Egg: An Extensible and Economics-Inspired Open Grid Computing Platform

David C. Parkes

Division of Engineering and Applied Sciences Harvard University GECON 2006

Grids

- internal realm:
 - Java, python, C++, applications
 - Science, engineering, art
 - Нарру
- external realm:
 - OS. Disk. WAN. Firewall. HTTP. Installation.
 - People, organizations
 - Labor intensive. (54 sites for OSG)
 - Sad

Current (Science) Grids

- No global resource allocation mechanism
- Installing and maintaining grid infrastructure software is time-intensive and difficult
- Converting applications to be grid-enabled is time-intensive and difficult
- Complex to express user and organizational policies, user needs

What is Egg?

- Egg == Extensible and Economics-Inspired
 Open Grid Computing Platform
- Goals: open, efficient, simple grid computing, respect organization boundaries
- "Programming the external world"
- Collaboration: CS + Physics + Economics
 - Boston University, Harvard University
 - L.Kang, C.Ng, M.Seltzer, D.Parkes
 - J.Brunelle, P.Hurst, J.Huth, J.Shank, S.Youssef
 - A.Sunderam

In the beginning...

Boston University	Harvard
Software environment computing, i.e. creating and manipulating software environments	Economic mechanism design; bidding systems, provenance & file systems, resource prediction

+ Collaboration on ATLAS, several years of experience with Globus-based Grids and BU's new ATLAS "Tier 2" center.

In the beginning...

Boston University	Harvard		
Software environment	Economic mechanism design;		
computing, i.e. creating and	bidding systems, provenance &		
manipulating software	file systems, resource		
environments	prediction		

But what do these have to do with each other? ... And how do they fit into the (over-)complicated world of grid computing?

Netlogger Alien VDT Ganglia Panda dCache Condor Resource PBS Chimera Pacman **GLOBUS Brokers** SRM Web services Gums **iVDGL ADA** LSF VDS EGEE **Dirac Capone** RLS VOMS OSG Glue Eowyn Dial gLite Clarens **PPDG** MonaLisa EDG Virtual LCG GridCat DISUN ACDC DRM **Machines** Classads

To begin, let's think about "Pacman" (S. Youssef, BU)

~ Various URLs with grid software

[Pacman is used by ATLAS (>1800 physicists, >150 labs, 34 countries), OSG, Virtual Data Kit (incl. Condor and Globus), TeraGrid,... >800,000 Pacman downloads (3/12/06), ~1000 new installations per day in 50+ countries, supported on 14 OS.]

But which path should E follow?

egg> lc

queue/ running/ history/ earnings/ access/

egg> lc -r

queue/

job2.eggshell

ATLAS.Higgs.HU.David:10@

running/

job1.eggshell

ATLAS.Higgs.HU.David:10@

results/

seeds higgs.aod athena.log error.log

earnings/

ATLAS.Higgs.BU.Saul.CANCELLED:10@

Harvard.EECS.Margo.Laura.CANCELLED:1@

access/

*.Saul

*.Margo.?

egg> put job1.eggshell ~David/mygrid

egg>

Microeconomics. All actions (installations, downloads, uploads, etc.) are put and gets. Made efficient by bidding mechanism. Simple + transparent to users.

Macroeconomics. Multiple currencies. Policy autonomy. Support for interoperation between grids. Simple + transparent to users.

Open + Extensible. E.g., IBM can develop own bidding agent for its compute servers.

Microeconomics. All actions (installations, downloads, uploads, etc.) are put and gets. Made efficient by bidding mechanism. Simple + transparent to users.

reverse auctions, role of Egg platform

Macroeconomics. Multiple currencies. Policy autonomy. Support for interoperation between grids. Simple + transparent to users.

currency, exchange rate, role of banks Open + Extensible. E.g., IBM can develop own bidding agent for its compute servers.

Novelty: Open mechanism design

- Open: unrealistic to propose a particular selling mechanism that all resource owners should use
- Dynamic, distributed, asynchronous
 - e.g., a single, centralized, forward combinatorial auction would not work
- Our solution: Egg platform places constraints on mechanisms (price tables, admissibility)

First: User Expressiveness

- Describe Job in Eggshell
 - executable files, input files, loops, etc.
 - maps to bundle **S** of resources
- Describe a "value schedule" $v_i(S, t_f)$.

Simplify for users via default schedules

Now to Open MD: Price Admissibility

admissible prices == user i faces a price, $p_i^t(S,t_f)$, in period t, for bundle S and completion by t_f that is: (a) independent of agent i (b) increases monotonically with $S' \supset S$ (c) increases monotonically with current time, t

A reverse auction with admissible prices, and in which agent i receives completion time t_f that maximizes $v_i(S,t_f)$ - $p_i^{\dagger}(S,t_f)$, is strategyproof.

 \Rightarrow Egg enforces monotonicity of prices wrt S and t through price tables; enforces maximal decision.

Price Tables

 $p_{i}^{\dagger}(S,t_{f})=p_{i}^{NET}(S_{net},t_{f})+p_{i}^{CPU}(S_{cpu},t_{f})+p_{i}^{DISK}(S_{disk},t_{f})$

Caches maintain entries in price tables (but, cannot reduce prices, & must retain monotonicity w/ size.) egg platform enforces this

• "Deadline 5hrs", estimated space is 2GB for 2 hrs.

Collate responses. Choose to allocate to best cache. Only pay if completed by estimated time.

• "Deadline 5hrs", estimated space is 2GB for 2 hrs.

• "Deadline 5hrs", estimated space is 2GB for 2 hrs.

Suppose (2G,6) is \$2. Better to over-report deadline?

• "Deadline 5hrs", estimated space is 2GB for 2 hrs.

Suppose time ticks forward, and price in (2G,+3) falls.

• "Deadline 5hrs", estimated space is 2GB for 2 hrs.

Delay "arrival." Payment \$10, not \$13.

Next steps: Micro

• Resource estimation via machine learning

- Statistical learning problem
- Learn $g: job \rightarrow R^k$
 - for k dimensions of local resources
- Each cache keeps local history
- Updates model (g)
- Consider linear-regression trees, SVMs, k-nearest neighbor...

Bidding strategy by caches

- Decision theoretic problem
- Maximize expected revenue subject to capacity constraints, price-table monotonicity constraints
- Consider model-based approach, w/ estimate of success for different prices

Microeconomics. All actions (installations, downloads, uploads, etc.) are put and gets. Made efficient by bidding mechanism. Simple + transparent to users.

reverse auctions, role of Egg platform

Macroeconomics. Multiple currencies. Policy autonomy. Support for interoperation between grids. Simple + transparent to users.

currency, exchange rate, role of banks Open + Extensible. E.g., IBM can develop own bidding agent for its compute servers.

Need for Policy Tools

- Large-scale collaborative science is often driven by organizations.
- Organizations want high-level control over resource access, priorities, etc.
- Policy requires control of currency [to print, allocate, tax, etc.]

 \Rightarrow need multiple currencies

(or tight integration, c.f. EU)

Motivating Scenario I: ATLAS project

- Create ATLAS bank and ATLAS eggs. Create accounts for research scientists. (Tier 2 at BU. Jim Shank comput. manager for ATLAS)
- Meeting of stakeholders: searching for Higgs boson over next month requires 70% global resources
- Print and allocate ATLAS currency to Higgs manager, who further delegates. Users retain control about which analysis jobs to run.

Motivating Scenario II: BU & Harvard

- Harvard and BU decide to share grid resources.
- Banks retain local currency. Exchange rate.
- HU caches annotated:
 - accept BU.* and HU.* currency
 - hard constraints on x% of BU jobs that can run
- BU caches similarly.
- Users at HU can use BU caches transparently. Maintain HU eggs. Exchange via BU bank.
- BU protected if HU decides to print a million HU eggs.

An Example of a Transaction

Harvard

(1) Rate established at 2 HU: 1 BU

ΒU

Exchange rates: Desirable Properties

- Facilitate cross-grid exchange
- Prevent abuse by autonomous economies
- Preserve value of currency used to pay for services

• Extensible: we provide first versions

Idea One: Based on 'Spending Power'

$$r_{bh} = \frac{c_h / q_h}{c_b / q_b} \qquad \begin{array}{c} c_i : \# \text{ currency} \\ q_i : \# \text{ resources} \\ x_b \cdot r_{bh} = x_h \end{array}$$

 \rightarrow need to instrument economies

 \rightarrow need to measure \mathbf{q}_i across different resources [use relative prices w/in an economy, combined with some numeraire good. (or gold standard economy). real world GDP doesn't help.]

Idea Two: Trading Agents

Simple trading agents Take positions in currency Set prices to equilibrate supply and demand Monitor positions. Swap out. Willingness to take a position should depend on stability of economy Lots of ideas hear from finance!

PPP: Test of Well-functioning system Purchasing Power Parity

- In the long run, prices should move toward rates that equalize the prices of an identical basket of goods across countries
- Requires: basket is traded across borders, no tariffs, constant profit margins, same productivity,...
 ?? ok for grids

The hamburger standard							
Big Mac prices		Implied	Actual dollar	Under (-)/over (+)			
	in local currency	in dollars	PPP* of the dollar	exchange rate April 22nd	valuation against the dollar, %		
United State:	s† \$2.71	2.71					
Argentina	Peso 4.10	1.43	1.51	2.88	-47		
Australia	A\$3.00	1.86	1.11	1.61	-31		
Brazil	Real 4.55	1.48	1.68	3.07	-45		
Britain	£1.99	3.14	1.36	1.58‡	+16		
Canada	C\$3.20	2.21	1.18	1.45	-18		
Chile	Peso 1,400	1.95	517	716	-28		
China	Yuan 9.90	1.20	3.65	8.28	-56		
Czech Rep	Koruna 56.57	1.96	20.9	28.9	-28		
Denmark	DKr27.75	4.10	10.2	6.78	+51		
Egypt	Pound 8.00	1.35	2.95	5.92	-50		
Euro area	€2.71	2.97	1.00§	§ 1.10§	+10		
Hong Kong	HK\$11.50	1.47	4.24	7.80	-46		
Hungary	Forint 490	2.18	181	224	-19		
Indonesia	Rupiah 16,100	1.84	5,941	8,740	-32		
Japan	¥262	2.19	96.7	120	-19		
Malavsia	M\$5.04	1.33	1.86	3,80	-51		

The Economist, April 2003

Conclusions

- Egg provides an extensible and economics-inspired grid computing platform
- Close-collaboration between CS, physics, economics
- Spawning many subprojects
 - statistical machine learning for resource prediction
 - open MD for sequential environments
 - opportunity-cost based schedulers
 - algorithms to compute exchange rates
 - languages for environment computing
- Extensible + Open:: Define and implement platform, first versions of various caches. Continual innovation (by anyone) will be supported and encouraged.

www.eecs.harvard.edu/econcs