
Dealing with Disaster

Future Work
• Finish building VINO.

• Networking.

• Naming.

• Build applications that use extensions to
optimize performance.

• Interface design.
• What types of extensions actually get used?

• Revisit flexibility vs. performance trade-off.

E-mail: {chris,keith,margo,yaz}@eecs.harvard.edu

Web site: http://www.eecs.harvard.edu/~vino/vino
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Conclusions
• Possible to build extensible OS.

• Extensible OS is a good idea.

• Performance trade-off is critical.

• Applicable beyond field of operating
systems (e.g., to web browsers).
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Performance Summary
• 100–450µs total overhead.

• Not cheap.

• Negligible when savings is disk I/O.

• Untuned implementation.

• Not feasible for tiny performance improvement.
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Performance Overhead
Overhead in µs

RA VM Sched Encrypt

Begin 36 52 38 32

Commit 28 34 30 32

Abort 29 27 33 36

Lock 33 34 33 0

Graft 2 160 35 166

Indir 1 1 1 0

SFI 3 26 5 187

Total 103 307 142 417
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Sample Grafts
• Measured costs on sample extensions.

• VM Page eviction.

• Keep important pages in memory.

• File read ahead.

• Support non-sequential, but known access.

• Process scheduling.

• Allows group scheduling.

• Data encryption.

• Adds new functionality.

• Filter between user and file system.
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Performance
• Allowing extensibility has costs.

• Extra levels of indirection.

• Transaction overhead.

• Validation of return value(s).

• Cost of graft code.

• Software fault isolation.

• Abort cost.
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Transaction Implementation
• Extensions invoked through wrapper.

• Begin a transaction.

• Switch stacks.

• Calls extension.

• Commits transaction.

• State changes must be logged.
• State changes made by accessor methods.

• Accessor methods write log records.

• Log can be transient.

• Implemented as a call stack of undo functions.

• If extension fails, abort transaction.
• Jump to abort call stack.

• Return through each “undo” function.
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Transactions
• Why?

• Guarantee atomicity.

• Single mechanism to enforce consistency.

• Generally useful tool.

• Allows nested extension calls.

• How?
• Returns kernel to pre-extension state on failure.

• Ensures that other threads do not depend on interim
extension state.
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Handling Failure
• Remove extension from kernel.

• Undo changes to kernel state made by
extension.

• Free memory.

• Release locks.



Dealing with Disaster

Interface Abuse
• Misusing legal interface functions.

• Fail to release locks.

• Fail to free resources (e.g., memory).

• Operating system must detect these
problems.

• Time-out contested locks.

• Resource limits.

• Trade-off between interface flexibility
and potential for abuse.

• Disallow locks; require lock-do-unlock interface.

• Allow locks; support lock, do, ..., do, unlock interface.
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Protecting the Kernel
• Extension accesses forbidden memory.

• Software fault isolation (VINO).

• Safe language (e.g., Java, Modula-3 [SPIN]).

• Extension returns invalid data.
• Validate return values.

• Time-out long running extensions.

• Extension calls forbidden functions.
• Static check at download time.

• Software fault isolation checks indirect jumps.

• Check security—extensions have privileges of
application that installed them.
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Extensibility Challenges
• Three interfaces between extension and

kernel.

• All three interfaces can be abused.

Interface:  Kernel and extension share memory.

Problem:  Extension reads/writes private kernel
memory.

Interface:  Kernel calls extension.

Problem:  Extension returns invalid data (or doesn’t
return).

Interface:  Extension can call other kernel functions.

Problem:  Extension calls forbidden kernel
functions.
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VINO Implementation
• New kernel design and implementation.

• Use NetBSD device drivers and locore.

• Object-oriented design (C++).

• Design for per-method extensibility.
• Highly (overly?) modularized.

• Encapsulate every policy decision in a method.

• Two extension techniques:

Replace or extend methods.

Specify event handler.
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Extensibility in VINO
• Working assumptions

• The OS frequently does almost the correct thing.

• Often minor tweaks can fix major problems.

• Minimize effort to modify kernel behavior.

• Design principles
• Extensibility should be fine-grain (e.g., function call).

• Extensions should look just like kernel code.

• Extensions should be able to call kernel functions.
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Why Extensibility?
• Systems optimize for the common case.

• Some important cases are uncommon.

• Phenomenon appears in many places.
• Database servers.

• Download queries.

• Download new data types.

• Web browsers.

• Download applets.

• Operating systems.

• Download drivers.

• Download entire subsystems.

• Download minor modifications.
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Outline
• Why extensibility?

• Extensibility in VINO.

• Challenges in extensibility.

• Performance.
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