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The Egg project provides a vision and implementation of how heterogeneous com-
putational requirements will be supported within a single grid and a compelling
reason to explain why computational grids will thrive. Environment computing,
which allows a user to specify properties that a compute environment must satisfy
in order to support the user’s computation, provides a how. Economic principles,
allowing resource owners, users, and other stakeholders to make value and policy

statements, provides a why. The Egg project introduces a language for defining
software environments (egg shell), a general type for grid objects (the cache), and
a currency (the egg). The Egg platform resembles an economically driven Internet-

wide Unix system with egg shell playing the role of a scripting language and caches
playing the role of a global file system, including an initial collection of devices.

1. Introduction

Although grid software and its conceptual framework have evolved sub-
stantially in recent years, today’s grids are still limited in size to hundreds
of sites and thousands of computers. They have not approached Internet-
scale. Grids have not grown larger and are not used more broadly due to five
factors: 1) There is no global resource allocation mechanism. 2) Installing
and maintaining grid infrastructure software is time-intensive and difficult.
3) Converting applications to be grid-enabled is also time-intensive and dif-
ficult. 4) It is complex to express user and organizational policies. 5) It is
difficult, often impossible for users to express needs.

Grid computing will become mainstream only when its existence can be
largely ignored. For example: when researchers can focus solely on compu-
tational experiments and not on the tools, configurations, and gaming of
the system required to obtain sufficient resources, grid computing will be
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more popular. Similarly, when two organizations can share resources in a
flexible and locally managed manner, those organizations are more likely
to work together and share those resources.

We introduce Egg, a system that provides nearly transparent and nat-
ural access to grid resources. The Egg architecture brings together en-
vironment computing and economic principles to create a vision of grid
computing that realizes the promise of autonomy and openness.

2. Egg Overview

Egg is an extensible, economics-based platform for open grid computing.
Egg addresses the shortcomings of the existing grid solutions by focusing
on the following design principles:

(1) Simplicity and Extensibility: Every grid function, for example,
submitting jobs to run, storing files, assigning user permissions,
should involve only a small set of standard operations, such as put
and get.

(2) Smart Resource Allocation: Users can describe their jobs well
in a language of computational experiments, but not in terms of
characteristics of the machines that can run those jobs. Transparent
resource discovery and allocation that are in the best interests of
the users simplify interactions.

(3) Decentralized Policy and Control: All stakeholders must have
a flexible and easily comprehensible way of influencing the overall
system. Organizations with different resources can share resources
by creating realistic economies while still retaining as much control
as desired over policy.

All three principles are critical and are interrelated. Individually, each
represents a significant breakthrough in the respective problem domain in
grid computing. The three major components of Egg correspond to these
principles: egg shells and caches, microeconomic architecture, and macroe-
conomic architecture. We discuss each in detail.

3. Fundamental Architecture

3.1. Egg shells

Egg shell is a language that allows a user to specify both the environment
requirements, to be established via installation, together with the details
of the computational job. This is the essential element of what we term
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environment computing. The details provided by a user can include infor-
mation such as the location of source data and the name and location of
the analysis program that is to be executed.

In fact, the inspiration for egg shell comes from the humble activity of
installing software.1 Egg shell is a small superset of the Pacman language,
which is fast becoming the de facto standard for deployment of software
environments on grids in the US research community. The Open Science
Grid (OSG)2 is entirely deployed with Pacman3, as is the Virtual Data Kit,
including installation of Condor and Globus and other grid middleware4,
as is ATLAS5 and other experiments.6

There is one key egg shell primitive. This primitive, put, is used to
add one type of cache to another type of cache and can be thought of as a
generalized copy. For instance, put initiates a job, downloads and uploads
data, or installs a software environment. Other egg shell primitives, such
as pay can be defined in terms of put. The pay primitive initiates payment
for a service rendered, and is defined as a put of egg currency (the egg) to
a bank cache. The following example egg shell demonstrates the simplicity
and expressivity of egg shell.

1: { put ~Alice/jobs/runningEnvironment.eggshell mygrid OR fail

"Can’t run on this machine." }

2: put ~Alice/jobs/binary1 mygrid

3: FOR j in [job1.eggshell,job2.eggshell,job3.eggshell] {

4: put ~Alice/jobs/j mygrid

5: put results/j.out ~Alice/results

6: pay @100.Harvard.Alice when gmTime < 1-Apr-2006

7: }

8: shell echo "done"

Currency is denoted with @ as a prefix, e.g. @20.Harvard.Alice denotes
20 units of Harvard currency held by Alice. Notice the conciseness of egg
shell. In just 8 lines, it captures the configuration of the environment (line
1), dispatching jobs to machines (line 4), and payment terms (line 6).

1Pacman web site: (http://physics.bu.edu/pacman/).
2www.opensciencegrid.org
3See: http://kb.grid.iu.edu/data/aths.html
4http://vdt.cs.wisc.edu/
5The ATLAS project is a massive collaborative effort in particle physics, involving
over 1800 physicists from more than 150 universities and laboratories in 34 countries.

http://atlas.web.cern.ch/Atlas/index.html
6http://atlas.bu.edu/caches/registry/E/htmls/registry.html
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A great deal of complexity and autonomy underlies the simplicity of egg
shell. Line 1 (put Alice/jobs/runningEnvironment.eggshell) refers
to a typical installation script.7 Line 4 (put Alice/jobs/j mygrid) runs
a job, without requiring that the user specify machines on which to run
it or any characteristics about the job. The characteristics of the job are
determined by agents local to caches, that learn these characteristics by
observing the characteristics of past jobs. The payment terms in line 6
(pay @100.Harvard.Alice) provide all the guidance needed for the system
to determine the best machine for the job, and indeed predict whether the
job can be completed by the deadline.

3.2. Caches

All functional elements of Egg are caches including computers of various
kinds, storage devices, bidding agents, files, directories, egg shell source
and object files, banks, marketplaces, rolodexes printers, garbage cans etc.
A cache can be thought of as a box with an input port that supports an
operation of put-ing one cache into another. Caches have internal existence
as python objects in the Egg system and an external existence as bindings
to URLs or servers. The relationship that a cache has to the external world
is maintained by a pair of functions eval/save which are generalizations of
read/write combining i/o, search operations, lazy evaluation and individual
cache-specific computations. For example, if an egg shell is put into a
computer cache, the save operation may attempt to execute the egg shell.
The same egg shell put into a bidding cache might, on the other hand,
cause a bid to be constructed; a banking cache might strip the egg shell of
currency and a storage cache might simply store the egg shell as a file.

4. Microeconomic Architecture

In Egg, we provide smart resource allocation via a microeconomic architec-
ture, whereby caches compete with each other for the right to execute a
job submitted by a user, described in egg shell. Egg manages the bidding
process and determines a winner. In the short-term, the auction process
provides a dynamic and robust resource allocation mechanism with prices

7For reference, a typical ATLAS installation consists of 1233 Pacman scripts such as
the one above, with 20687 lines of egg shell in total and deploys about 4GB of software.

Most of the ATLAS egg shells are produced automatically from their build system. Parts,
however, are hand written. Pacman typically creates more than 1000 new installations
per day around the world, with more than 800,000 downloads of Pacman to more than

50 countries as of March 12, 2006.
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linked to resource demand. In the long term, prices provide signals to guide
future investment in resources and allow for accounting by parties such as
funding agencies. All local schedulers and bidding algorithms employed by
caches are fully extensible to allow for continual improvement.

The first element in the microeconomic architecture is a bidding lan-
guage that allows a user to state a willingness-to-pay. Egg does not require
a user to state resource requirements explicitly. For example, a Physicist
interested in running computational analysis on a local grid does not need
to estimate the length of time, or file space, that the computational process
requires. The responsibility for resource estimation is pushed to caches: a
cache needs an estimate of resource requirements to determine its opportu-
nity cost for accepting a job.

Egg supports an expressive language to allow users to describe a trade-
off between completion time and value. A user can bid a price sched-
ule, i.e. a willingness-to-pay for different job completion times. For
simplicity we initially support a linear price schedule. For example, a
typical bid defines (@10.Harvard.Alice,@2.Harvard.Alice,Apr-01-06
00:00:01), which describes a monotonically decreasing willingness-to-pay
of 2 + (10− 2)(t− t0)/(td − t0) eggs, where t is the time of completion, td
is the maximal deadline (Apr-01-06 00:00:01 in the example), and t0 is
the time at which the bid is submitted to Egg. A simple special case is a
constant willingness-to-pay with a hard deadline. The bid is the maximal
willingness-to-pay, the payment actually made by a user depends on the
current balance of supply and demand. A user can also specify a mini-
mal reliability, e.g. “I will only consider caches with reliability ≥ 99.9%.”
The Egg infrastructure maintains a reliability metric for caches, which is a
measure of the frequency with which a cache has failed to meet a deadline.

Jobs are submitted (as egg shell) to multiple caches that satisfy the en-
vironment and reliability requirements specified in a job, and are willing to
accept the currency specified by the user. Caches providing discovery ser-
vices can facilitate this process of matching jobs with caches that are willing
and able to generate bids. The job is ultimately allocated to the cache that
responds with the lowest offer, and the cache receives this amount upon the
successful completion of the job (and receives no payment otherwise.)

The microeconomic architecture carefully constrains this bidding pro-
cess to provide strategyproofness to users: Egg guarantees that a user min-
imizes her payment and maximizes her chances of successful completion
of the job if and only if she truthfully reports her willingness-to-pay and
deadline considerations. Strategyproofness provides simplicity: Egg pro-
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vides the benefits of an economic framework while hiding the potential
complexities from users.

In achieving strategyproofness, while respecting the autonomy of caches,
the most important architectural element is provided by price tables. Each
cache represents its bid for jobs by populating entries in a price table.
Loosely, a price table for cache i specifies a price pi(Q, t) for some quantity
of resources Q allocated starting at time t. Egg requires monotonicity
properties of prices in a price table, such that prices increase with larger
quantities. Each cache must maintain prices up until a time horizon, some
T time steps into the future. A cache can change entries in the price table,
but can only increase its posted price pi(Q, t) for each (Q, t) pair. The Egg
platform receives an estimate of compute resources Q̂ from the cache, and
then determines the bid from each cache by inspection of the price tables.

Caches retain flexibility to decide which kinds of jobs to schedule. For
example, economically-motivated caches would set prices to maximize rev-
enue given local knowledge about job characteristics and hardware charac-
teristics.

5. Macroeconomic Architecture

The macroeconomic architecture in Egg is designed to support basic eco-
nomic functions: the creation of currency, the security of currency, and
currency exchange. Critically, and perhaps uniquely amongst current vir-
tual economies, the Egg macroeconomy allows multiple currencies. This
provides for complete autonomy with respect to policy to the many stake-
holders on heterogeneous grids. Policy is then supported through the fol-
lowing mechanisms: (a) anyone can create a currency, “print” arbitrary
quantities of the currency, and decide how to allocate currency to users;
(b) an owner of compute or file servers can control access via restrictions
on currency and identity, and by placing currency-specific limits on resource
allocations.

Of course, just printing currency cannot make a user rich: currency only
has value if it can be spent at caches, or exchanged for other currencies with
spending power. On the other hand, anyone can be an Alan Greenspan
(Bernard Bernanke?!) for their own economy. Every currency requires a
bank, which is responsible for maintaining the security of the account of
any user holding the currency, and also to provide important services such
currency exchange. Moreover, every user has her own bank (even if she does
not generate her own currency). These banks are involved in the transfer
of currency between users.
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Egg provides a secure identity infrastructure. For instance, the Harvard
bank can certify its identity by the use of cryptographic signatures. When
currency changes hands it is signed to indicate the parties involved in the
exchange. For example, if Harvard generates 10 eggs and gives them to
Laura then Laura’s bank holds @10.Harvard.Laura eggs, indicating this
transfer. The Harvard bank also keeps a record that Laura has 10 Harvard
eggs. Laura can now grant @5.Harvard.Laura eggs to Saul and Saul’s bank
would hold @5.Harvard.Laura.Saul eggs. Saul’s bank could also contact
the Harvard bank, as the “bank of record” for Harvard eggs, and claim
possession of these eggs at which point the Harvard bank would update its
record.8

In Egg, caches can control access by specifying which currencies are
accepted. For example, consider a simple computer cache which attempts
to execute any egg shell given to it. If the cache accepts @*.Saul this
is just as secure as putting Saul’s public key in .ssh/authorized keys

(since Egg uses OpenSSL cryptography) with the substantial additional
merit of having accounting, a chain of authorization if “*” is not the empty
list, and a chance to pre-examine and record whatever Saul executes on
the system. Similarly, if the computer accepts @Harvard.*, anyone holding
Harvard currency can compute. In a more restrictive configuration with the
computer accepting @Harvard.Laura.?, anyone who Laura gives Harvard
currency to directly has access to the computer.

Caches which earn currency and which bid on incoming jobs will usually
also have a home currency used as the unit of resource estimation and
bidding. In such cases, the cache may earn accepted foreign currencies by
using a bank to establish and exchange rate with the home currency.

In the global economy, it is partly through the control of monetary sup-
ply that countries can implement socio-economic policy and the same is true
for the Egg economy. By allowing multiple currencies, a computational grid
created by the Chinese government can interoperate with a computational
grid created by the US government, but without either party ceding control
of policy. China does not need to worry that the US bank will flood the
economy with a surfeit of US eggs because users in China can hold China

8Thus, the Egg currency is not formally a bearer currency in the sense that a recipient
bank cannot independently establish that the validity of eggs. But, we achieve good

decentralization in practice, e.g. for transfers between mutually trusted banks. If Saul’s

bank is concerned about the security of Laura’s bank (e.g. perhaps Laura’s bank also
gave 10 eggs to Margo), then in performing this transaction Saul’s bank can first check

with Harvard’s bank that the eggs are still Laura’s to transfer.
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eggs, and the exchange rate would move against the US currency.
In a globe-spanning physics research project like ATLAS, the Egg plat-

form would allow physicists to effectively allocate globally available re-
sources directly in the natural terms of the research. Suppose that a high
level policy decision concludes that analysis searching for the Higgs boson
over the next month is so important that it requires 70% of the global
ATLAS resources. The Egg currency allows a policymaker to specify this
without making decisions on details such as who has access to which com-
puters, storage and network resources, and with what priorities for what
periods of time. By further delegation, someone managing the Higgs analy-
sis effort can then provide additional refinement, e.g. specifying the fraction
of resources are used for Monte Carlo simulation compared with analysis, or
which persons or groups get to spend the currency. At the same time, own-
ers of resources can maintain complete control over who has access to their
systems and whether they contribute to the Higgs effort within ATLAS.

Note that the macroeconomic functions described here do not enter
into consideration of the actors in the system. Users can organize resources
that they have access to and can express their intentions in the currency
units that they are familiar with when necessary.9 Cache owners will sim-
ply list which currencies are accepted. Managers of organizations generate
and transfer the currency that they are used to depending on needs and
priorities.

Banks, like everything else in Egg, are also caches and autonomous
agents in their own right and able to pursue local policies in establishing
exchange rates. We intend to perform simulations to better understand
the effect of various methods to compute exchange rates and perform ex-
change, both to understand robustness to shocks and also to determine
which monetary metrics need to be instrumented by the Egg platform (e.g.
real currency supply, inflation, etc.).

6. Closing Comments

Egg provides an extensible and economics-inspired open grid computing
platform. This is a multi-year effort involving close collaboration between

9A user with @BU (Boston University) eggs can still state willingness-to-pay in BU eggs.
Banks are used to generate quotes for currency exchange and enable competition across

domains. Suppose a Harvard cache wins. On successful completion of the job, the
Harvard bank would perform currency exchange from @BU into @Harvard eggs, credit
these to the Harvard cache, and finally debit @BU eggs from the user’s account. The net

effect is that the Harvard bank is holding some @BU eggs.
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computer scientists, computational physicists, and economists. Egg is
spawning many subprojects. For instance: (a) statistical machine learning
to predict resource requirements; (b) methods of computational mechanism
design for sequential and strategyproof resource allocation; (c) opportunity-
cost based schedulers; (d) algorithms to compute exchange rates; (e) lan-
guages for environment computing. Vital to Egg’s success as a platform is
its extensibility and openness: our current focus is on defining and imple-
menting the Egg platform together with initial versions of various caches
that we find useful. Continual innovation will ultimately provide for sus-
tainable and successful grid computing.

6.1. Related work

The Globus Toolkit10 and Condor 12 provide the current de facto architec-
ture for resource management in grid computing. However, as argued by
Foster et al. 9, grid computing is “brawn” without “brain.” We’d go fur-
ther and argue that grid computing is just too cumbersome and complex,
and with insufficient kinds of expressiveness (for both policy and use), to
approach Internet scale. Also, while Foster et al. 9 suggest the use of agent
technology for the automatic creation of “virtual organizations” 6, our view
is that stakeholders– funding agencies, Deans of engineering schools, man-
agers, etc. –should be provided with mechanisms to implement policy while
agents put to use to price resources, predict job characteristics, adjust ex-
change rates, and other such well-defined tasks. Dumitrescu et al. 5 provide
an alternate vision of policy for computational grids.

Many papers have proposed using market-based methods for resource
allocation in networked computing 2,11,15,8,16,14, some of which has focused
specifically on computational grids and federated systems 13,1,18,17,10. How-
ever, the combined microeconomic and macroeconomic architecture, cou-
pled with attention to policy and the need for decision autonomy differenti-
ates Egg from these earlier works. To give a couple of examples, we are not
aware of any work that allows for multiple currencies and considers macroe-
conomic issues such as exchange rates, nor are we area of any work that
provides for strategyproofness to users (i.e. non-manipulability) despite the
dynamics of grid computing environments and while still supporting seller
autonomy in setting local price policies.

The microeconomic architecture adopted in Egg is inspired by recent

10http://www.globus.org
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theories on the design of strategyproof allocation mechanisms in dynamic
environments 7. The macroeconomic design shares some of the goals ex-
pressed in the work of Irwin et al. 4, for instance in recognizing the impor-
tance that currency schemes support policy and allow delegation of resource
access rights. Clark et al. 3 have written at length about the success of the
Internet as a network platform, especially about the role of openness and
end-to-end arguments in the support of continual innovation.
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