
Egg: An Extensible and
Economics-Inspired Open Grid

Computing Platform

David C. Parkes
Division of Engineering and Applied Sciences

Harvard University
GECON 2006

Grids
• internal realm:

– Java, python, C++, applications
– Science, engineering, art
– Happy

• external realm:
– OS. Disk. WAN. Firewall. HTTP. Installation.
– People, organizations
– Labor intensive. (54 sites for OSG)
– Sad

Current (Science) Grids

• No global resource allocation mechanism
• Installing and maintaining grid infrastructure

software is time-intensive and difficult
• Converting applications to be grid-enabled is

time-intensive and difficult
• Complex to express user and organizational

policies, user needs

What is Egg?

• Egg == Extensible and Economics-Inspired
Open Grid Computing Platform

• Goals: open, efficient, simple grid computing,
respect organization boundaries

• “Programming the external world”
• Collaboration: CS + Physics + Economics

– Boston University, Harvard University
– L.Kang, C.Ng, M.Seltzer, D.Parkes
– J.Brunelle, P.Hurst, J.Huth, J.Shank, S.Youssef
– A.Sunderam

In the beginning…

Software environment
computing, i.e. creating
and manipulating
software environments

Economic mechanism
design; bidding systems,
provenance & file
systems, resource
prediction

Boston University Harvard

+ Collaboration on ATLAS, several years of
experience with Globus-based Grids and BU’s
new ATLAS “Tier 2” center.

In the beginning…

Software environment
computing, i.e. creating and
manipulating software
environments

Economic mechanism design;
bidding systems, provenance &
file systems, resource
prediction

GLOBUS
Condor

PBS

LSF EGEE

Chimera

RLS VOMS

Resource
Brokers

MonaLisa

Ganglia

OSG Dial

PandadCache

SRM
Pacman

Gums Web services

Virtual
Machines GridCat

Boston University Harvard

But what do these have to do with each other? …And how do they fit
into the (over-)complicated world of grid computing?

Alien

LCG

Dirac

DISUN ACDC

VDT

VDS

DRM

Clarens
Glue

EDG

Classads

Netlogger

Capone
Eowyn gLite

ADAiVDGL

PPDG

get(E)

“caches”

To begin, let’s think about “Pacman” (S.Youssef, BU)

An installation

~ Various URLs with grid software

[Pacman is used by ATLAS (>1800 physicists, >150 labs, 34
countries), OSG, Virtual Data Kit (incl. Condor and Globus),
TeraGrid,… >800,000 Pacman downloads (3/12/06), ~1000 new
installations per day in 50+ countries, supported on 14 OS.]

We can let all computations be “installations.”

put(E)

But which path should E follow?

Job description Cache history Cache contentsF(,)
⇒ ~Opportunity cost

ATLAS
v.10.5.0
already
installed

put(job needing ATLAS 10.5.0)

Resolving the put ambiguity == Resource allocation

,

User level concepts can be simple and can be put in a
familiar, easy to learn context.

% egg

egg> cd ~David

egg> lc

myEgg.caches hu.playCluster david.grid david.playStation
results/ papers/ jobs/ Tier2/ identities/

egg> cd jobs

egg> lc

job1.eggshell job2.eggshell job3.eggshell

egg> put job2.eggshell ../david.playStation

egg> cd ../david.playStation

egg> lc

queue/ running/ history/ earnings/ access/

What’s Egg?

egg> lc

queue/ running/ history/ earnings/ access/

egg> lc -r

queue/

job2.eggshell

ATLAS.Higgs.HU.David:10@

running/

job1.eggshell

ATLAS.Higgs.HU.David:10@

results/

seeds higgs.aod athena.log error.log

earnings/

ATLAS.Higgs.BU.Saul.CANCELLED:10@

Harvard.EECS.Margo.Laura.CANCELLED:1@

access/

*.Saul

*.Margo.?

You just cd-
ed into a
playStation?

How do I run my ATLAS job?

put ~ATLAS/10.5.0 .

put ~David/jobs/binary1 .

put ~David/jobs/job1.in .

put ./results/job1.out ~David/results

pay ATLAS.Higgs.HU.David:10@
when gmTime < 1-Apr-2006

shell echo “done”

job1.eggshell

egg> put job1.eggshell ~David/mygrid

egg>

put ~ATLAS/10.5.0 .

put ~David/jobs/binary1 .

put ~David/jobs/job1.in .

put ./results/job1.out ~David/results

pay ATLAS.Higgs.HU.David:10@
when gmTime < 1-Apr-2006

shell echo “done”

job1.eggshell

egg> put job1.eggshell ~David/mygrid

egg> lc ~David/mygrid/job1*

job1.eggshell

e.t.a. 25-Mar-2006 +- 2 days

estimated cost ATLAS:Higgs.HU.David:8.3@

You mean I can find out
how long my jobs will take?

Main Innovations

Macroeconomics. Multiple currencies. Policy autonomy.
Support for interoperation between grids.
Simple + transparent to users.

Open + Extensible. E.g., IBM can develop own bidding
agent for its compute servers.

Microeconomics. All actions (installations, downloads, uploads,
etc.) are put and gets. Made efficient by bidding mechanism.
Simple + transparent to users.

Main Innovations

Macroeconomics. Multiple currencies. Policy autonomy.
Support for interoperation between grids.
Simple + transparent to users.

Open + Extensible. E.g., IBM can develop own bidding
agent for its compute servers.

Microeconomics. All actions (installations, downloads, uploads,
etc.) are put and gets. Made efficient by bidding mechanism.
Simple + transparent to users.

reverse auctions, role of Egg platform

currency, exchange rate, role of banks

Novelty: Open mechanism design

• Open: unrealistic to propose a particular selling
mechanism that all resource owners should use

• Dynamic, distributed, asynchronous
– e.g., a single, centralized, forward combinatorial

auction would not work

• Our solution: Egg platform places constraints
on mechanisms (price tables, admissibility)

First: User Expressiveness
• Describe Job in Eggshell

– executable files, input files, loops, etc.
– maps to bundle S of resources

• Describe a “value schedule” vi(S,tf).

• Simplify for users via default schedules

completion
time (tf)

willingness
to pay

t0

Now to Open MD: Price Admissibility

A reverse auction with admissible prices, and in which
agent i receives completion time tf that maximizes vi(S,tf)-
pt

i(S,tf), is strategyproof.

⇒ Egg enforces monotonicity of prices wrt S and t
through price tables; enforces maximal decision.

admissible prices == user i faces a price, pt
i(S,tf), in

period t, for bundle S and completion by tf that is:
(a) independent of agent i
(b) increases monotonically with S’ ⊃ S
(c) increases monotonically with current time, t

Price Tables

Price
table

NET

time (tf)

13

5 8

9

Price
table

CPU 12

4 7

6

Price
table

DISK 3

3 2

4

pt
i(S,tf)=pi

NET(Snet,tf
)+pi

CPU(Scpu,tf)+pi
DISK(Sdisk,tf)

Caches maintain entries in price tables (but, cannot
reduce prices, & must retain monotonicity w/ size.)

egg platform enforces this

time (tf) time (tf)

User

Price
table

PlayCluster

Cache2Cache1

EstimatorEstimator

time

Q1(J)

J, v

J, v

J, v

Q2(J)JQ1(J)J

Price
table

p1, tf
p2,
tf

max utility

Q1(J), v

Q2(J)

time

p1,
tf

13

32 5

975

5 8

9

reliable caches

egg platform conducts
a reverse auction

Example: Buying Storage
• “Deadline 5hrs”, estimated space is 2GB for 2 hrs.

5

9

3 84

Cache’s price table
time (hrs)

68

6

5 7

6 9 8 12 9

1G

2G

3G

Disk
space

t0+ 1 +2 +3 +4 +5

t0 t0 + 5

Collate responses. Choose to allocate to best cache.
Only pay if completed by estimated time.

Example: Buying Storage
• “Deadline 5hrs”, estimated space is 2GB for 2 hrs.

5

9

3 84

Cache’s price table
time (hrs)

68

6

5 7

6 9 8 12 9

1G

2G

3G

Disk
space

t0+ 1 +2 +3 +4 +5

t0 t0 + 5

Should not be $3
(monotonicity)

Example: Buying Storage
• “Deadline 5hrs”, estimated space is 2GB for 2 hrs.

5

9

3 84

Cache’s price table
time (hrs)

68

6

5 7

6 9 8 12 9

1G

2G

3G

Disk
space

t0 t0 + 5

2

Suppose (2G,6) is $2. Better to over-report deadline?

t0+ 1 +2 +3 +4 +5 +6

Example: Buying Storage
• “Deadline 5hrs”, estimated space is 2GB for 2 hrs.

5

9

3 8

Cache’s price table
time (hrs)

68

6

7

9 8 12 9

1G

2G

3G

Disk
space

t0 t0 + 5

t0+ 1 +2 +3 +4

Suppose time ticks forward, and price in (2G,+3) falls.

X

4

4

5

6

Example: Buying Storage
• “Deadline 5hrs”, estimated space is 2GB for 2 hrs.

5

9

3 8

Cache’s price table
time (hrs)

68

6

7

9 8 12 9

1G

2G

3G

Disk
space

t0 t0 + 5

t0+ 1 +2 +3 +4

Delay “arrival.” Payment $10, not $13.

X

4

4

5

6

Next steps: Micro
• Resource estimation via machine learning

– Statistical learning problem
– Learn g : job → Rk

• for k dimensions of local resources
– Each cache keeps local history
– Updates model (g)
– Consider linear-regression trees, SVMs, k-nearest neighbor…

• Bidding strategy by caches
– Decision theoretic problem
– Maximize expected revenue subject to capacity constraints,

price-table monotonicity constraints
– Consider model-based approach, w/ estimate of success for

different prices

Main Innovations

Macroeconomics. Multiple currencies. Policy autonomy.
Support for interoperation between grids.
Simple + transparent to users.

Open + Extensible. E.g., IBM can develop own bidding
agent for its compute servers.

Microeconomics. All actions (installations, downloads, uploads,
etc.) are put and gets. Made efficient by bidding mechanism.
Simple + transparent to users.

reverse auctions, role of Egg platform

currency, exchange rate, role of banks

Need for Policy Tools
• Large-scale collaborative science is often

driven by organizations.
• Organizations want high-level control over

resource access, priorities, etc.
• Policy requires control of currency [to print,

allocate, tax, etc.]
⇒ need multiple currencies
(or tight integration, c.f. EU)

Motivating Scenario I: ATLAS project
• Create ATLAS bank and ATLAS eggs. Create

accounts for research scientists. (Tier 2 at BU. Jim
Shank comput. manager for ATLAS)

• Meeting of stakeholders: searching for Higgs boson
over next month requires 70% global resources

• Print and allocate ATLAS currency to Higgs manager,
who further delegates. Users retain control about
which analysis jobs to run.

Motivating Scenario II: BU & Harvard

• Harvard and BU decide to share grid resources.
• Banks retain local currency. Exchange rate.
• HU caches annotated:

– accept BU.* and HU.* currency
– hard constraints on x% of BU jobs that can run

• BU caches similarly.
• Users at HU can use BU caches transparently.

Maintain HU eggs. Exchange via BU bank.

• BU protected if HU decides to print a million
HU eggs.

put job.eggshell .

pay Harvard.EECS.Margo.Laura:10@

Harvard.EECS.Margo.Laura:1000@

*.Laura

Harvard.EECS.Margo.?

Harvard.EECS.Margo.*

*.Margo.?

.EECS.

Harvard:10@

Harvard.EECS:10@

Harvard.A&S:10@

Harvard.Math:10@Harvard.EECS.Margo:10@

Accounting,
check for
duplicates,
currency
exchange, etc.

8

7

7

7

6

Our currency serves many purposes.

Harvard.CS.Alice[Apr-02-06]:10.0@

Anatomy of a piece of an Egg

DenominationExpiration dateGenerating by
the Harvard
identity

Tranferred
from
Harvard to
CS and
signed by
CS

Transferred
from CS to
Alice and
signed by
Alice

An Example of a Transaction

(2) Cache wants 100 BU eggs for user's job

Harvard BU

(3) User pays
via local bank
(transparent
to user)

(4) Bank sends
200 HU Eggs

(1) Rate established
at 2 HU: 1 BU

(5) BU bank holds
200 HU eggs (can
verify), on completion
transfers 100 BU
Eggs to cache's
account, returns
cancelled check.

user cache

Exchange rates: Desirable Properties

• Facilitate cross-grid exchange
• Prevent abuse by autonomous economies
• Preserve value of currency used to pay

for services

• Extensible: we provide first versions

Idea One: Based on ‘Spending Power’

HU economy

ch / qh

BU economy

cb / qb
rbh=

ci : # currency
qi: # resources
xb · rbh = xh

→ need to instrument economies
→ need to measure qi across different resources [use relative
prices w/in an economy, combined with some numeraire good.
(or gold standard economy). real world GDP doesn’t help.]

Idea Two: Trading Agents

HU economy BU economy

Simple trading agents
Take positions in currency

Set prices to equilibrate supply and demand
Monitor positions. Swap out.

Willingness to take a position should depend on stability of economy
Lots of ideas hear from finance!

PPP: Test of Well-functioning system

The Economist, April 2003

Purchasing Power Parity

• In the long run, prices
should move toward rates
that equalize the prices
of an identical basket of
goods across countries

• Requires: basket is
traded across borders,
no tariffs, constant
profit margins, same
productivity,…
?? ok for grids

Conclusions
• Egg provides an extensible and economics-inspired grid

computing platform
• Close-collaboration between CS, physics, economics
• Spawning many subprojects

– statistical machine learning for resource prediction
– open MD for sequential environments
– opportunity-cost based schedulers
– algorithms to compute exchange rates
– languages for environment computing

• Extensible + Open:: Define and implement platform,
first versions of various caches. Continual innovation
(by anyone) will be supported and encouraged.

www.eecs.harvard.edu/econcs

