SDRAM, 4GB IDE IBM
DCAA-34330, and a NetGear FA-310 NIC. The client
was a Pentium II-400, Intel 440BX AGPset, 128MB
SDRAM, 11GB IDE Maxtor 91152D8, and a 3Com
3C905B NIC. The listening host was a Pentium-233, In-
tel 440TX PCIset, 96MB EDO RAM, 2GB IDE IBM
DTNA-22160, and a 3Com 3C589C NIC. The server ran
TSE build 419, the client ran Windows 98 with TSE
client build 419, and the listening host ran the 2.0.36
Linux kernel. All NIC’s were set to 10Mbps operation.
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Figure 1:A comparison of the idle-state processor activity in
Windows NT Workstation 4.0 and TSE.

3 Resource Consumption

In a server operating system, resource sharing is typi-
cally defined in terms of concurrent processes, transac-
tions, or queries. For TSE, the sensible unit for quanti-
fying resource consumption is the user. In this section,
we evaluate TSE’s scalability by examining per-user con-
sumption of server-side processor cycles, memory, and
network bandwidth. Resource consumption is highly de-
pendent on the particular applications being used, so we
provide consumption data as generically as possible to
allow extrapolation to scenario-dependent usage.

3.1 Processor

The changes made to the core of NT to enable multi-user,
remote access would likely increase processor overhead,
which can translate to user-perceptible latency even un-
der no server load.

Endo et. al introduced a technique for measuring user-
perceived latency they call “measuring lost time” [5].
Using the Pentium Performance Counters and system
idle loop instrumentation, they are able to determine
when, and for how long, the CPU is busy handling user
input events. This technique can also be used to generate
detailed visualizations of CPU utilization.



Their paper reported idle-state CPU activity profiles
for Windows 95, NT 3.51, and NT 4.0. To quantify
the baseline activity introduced in the transition from
NT to TSE, we reproduce their experiment for NT 4.0
and TSE. Figure 1 shows that TSE is indeed more active
than NT when idle. The difference is due primarily to a
large number of events in TSE that last between 200 and
400ms. This increased activity can probably be attributed
to the additional services necessary to support multi-user,
remote access. Viewing the latencies over time as a cu-
mulative distribution reveals that TSE has 71.0% more
idle-state activity than NT.

3.2 Memory

In a single-user operating system, the user runs a num-
ber of applications, each of which consumes memory for
the executable image and the dynamic stack and heap.
In a multi-user system, many users may share the same
applications. Code page sharing, which is supported in
TSE, reduces total memory usage by backing only a sin-
gle copy of the code text and mapping it read-only into
the address space of each application instance [13].

Therefore, memory is consumed by applications in
TSE in two ways. First, each new instance of an applica-
tion consumes at least as much memory as the size of its
stack and heap. Second, the greater the number of dis-
tinct applications used, the greater the combined memory
usage for all of the applications’ shared code pages.

3.2.1 User Sessions

We used Microsoft Process Viewer to collect memory
consumption data on TSE and a number of popular Win-
dows applications.

Process Cold Warm Disconnect

csrss.exe 360 452 452
explorer.exe 732 1,368 1,368
loadwc.exe 424 424 424
nddeagnt.exe 300 300 300
winlogin.exe 396 700 700

Total 2,212 3,244 3,244

This table lists the processes automatically started
with each unique user login session and the amount, in
kilobytes, of private, committed memory in their address
spaces. “Private” means that the memory is not mapped
and is visible only to the local process. “Committal” is
the Microsoft term for the allocation of backing store to
virtual memory pages. Memory may be “reserved” with-
out committal, and reserved memory may be released
without ever having been committed [16]. Throughout
our discussion, we conservatively include only private,

committed memory in our definition of memory utiliza-
tion. We do not include amortized shared code page costs
for executable text, nor mapped, committed memory that
may or may not be shared.

The “Cold” column reports values for a login with
no subsequent user activity. The total for the Cold col-
umn is therefore a lower bound on per-user memory us-
age because each new user login will always consume
at least this much memory. The “Warm” column re-
ports values after modest usage. We see that the stack
and heap size for thecsrss (client-server runtime sub-
system) andexplorer (the shell) processes increases
somewhat, while it does not for the other processes. The
“Disconnect” column reports memory usage when the
user has disconnected from the session (which is not a
full logoff and allows a later reconnect). Clearly, mem-
ory is not explicitly conserved upon disconnect. We as-
sume that TSE relies on the pagefile for this.

We should note that TSE clients have the option of
dispensing with the default shell, the Explorer, and run-
ning just a specific application in a user session. This
admits the possibility of using a lighter alternative such
as the DOS Prompt (command.com), which at 224KB of
cold, private, committed memory, is less than one-third
the size of the Explorer.

3.2.2 Applications

This table presents memory usage statistics in kilobytes
for a sampling of popular Windows applications. Mea-
surements were taken immediately after the application
was launched with the closest approximation of a null
document. Actual mileage will vary.

Application Mapped Private

Notepad 1,068 148
Word 97 1,796 932
Excel 97 1,788 284
PowerPoint 97 1,816 300
Access 97 2,324 1,176
Outlook ’97 6,532 1,356
IE 4.0 1,368 800
Netscape 4.08 1,460 1,396
WordPerfect 8 1,276 1,212
Visual C++ 5.0 1,046 1,316

All memory reported is committed. The first column
reports the amount of memory that is mapped and is
potentially shared. This provides an estimate for the
amount of shareable code text in the application that will
not be duplicated for each running instance. The second
column reports the amount of private, committed mem-
ory, which is most likely the stack and heap space. This
gives a conservative lower-bound for the per-user mem-
ory utilization of each application. These values surely
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Figure 2:RDP control and display channel packet size distri-
bution. Note the log-scaling.

rise as users open documents and otherwise begin to ac-
tually use the applications. Exactly how much depends
highly on the application and the documents.

3.3 Network

Network load generated by TSE is a function of the user
interface richness and complexity of the applications in
use and the efficiency with which RDP encodes the dy-
namics of those interfaces.

3.3.1 RDP Efficiency

There is no published specification for RDP. Therefore,
we are not yet able to offer detailed explanations for all
of our RDP observations. An RDP reverse-engineering
effort is part of our ongoing work.

First, we investigated the network packet size distribu-
tion of a live RDP message stream. We had a user open
a TSE session fromclient to serverand work for several
minutes, composing a document in Word 97, browsing
the NT Event Log, and navigating the filesystem using
Explorer. Figure 2 shows the cumulative distribution of
both control and display channel packets.

The data indicate that the control channel is dominated
by packets on the order of 100 bytes. For these small con-
trol messages, the overhead imposed by 20 byte IP head-
ers is considerable. In non-routed TSE environments, a
scheme like thex-kernelvirtual-IP (VIP) network stack
could reduce overhead by omitting the IP header [9]. The
total number of control bytes transferred in this test was
282,258. Without IP headers, only 232,158 would be
transferred, yielding a 17.6% savings in overhead.

Unfortunately, the benefit of such an optimization
is partially mitigated by traffic on the display channel
where the average packet size is much larger. Account-
ing for both channels, a VIP-like optimization would re-
duce total bytes transferred from 1,642,337 to 1,533,797,

a savings of only 6.6%. Regardless, a VIP scheme could
still measurably improve latency performance. Because
display messages are typically sent only in response to
control messages, reducing the average packet size on
just the control channel can reduce overall latency.

3.3.2 Decompositional Analysis

In the previous experiment, we showed that the
packet size distribution of a “typical” TSE session was
amenable to optimization. However, the efficacy of the
optimization depends greatly on the distribution. A user
running a different mix of applications could produce a
dramatically different distribution.

This illustrates the importance of considering user be-
havior and application mix in the TSE world. A common
attribute of previous papers on TSE performance is a def-
inition of what the authors believe to be “typical” user
behavior. Because these definitions of behavior strongly
influence resource utilization results, it is important to
analyze their validity and realism.

Therefore, we performed decompositional analysis
on RDP in terms of smaller, more discrete operations.
This helped us to gain some understanding of how RDP
works from a microscopic view. All values reported here
are in bytes per second. For comparison, keep in mind
that 10Mbps Ethernet has a bandwidth of 1,250 bytes
per second.

Keystrokes and Typing
Trace data from tcpdump reveals that a single

keystroke made at a TSE client generates 2 RDP mes-
sages on the control channel:

client.1972 > server.3389: P 708:768(60)
client.1972 > server.3389: P 768:828(60)

These two server-bound messages are presumably
KeyDownandKeyUp, and each appears to be 60 bytes.
Note that 60 is the size of the TCP/IP packet’s data pay-
load. In reality, delivery of a 60 byte RDP message re-
quires link-layer transmission of 118 bytes since each
message is wrapped with 40 bytes of TCP/IP headers and
18 bytes of Ethernet framing. A single keystroke, then,
generates 232 bytes of traffic on the control channel.

Using this information, we can derive the theoretical
control channel bandwidth utilization of typing. If we
assume 5.29 characters per word (as in the present work),
then for every 10wpm a typist is fast, he will generate

10 words
min

�

5:29 chars
word

�

232 bytes
char

�

1 min
60 sec

= 0:20KBps

of network traffic. A 75wpm typist therefore generates
1.51KBps of load.



This theoretical value is borne out by empirical ob-
servation. In our test, a user typed at approximately
75wpm into the Notepad application. Bandwidth was
measured on the control channel only and was found to
be 1.56KBps.

Unfortunately, we cannot apply this same generaliz-
ing analysis to derive display channel utilization because
the size and number of display messages sent in response
to keystrokes varies from application to application. We
did, however, measure overall bandwidth utilization for
“typical” typing behavior in two Windows word proces-
sors, Word 97 and WordPerfect 8. Both word processors
were set to 10pt Times Roman font and 100% magnifi-
cation page layout view. For a user typing at 100wpm,
Word generated 6.26KBps of display traffic and Word-
Perfect generated 11.66KBps.

Typing under RDP is not particularly bandwidth-
intensive. On a 10 Mbps Ethernet, one should be able to
support on the order of 100 users composing simple text
documents in Word or WordPerfect.

Mouse Movement
If the cursor is handled at the client, we would ex-

pect mouse movement to generate little or no RDP traffic.
But, because the Win32 GUI can change cursors depend-
ing on location, the server-side application logic must be
constantly informed by the client of the cursor’s loca-
tion. However, the server sends no display messages in
response to mouse movement, except in the case of a cur-
sor change. The TSE client software presumably handles
the overlay of the cursor image over the display data re-
ceived from the server.

We observe that continuous movement of the mouse
in random directions on an open area of the desktop (to
avoid cursor changes) generates 1.95KBps of network
traffic. The simple behavior of moving the mouse
appears unlikely to produce bandwidth utilization above
perhaps 2KBps.

Menu Navigation
Another typical operation performed by Windows

users is menu navigation. To measure the bandwidth
consumption of this operation, we performed a simple
human-driven depth-first traversal of the “Start Button”
menu tree on our system. This activity generated a net-
work load of 3.12KBps. Note that this value includes
the 1.95KBps of traffic generated by mouse movement
alone. This means that approximately 1.17KBps of traf-
fic was generated by the movement of the menu high-
light and the periodic display of newly activated cascade
menus.

We also performed a similar human-driven test in
Word and WordPerfect. In this test, the user hit the ‘Alt’
key to select the menu bar, and then held down the right

arrow key, causing each top-level menu to be displayed
briefly. WordPerfect generated 17.13KBps and Word
39.82KBps. We attribute this difference to the fact that
Word’s menus are larger and include graphical icons.
Although menu navigation behavior is rarely sustained,
40KBps is a realistic estimate of burst rate.

Scrolling
Scrolling through a document is another common

operation. Although the display message behavior of
scrolling is highly application-dependent, we can mea-
sure bandwidth utilization in a realistic usage scenario.

The test we performed had a user scroll though the
same multi-page document in Word and WordPerfect by
holding down thePgDnkey. The document view was set
to Page Layout at 100% magnification. The body of the
document consisted almost entirely of 10pt Times Ro-
man text, interrupted periodically by a small table.

The average bandwidth over the duration of the scroll
operation was 59.24KBps for Word and 192.54KBps for
WordPerfect. Word seems to render rapid text movement
more efficiently, at least with respect to the primitives
used in RDP. Although scrolling is an intermittent
operation, in a realistic TSE deployment scenario, one
can easily imagine seeing prolonged bursts of up to
60KBps in Word and almost 200KBps in WordPerfect
as users scroll through long documents.

Summary
Typical use of Windows applications seems to con-

sume modest amounts of bandwidth. Users rarely, if
ever, perform any of the above described operations si-
multaneously. Therefore, the peak bandwidth utilization
of a typical user will generally be the maximum utiliza-
tion among all of the operations. That is, such users will
generally produce, at most, 60KBps-200KBps of traffic
(from intensive scrolling).

3.3.3 Animations

Of course, user interaction with Windows and Windows
applications is not limited to just the operations described
above. Moreover, user interfaces have steadily grown
more rich and sophisticated over time.

Basic user activity in a non-TSE Windows environ-
ment rarely saturates system resources for extended
lengths of time, often leaving the CPU idle. Modern
Windows programmers have, very reasonably, sought to
exploit this idle CPU capacity to enhance the user expe-
rience. We identify two relevant such exploits here.

The first is the use of animation. Although the moti-
vation for such enhancements is often intuitive, previous
work has experimentally shown that animation can cre-
ate the illusion of reduced latency through visual conti-
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guity [2]. Examples include windows that visually shrink
and expand when minimized and maximized, and Office
97/Windows 98 style animated menus that “unfold” or
“slide out” upon activation.

A second avenue of idle CPU exploitation is asyn-
chronous multi-threading. Examples include back-
ground file copying and spell-checking. Multi-threading
has also appeared in user interfaces in the form of asyn-
chronous animations. They can be used to inform users
of status, as the fidgety “Office Assistant” characters do
for users of Office 97. Often, the animation itself is the
application, such as screensavers or animated banner ad-
vertisements on webpages.

Animation arguably makes the user experience less
static and more engaging, but can exact a high bandwidth
cost. The rapid frame rates required for smooth and
effective animation can generate a large amount of RDP
display traffic. Continuous asynchronous animations
also generate “background noise” on the network.
So, in the course of exploiting idle CPU and video
subsystem resources, Windows developers have created
applications whose user interfaces can be potentially
ill-behaved in a remote computing environment such as
TSE.

Ancillary Animation
First, we quantify the network utilization of some sim-

ple interface-enhancing animations. Windows supports
blinking cursors and even permits the user to adjust the
blink rate in the Control Panel. At the maximum setting,
a single blinking cursor in the Notepad application gen-
erates a consistent 0.50KBps of network activity. Office
97/Windows 98 style menu animations increase the
bandwidth utilization of the previously discussed menu
navigation test in Word from 39.82KBps to 48.88KBps.
The Office 97 Assistant character ClipIt, even when idle,
blinks his eyes periodically. This produces a 0.30KBps

level of activity. When he becomes more animated,
bandwidth usage also increases. When a user saves a file
in Word 97, ClipIt folds his paper-clip body into a box
and tosses his eyeballs in, indicating that he is storing
something valuable. This animation produces a peak
rate of 5.00KBps and lasts for approximately 7 seconds.

Animation as the Application
Fortunately, these levels of additional network traffic

are relatively harmless. Other types of animation, how-
ever, can be quite costly. In particular, today’s web pages
are filled with animated GIF advertisements and Java-
and HTML-based stock and news tickers.

To study such media-intensive webpages more care-
fully, we created a synthetic webpage that included one
animated 468x60 pixel GIF banner advertisement and a
one-line scrolling news ticker. The page was served by
Apache on thelistenhost to Internet Explorer running on
serverbut being displayed via RDP onclient.

This type of animated page is not uncommon on to-
day’s web, and might even be considered modest. But, as
shown by the top bandwidth trace in Figure 3, simply dis-
playing it in Internet Explorer produces a sustained aver-
age network load of 1.60Mbps. The plateaus of higher
activity average 1.89Mbps. The periodicity of the trace
is due to the periodicity of the scrolling news ticker.

Such levels of network activity make multi-user
service over standard 10Mbps Ethernet unfeasible. If
just 5 users open their browsers to a page like this, the
network link is already totally saturated. Although many
TSE administrators may, by policy, prohibit the use of
web browsers or enforce the deactivation of webpage
animations, this remains an important issue to consider
when developing a “realistic” user behavior profile.

Managing Animation: The Bitmap Cache
Interestingly, when the two elements of our synthetic

webpage are displayed separately, the network load char-
acteristics are markedly different. Figure 3 also shows
load traces for displaying the banner advertisement and
news ticker each in isolation.

Average bandwidth for the ticker alone is 0.07Mbps,
and for the banner alone it is 0.01Mbps. These values do
not sum to 1.89Mbps, or even 1.60Mbps, so the network
load behavior of RDP is clearly non-linear with respect
to the complexity and quantity of this animation.

This behavior implies the presence of a client-side
bitmap cache large enough to store all the frames of one
animation or the other, but not both. When the two ani-
mations are combined, their competing frames overflow
the cache and every miss generates a full bitmap transfer
over the network. When the frames do fit into the cache,
we presume that display data need not be transferred, and
only small “swap bitmap” messages are exchanged.
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Indeed, this is the case. According to Microsoft’s
product literature, the TSE client reserves, by default,
1.5MB of memory for a bitmap cache using an LRU evic-
tion policy [13]. It is used to store icons, button images,
glyphs, and the occasional animation frame.

To further study bitmap cache handling of animations,
we created a set of custom controlled animations. The
GIF Construction Set allowed us to specify the number
of frames in the animation as well as the delay between
frame displays. Our test files were spinning animations
of a “Dateline NBC” logo downloaded from the web.
They were 119x119 pixels in size with a color depth of
8bpp. The animations in our test set differed from one
another only in the total number of frames and in the
delay between frames.

Overflowing the Cache
First, we show that as long as cache occupancy

is below 100%, RDP activity remains extremely low,
but when the cache overflows, RDP activity increases
sharply and remains high.

Suppose that the cache isn bytes large, and LRU is
the eviction policy. Suppose further that each frame of
our animation is, accounting for any compression done
by RDP,m bytes. An animation with fewer thann=m
frames should therefore fit entirely within the cache and
we should see very little network load.

It should also be the case that an animation with
n=m+ 1 frames will generate substantially higher load.
If there is one more frame than will fit in the cache, and
the eviction policy is LRU, then because of the linear-
loop access pattern to the frames, every bitmap request
should miss in the cache. At each frame request, the
frame needed should have just been evicted to make
space for the frame immediately preceding it.

To verify this hypothesis, we created a series of ani-
mations whose total number of frames ranged from 25

to 100. Figure 4 supports our hypothesis, showing that
while load is just 0.01Mbps for frame counts 10 through
65, it rises sharply to 1.00Mbps for all frame counts
above 65.

While LRU may be the appropriate eviction scheme
for typical usage, it is exactly the wrong scheme for
handling looping animations. Although the cache has
room for n=m frames, none of them are in the cache
when they are needed. A more intelligent scheme might
somehow detect loop patterns and dynamically adjust
eviction behavior appropriately.

Bypassing the Cache
Flipbook-style animations using a set of bitmapped

frames is not the only way to achieve user-interface ani-
mation. Animation may also be generated using graphi-
cal primitives like line draws. Animated elements of this
type will not be aided by the bitmap cache and can gen-
erated considerably more traffic.

As a simple test, we ran the “Beziers” screensaver in
Windows which draws a pixel-wide loop composed of 10
bezier curves. The loop is continuously bent and twisted
as it is translated across the screen. Although we cannot
verify with complete certainty that line draw primitives
are being used and that the bitmap cache is of no help,
the data seem to support such a conclusion. Activating
this screensaver generates 96.42 KBps of network load.

While administrators of TSE will almost certainly
want to disable screensaver usage, this experiment shows
that any dynamic user interface element relying not on
bitmaps but on vector- or primitive-based graphics will
likely generate considerable load on the network.

4 Latency Characteristics

In the previous section, we examined the resource uti-
lization characteristics of TSE. To end-users, load is an
abstract concept only relevant to them when it begins to
affect their interaction with the system. In this section,
we identify and quantify situations in which server and
network load translate to user-perceived latency. Specif-
ically, we discuss the latency produced when the proces-
sor, memory, and network are saturated.

4.1 Processor

First, we evaluate TSE’s ability to maintain interactivity
under heavy processor load. We generated server-side
load using a C program executing a trivial tight loop.
Since the code never yields the processor, each concur-
rent instance increases the scheduler queue length by
one. We then opened a single remote session and started
Notepad. The tester held down a key, engaging character
repeat at a rate of 20cps. Usingtcpdump, we recorded
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Figure 5: Average stall length experienced by a user given
varying CPU loads at the server.

timestamps on the network packets associated with the
keystroke and character echo messages.

With a keystroke input rate of 20cps, we would expect
the server to respond every 50ms with a screen update
message to draw a new character. In our test, we mea-
sured the delay between each consecutive screen update
message and define the difference between this value and
the expected 50ms to be a stall. Figure 5 shows, for vary-
ing loads, the average stall length over the course of 60
seconds.

At no load and small loads, TSE performs perfectly,
delivering a screen update every 50ms. However, as load
approaches 10, the average stall length rises dramatically.
At a load of 10, the user spent more than 50% of his time
waiting for the server to respond.

In 1993, Evans et. al at SunSoft optimized the Sys-
tem V, R4 scheduler with an eye towards interactivity
rather than fairness or real-time requirements [6]. Using
a methodology similar to ours, they first demonstrated
that in a system based on an unmodified SVR4 kernel,
keystroke handling latency increases with load just as
TSE does here. They attribute this effect in SVR4 to the
lack of protection for interactive processes in the sched-
uler. Their modified kernel, however, handled load more
gracefully, with keystroke handling latency remaining
constant and small as load increased. A similar modi-
fication to the NT kernel might help it retain good inter-
active characteristics even when processor utilization is
at 100%.

4.2 Memory

High page demand on the server will typically force non-
active processes to be paged to disk. This behavior can
be particularly damaging to interactivity in the following
scenario. An interactive user may load a document into
an application but then stop interacting with it for several

minutes as he thinks and reads the document on-screen.
During this time, high page demand on the server may
force his application out to disk. When he reaches again
for the keyboard to scroll down, there will be significant
lag as his process is paged back into memory.

To measure this effect in TSE, we opened an instance
of Notepad remotely. We then started and let run for 30
seconds on the server a process that sequentially touches
a heap of bytes whose total size exceeds the available
physical memory. After those 30 seconds, we input a
single keystroke into Notepad and measured the time it
took for the server to respond with a screen update. We
report the results for two different load conditions in the
table below.

Warm-start delay (ms)
Page Demand Min Max Avg

less than 100% 50 50 50
more than 100% 2,400 11,900 4,000

Under heavy page demand, TSE as it runs on our
serverconfiguration took as long as 12 seconds to reload
the process and service the request. With the amount
of memory shipping in typical system configurations,
today’s users of single-user operating systems probably
rarely encounter paging behavior, and waiting for a pro-
cess to reload from disk is likely to be a foreign and
highly irritating experience.

Evans et. al also discussed and demonstrated this ef-
fect in the SVR4 kernel. Their solution was to throt-
tle non-interactive processes with high page demand, fa-
voring interactive processes instead. Clearly, a mem-
ory scheduling scheme better adapted to interactive us-
age would help the TSE kernel perform better under high
memory load.

4.3 Network

With TSE’s introduction, Windows programmers must
consider the fact that their user interfaces may be ex-
ported to remote clients over a network.

The mere introduction of a network link introduces
latency. A 10Mbps link can transmit 1.25KB per mil-
lisecond. Previous work found that latencies exceeding
100ms begin to be noticeable [15]. Therefore, visually
discrete screen updates that cannot be expressed in RDP
in 125KB may appear sluggish. Our subjective experi-
ence with TSE was that even with no network load, re-
mote interaction was noticeably more sluggish than local
interaction at the console. On anything less than full Eth-
ernet, users can expect poor performance. A 56Kbps mo-
dem connection, for example, can only transmit 7 bytes
per millisecond. The average display message size in
our trace from Section 3.3.1 was 702 bytes, and visually
discrete screen updates are rarely composed of just one
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Figure 6:Host-to-host round-trip times (latency) and host-to-
host round-trip time variance (jitter) as functions of load.

display message. Therefore, few, if any, operations over
such a connection will appear smooth.

Latency also increases dramatically when the network
is saturated. To demonstrate, we produced synthetic
TCP/IP traffic on our testbed. Figure 6 shows the effect
of load on packet latency and jitter (latency variance).
For each load level, we ranping for 60 seconds and took
the average and variance in round-trip-time (RTT) for all
packets sent. We used a packet size of 64 bytes, which is
roughly the size of a keystroke control message. So, the
latencies we observed give a realistic lower-bound on the
additional latency introduced by network saturation.

As the figure shows, while the network is not sat-
urated, RTT remains low and almost perfectly consis-
tent. However, as the network nears saturation, perfor-
mance suffers dramatically. The 35ms delay induced at
9.6Mbps load is considerable with respect to known lev-
els of human latency tolerance [15]. The inconsistency
of the latency, a phenomenon known as jitter, only com-
pounds the negative impact of network saturation.

5 Related Work

We found three technical documents on TSE perfor-
mance. All are white papers, one published each by Mi-

crosoft, Hewlett-Packard, and Compaq [1, 8, 11]. They
are all similar, reporting maximum concurrent usage lim-
its for varying combinations of user profiles and server
configurations. Their results have limited utility for three
reasons. First, they provide little explanation as to the
underlying principles of how load is generated, mak-
ing it difficult to extrapolate limits for configurations
other than the few they list. Second, their analyses fo-
cus almost exclusively on throughput rather than latency.
Third, their user behavior profiles do not include increas-
ingly common tasks like web browsing, which we have
shown can produce substantially higher network load.

The Compaq paper stands apart from the HP and Mi-
crosoft papers by giving some justification as to why the
proffered usage limits are relevant. They identify latency
as the key metric for performance:

The maximum number of clients at an ac-
ceptable performance level was determined to
exist just prior to a delay in the response time
at the client. That is, when the script was ex-
ecuting, there was a pause between entries of
characters. Processor queue length was an es-
sential performance factor that was critical in
fixing this delay. Processor queue length is the
instantaneous length of the processor queue in
units of threads. A processor queue length of
12 corresponded to a delay in typing and was
consequently used to gauge maximum client
support.

They seem to say here that the usage limit is reached
when adding one more client pushes typing latency
above some threshold.

Harwood and Mathers and Genoway authored books
aimed at system administrators on configuring, using,
and testing TSE [7, 10]. Danskin and Hanrahan wrote
several papers on profiling the X protocol, which pro-
vides functionality similar to RDP for Unix systems
[3, 4]. Endo et. al and Evans et. al, as discussed ear-
lier, both wrote papers of a rare breed in OS research that
address the issue of user-perceived latency [5, 6].

6 Conclusions

We have analyzed TSE’s resource consumption and la-
tency characteristics.

The transition from NT to TSE has introduced addi-
tional compulsory load. TSE has 71% more CPU activity
when idle than NT Workstation 4.0 and each user session
consumes a minimum of 2.5MB of memory. Typical ap-
plications, even with code page sharing, consume at least
1MB for each instance. While RDP is efficient for simple



operations like typing and mouse movement, more so-
phisticated user interaction like web browsing and doc-
ument scrolling can generate surprisingly high network
loads. On 10Mbps Ethernet, this behavior can limit con-
current use to as few as 10 sessions.

In terms of latency, the TSE kernel does not protect
interactive processes against high CPU and memory load
as well as it could. Evans et. al suggest potential reme-
dies. Network latency even with no load degrades the
user experience. Given the average RDP message size,
TSE remote sessions would likely be difficult to use over
modem links with speeds on the order of tens of Kbps.
Without improving some of the latency characteristics of
TSE, adopters will need to readjust the interactivity ex-
pectations they developed while using single-user sys-
tems with copious memory and fast, local video.
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