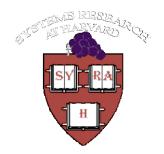


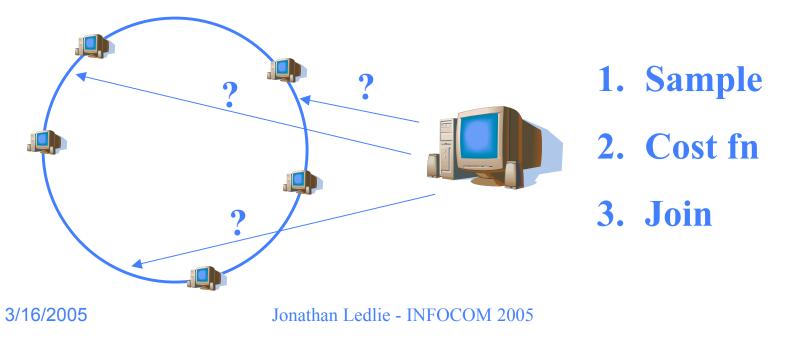
Distributed, Secure Load Balancing with Skew, Heterogeneity, and Churn

Jonathan Ledlie and Margo Seltzer INFOCOM 2005 - March 16, 2005

Motivation - Why balance DHTs?

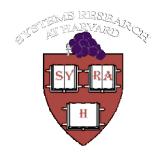

- Distributed hash tables (DHTs):
 - Becoming "off-the-shelf" distributed data structures
 - Was: backup storage; now: ALM, resource discovery
- DHTs must be versatile:
 - Handle variety of loads low msg loss
 - Allocate network capacity
 - Realistic network conditions
 - Reasonably secure
- Numerous load balancing proposals in literature
 - Unrealistic assumptions
 - Poor performance

Problematic Assumptions

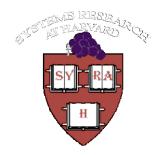

	Assumption	Reality
Physical Nodes	Uniform Capacity	Broad Heterogeneity
Workload	Uniform	Hotspots (Skew)
Membership	Stable	Lots of Churn
Security	Pick any ID	Malicious participants

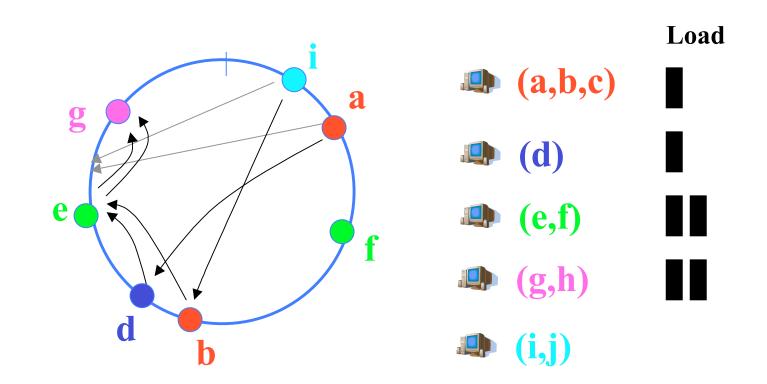
Current load balancing algorithms are insufficient

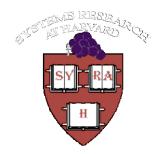
k-Choices Algorithm

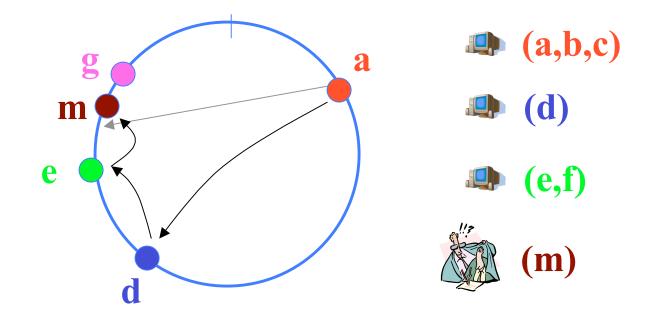

- Support variation in skew, node heterogeneity, and churn
- Make IDs verifiable

Talk Outline


- Overview
- Preliminaries
 - DHTs
 - Security
 - Network Characteristics
- k-Choices
- Prior Techniques
- Evaluation
- Conclusion


DHTs - Refresher

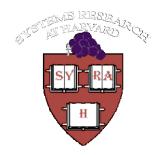

- Each node has one or more virtual servers (VSs).
- Each virtual server has an ID namespace (*e.g.*, (0,1], (0,2¹⁶⁰]).
- Msgs via O(log(N)) hops between any two VSs.



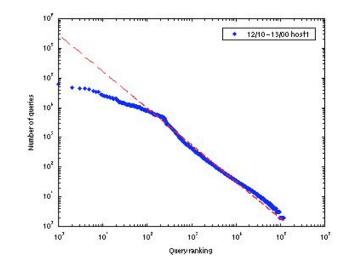
DHTs - Load

Sybil Attacks

Unsecured IDs->Take over portions of ring

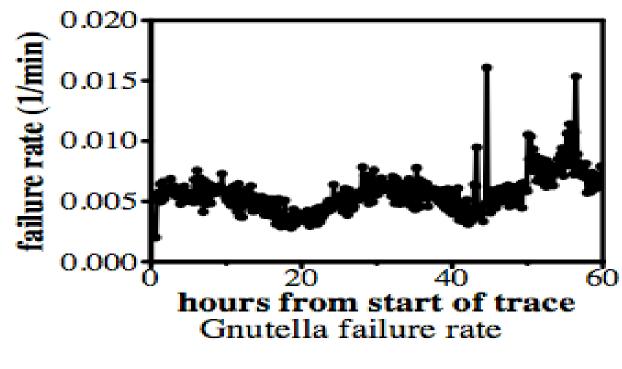

Sybil Attack - Solution

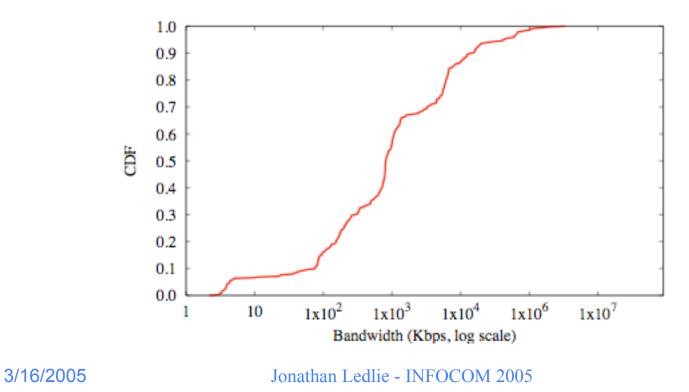
- Central authority certifies each ID [Castro02]
- k-Choices uses similar scheme to generate limited set of certified IDs.


Outline

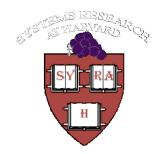
- Overview
- Preliminaries
 - DHTs
 - Security
 - Network Characteristics
- k-Choices
- Prior Techniques
- Evaluation
- Conclusion

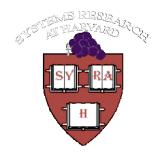
Characteristics - Skew


- Skew: hotspots popular content
- Typically Zipf popularity
- E.g., Gnutella queries (log-log scale):

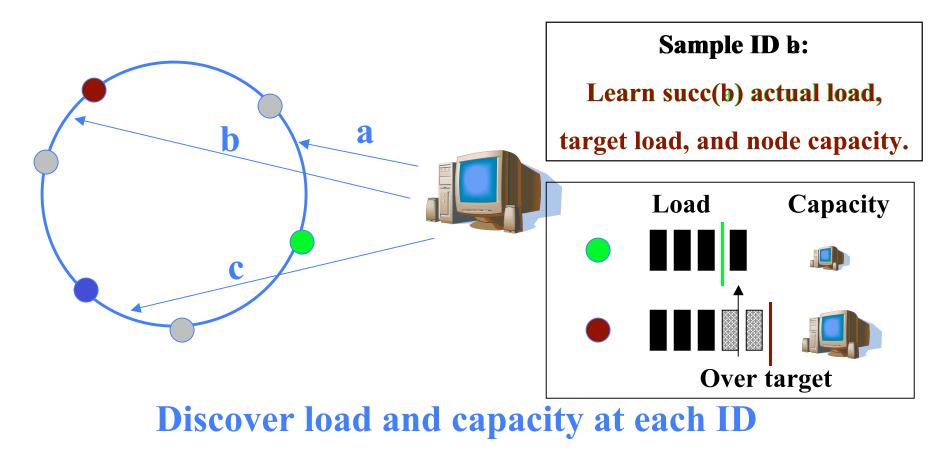

Characteristics - Churn

- Churn: pattern of participant join and departure.
- Pareto (memory-full) distribution (60 minute avg).


- Network bandwidths vary by five orders-of-magnitude.
- Routing capacity varies widely.

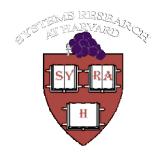

Outline

- Overview
- Preliminaries
 - DHTs
 - Security
 - Network Characteristics
- k-Choices
- Prior Techniques
- Evaluation
- Conclusion

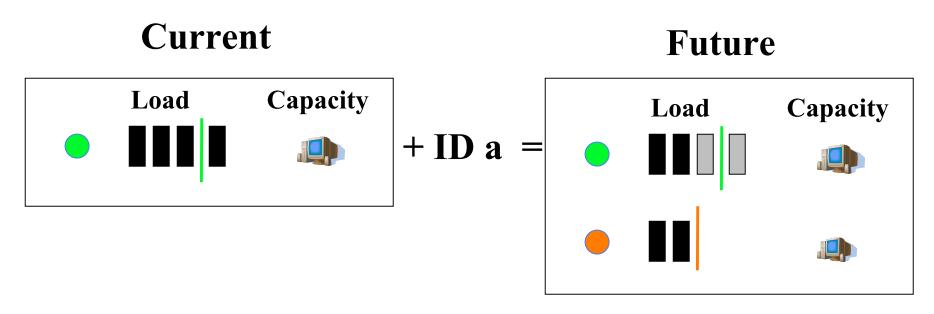


k-Choices - Steps

- 1. Probe
- 2. Evaluate Cost Function
- 3. Join

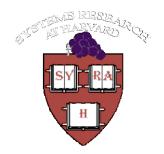


k-Choices - Sample

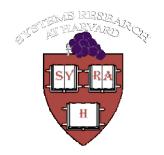


Jonathan Ledlie - INFOCOM 2005

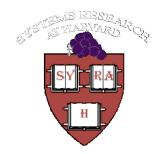
k=3


k-Choices - Cost Function

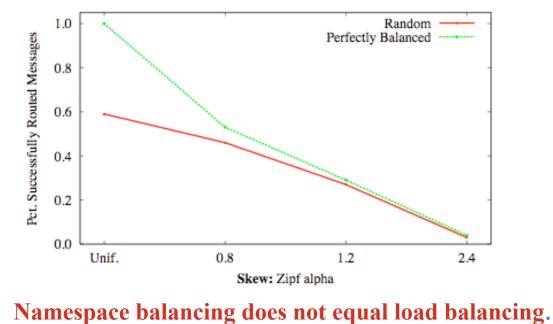
$\dots + ID b = \dots$


Choose ID that minimizes mismatch between target and load normalized by capacity.

3/16/2005


k-Choices - Properties

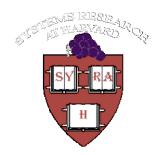
- Incorporates workload skew and node heterogeneity.
- Proactive load balancing join time
- Reactive load balancing reselect ID
- Verifiable IDs


Outline

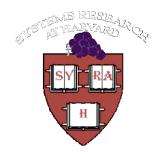

- Overview
- Preliminaries
- k-Choices
- Prior Techniques
 - log(N) virtual servers
 - Transfer
 - Proportion
 - Threshold
- Evaluation
- Conclusion

Prior Work - log(N) VS

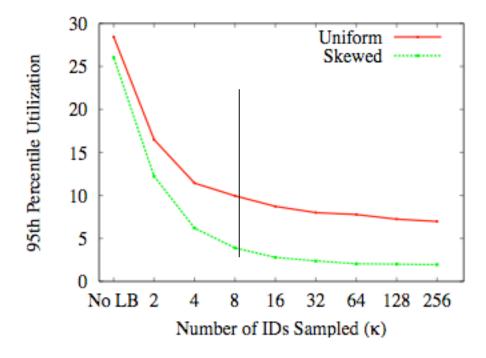
- Namespace balancing (e.g. [Karger97])
- Central Limit Theorem
 - Total namespace for each node approximately equal



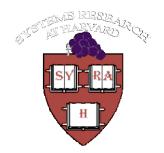
Prior Work - Transfer


- Overload:
 - a) >1 VS: attempt to transfer
 - b) 1 VS: split first, then transfer
- Pros: Simple, Good Performance
- Cons: Unsecure
 - Split to arbitrary ID (cut in half)
 - Transfer to anyone

[Rao03,Godfrey04]

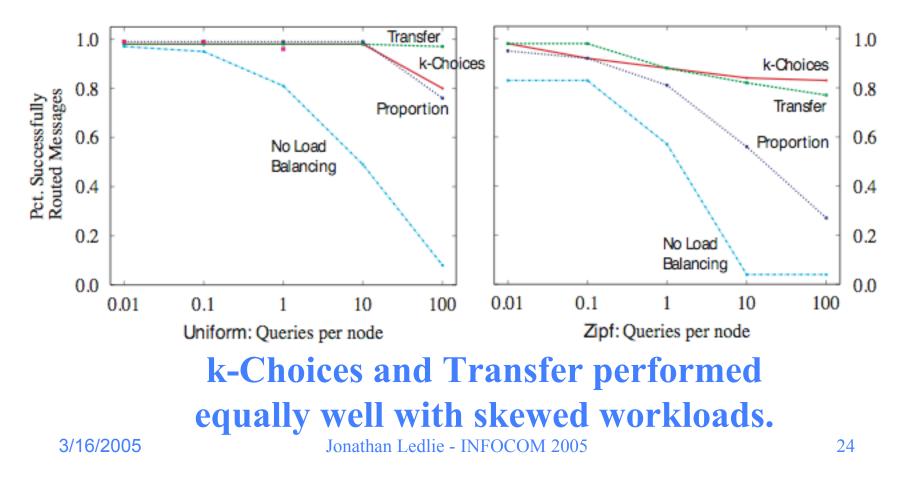

Evaluation

- Trace Driven Simulation
- Results
 - Determining k
 - Vary applied load
 - Vary churn
 - Vary skew
- Pastry Implementation
 - Throughput
 - Heterogeneous real node bandwidths (Emulab)



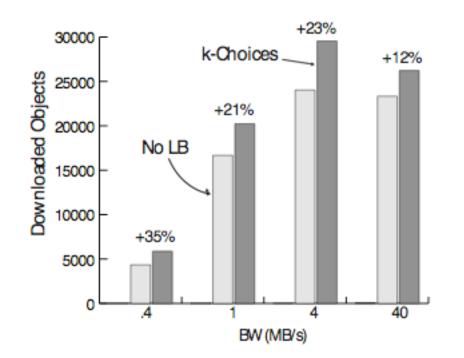
Results - Choosing k

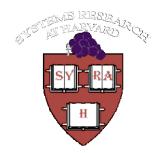
4k nodes, avg capacity=100 m/s, 60 min avg lifetime



k=8 sufficiently reduced utilization.

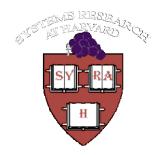
Results - Trace


5508 nodes; median capacity: 191 msgs/sec

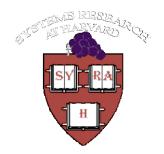


Results - Implementation

Pastry; "lookup+download"; 64x4 nodes - last mile limited

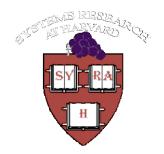


k-Choices: 20% throughput improvement


Conclusion

- k-Choices:
 - Approx. same performance as Transfer
 - Doesn't change security properties
 - Not the final word range queries
- Design for empirical system
 - Namespace balancing?
 - Skew, wide capacity distribution, churn
 - Security: Sybil attacks

Questions?


- Thanks!
- Contact:
 - Jonathan Ledlie
 - jonathan@eecs.harvard.edu

Prior Work - Threshold

- If our utilization has increased beyond threshold
 - Compare utilization to neighbors
 - Shift their IDs?
- Else
 - Compare to set of log(N) random VSs
 - Move best to be our new predecessor

[Ganesan04]

Prior Work - Proportion

- Overload: shed VSs
- Underload: create them
- Pros: No communication
- Cons:
 - Large number of VSs created
 - New lowest common denominator
 - Cascading deletes
- [Dabek01]