
Dealing with Disaster

Future Work
• Finish building VINO.

• Networking.

• Naming.

• Build applications that use extensions to
optimize performance.

• Interface design.
• What types of extensions actually get used?

• Revisit flexibility vs. performance trade-off.

E-mail: {chris,keith,margo,yaz}@eecs.harvard.edu

Web site: http://www.eecs.harvard.edu/~vino/vino

Dealing with Disaster

Conclusions
• Possible to build extensible OS.

• Extensible OS is a good idea.

• Performance trade-off is critical.

• Applicable beyond field of operating
systems (e.g., to web browsers).

Dealing with Disaster

Performance Summary
• 100–450µs total overhead.

• Not cheap.

• Negligible when savings is disk I/O.

• Untuned implementation.

• Not feasible for tiny performance improvement.

Dealing with Disaster

Performance Overhead
Overhead in µs

RA VM Sched Encrypt

Begin 36 52 38 32

Commit 28 34 30 32

Abort 29 27 33 36

Lock 33 34 33 0

Graft 2 160 35 166

Indir 1 1 1 0

SFI 3 26 5 187

Total 103 307 142 417

Dealing with Disaster

Sample Grafts
• Measured costs on sample extensions.

• VM Page eviction.

• Keep important pages in memory.

• File read ahead.

• Support non-sequential, but known access.

• Process scheduling.

• Allows group scheduling.

• Data encryption.

• Adds new functionality.

• Filter between user and file system.

D
ealing w

ith D
isaster

M
easuring P

erform
ance

Graft

Results checking

Transaction Begin

locks

N
o-S

F
I path

B
ase path

Default

V
IN

O
 path

N
ull path

Null graft

VINO kernel code

Transaction End

locks

policy

Transaction
abort

A
bort path

Dealing with Disaster

Performance
• Allowing extensibility has costs.

• Extra levels of indirection.

• Transaction overhead.

• Validation of return value(s).

• Cost of graft code.

• Software fault isolation.

• Abort cost.

Dealing with Disaster

Transaction Implementation
• Extensions invoked through wrapper.

• Begin a transaction.

• Switch stacks.

• Calls extension.

• Commits transaction.

• State changes must be logged.
• State changes made by accessor methods.

• Accessor methods write log records.

• Log can be transient.

• Implemented as a call stack of undo functions.

• If extension fails, abort transaction.
• Jump to abort call stack.

• Return through each “undo” function.

Dealing with Disaster

Transactions
• Why?

• Guarantee atomicity.

• Single mechanism to enforce consistency.

• Generally useful tool.

• Allows nested extension calls.

• How?
• Returns kernel to pre-extension state on failure.

• Ensures that other threads do not depend on interim
extension state.

Dealing with Disaster

Handling Failure
• Remove extension from kernel.

• Undo changes to kernel state made by
extension.

• Free memory.

• Release locks.

Dealing with Disaster

Interface Abuse
• Misusing legal interface functions.

• Fail to release locks.

• Fail to free resources (e.g., memory).

• Operating system must detect these
problems.

• Time-out contested locks.

• Resource limits.

• Trade-off between interface flexibility
and potential for abuse.

• Disallow locks; require lock-do-unlock interface.

• Allow locks; support lock, do, ..., do, unlock interface.

Dealing with Disaster

Protecting the Kernel
• Extension accesses forbidden memory.

• Software fault isolation (VINO).

• Safe language (e.g., Java, Modula-3 [SPIN]).

• Extension returns invalid data.
• Validate return values.

• Time-out long running extensions.

• Extension calls forbidden functions.
• Static check at download time.

• Software fault isolation checks indirect jumps.

• Check security—extensions have privileges of
application that installed them.

Dealing with Disaster

Extensibility Challenges
• Three interfaces between extension and

kernel.

• All three interfaces can be abused.

Interface: Kernel and extension share memory.

Problem: Extension reads/writes private kernel
memory.

Interface: Kernel calls extension.

Problem: Extension returns invalid data (or doesn’t
return).

Interface: Extension can call other kernel functions.

Problem: Extension calls forbidden kernel
functions.

Dealing with Disaster

VINO Implementation
• New kernel design and implementation.

• Use NetBSD device drivers and locore.

• Object-oriented design (C++).

• Design for per-method extensibility.
• Highly (overly?) modularized.

• Encapsulate every policy decision in a method.

• Two extension techniques:

Replace or extend methods.

Specify event handler.

Dealing with Disaster

Extensibility in VINO
• Working assumptions

• The OS frequently does almost the correct thing.

• Often minor tweaks can fix major problems.

• Minimize effort to modify kernel behavior.

• Design principles
• Extensibility should be fine-grain (e.g., function call).

• Extensions should look just like kernel code.

• Extensions should be able to call kernel functions.

Dealing with Disaster

Why Extensibility?
• Systems optimize for the common case.

• Some important cases are uncommon.

• Phenomenon appears in many places.
• Database servers.

• Download queries.

• Download new data types.

• Web browsers.

• Download applets.

• Operating systems.

• Download drivers.

• Download entire subsystems.

• Download minor modifications.

Dealing with Disaster

Outline
• Why extensibility?

• Extensibility in VINO.

• Challenges in extensibility.

• Performance.

Dealing with Disaster:
Surviving Misbehaving

Kernel Extensions

Margo Seltzer, Yasuhiro Endo, Chris Small,
and Keith Smith

Harvard University
Division of Engineering and Applied Sciences

October 31, 1996

EV IR

T A S

