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Abstract

The current trend in operating systems research is to
allow applications to dynamically extend the kernel to
improve application performance or extend function-
ality, but the most effective approach to extensibility
remains unclear. Some systems use safe languages to
permit code to be downloaded directly into the kernel;
other systems provide in-kernel interpreters to exe-
cute extension code; still others use software tech-
niques to ensure the safety of kernel extensions. The
key characteristics that distinguish these systems are
the philosophy behind extensibility and the technol-
ogy used to implement extensibility. This paper pre-
sents a taxonomy of the types of extensions that might
be desirable in an extensible operating system, evalu-
ates the performance cost of various extension tech-
nologies currently being employed, and compares the
cost of adding a kernel extension to the benefit of hav-
ing the extension in the kernel. Our results show that
compiled technologies (e.g. Modula-3 and software
fault isolation) are good candidates for implementing
general-purpose kernel extensions, but that the over-
head of interpreted languages is sufficiently high that
they are inappropriate for this use.

1 Introduction

The motivation that led to the emergence of microker-
nels in the early 80’s leads now to the emergence of
extensible operating systems. It is unreasonable to
expect any one system to possess all of the functions
needed by all applications. Rather, vendors of sophis-
ticated applications, which require application-spe-
cific operating system customization, sell these
extensions as well. These kernel extensions enable
new functionality, but they also introduce the possibil-
ity of compromising system reliability. If an applica-
tion consistently brings a system down, its additional
functionality is hardly worthwhile. Therefore, one of
the major challenges that arises in supporting easily

extensible operating systems is being able to do so in
a manner that does not compromise the reliability of
the underlying system.

Commercial systems have traditionally taken the
route of supporting dynamically loadable extensions
(e.g. device drivers, new subsystems, and new file
systems). This is a practical approach, but does not
address the reliability issue; it is assumed that it is
acceptable for the kernel to crash if the module has
bugs in it and if the module does not contain security
violations. This scenario makes sense when a small
group of trusted users are the only ones who can load
such extensions, but a general purpose facility must
be more robust. Several current research projects are
developing more general-purpose extensible systems
that provide reliability and security. The goal of this
paper is to describe the assortment of technologies
available and the types of extensions one might
envision, and then to assess the performance trade-
offs of the various choices.

In Section 2 we discuss several of the extensible
systems currently under development. Section 3
describes the different types of kernel extensions that
might be useful. Section 4 discusses the various
extension technologies, and section 5 introduces our
test cases and presents our performance results and
analysis.

2 Related Work

If one chooses to ignore the potential reliability
problems introduced by adding code to the kernel, the
no-overhead solution is to allow unprotected
patching. Microcomputer operating systems (e.g. MS-
DOS and the Macintosh OS) allow arbitrary code to
be patched into the kernel, providing no protection
from misbehaved applications. On the other hand,
because applications have complete control, it is
much easier to manipulate and extend the kernel to
provide for the needs of applications. It may be easier
to write a real-time system on a microcomputer
operating system than on a workstation operating
system because the kernel lacks multitasking and
protection.

The move towards safe extensible operating
systems is an evolutionary step on the path from
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limited (it has only 20 basic instructions). The
language would have to be augmented if it were to be
used for other applications.

Packet filters are used to demultiplex a stream of
network packets by examining the contents of each
packet header. Often, packet filters are implemented
in a simple interpreted language (e.g. [MOGUL87,
MCCAN93, YUHARA94]). A special language,
designed to efficiently describe packet headers, is
used to write packet filters. The performance of
interpreted packet filters is close to that of compiled
code, but, like HiPEC, the expressiveness is limited to
the specific domain.

Instead of starting with a minimal language and
extending it, the SPIN system [BERS95] is written in,
and uses as its extension language, Modula-3
[NELS91]. Modula-3 is a strongly-typed, garbage-
collected language, designed so that it is impossible
for a program to have a “dangling pointer” to deleted
data or to construct a pointer to an arbitrary memory
location. Because of the design of the language, code
in “safe” modules is not able to reach outside its
bounds and violate the integrity of the program in
which it is running.

The µChoices operating system [CAMP95]
proposes using “a simple flexible scripting language
similar to Tcl” to aggregate multiple kernel calls or
remove control traffic between user-level and kernel-
level. Although Tcl was not designed with this
application in mind, if extensions are relatively small,
the raw performance of the extension technology will
be of little or no consequence.

Extension technology is also useful outside the
kernel. Some database servers allow clients to load
query- or datatype-specific code into the server to
improve performance. The Thor database server uses
a typesafe language designed for writing extensions
[LISK95]; the Illustra database server is extended by
writing DataBlades, which add support for new data
types to the server [ILLU94]. The Illustra server does
not currently protect itself from misbehaved
DataBlade code, although Illustra is evaluating
software fault isolation techniques.

The HotJava Web browser from Sun
Microsystems can be extended with “applets” written
in Java, a Modula-3 like language with a C++ syntax
[GOSL95]. Java code is compiled to a machine-
independent byte-code that is downloaded by the
HotJava browser and interpreted or compiled into
native code on-the-fly. Like Modula-3, Java is
designed to reduce or eliminate dangling or stray
pointers and safety problems.

In this work, we examine the extension
technologies being proposed by these systems: unsafe

conventional monolithic kernels to microkernel
architectures. The Mach microkernel [ACCE86] was
designed to allow kernel functionality to be moved
out of the kernel address space into user-level external
servers in order to increase safety, robustness, and
flexibility. However, the expense of frequent upcalls
to user-level code motivated the current generation of
microkernel-based systems, which link server code
directly into the kernel address space [GUIL91]. The
CMU Bridge project follows this model, placing
servers in the kernel, but protects the kernel using
software fault isolation techniques such as
sandboxing [WAHBE93]. Measurements of
sandboxing have shown it to have a much lower
overhead than hardware protection mechanisms (on
the order of a few percent).

The Exokernel project [ENGL95] also strives to
reduce the number of user-kernel protection boundary
crossings, but it takes a different approach. Rather
than support safe downloading of code into the
kernel, it moves as much functionality as possible
from kernel to user-level. In this reductionist
approach to kernel design, kernel abstractions are
thought to be the reason that systems have poor
performance, hence they are removed from the kernel
and placed into the application. System abstractions
are available from user-level libraries, but
applications control which abstractions they use. The
kernel is left only with responsibility for controlling
access to physical devices. There is little or no reason
to extend the kernel; nearly all functionality is under
the control of the application.

Along with adding functionality, extensible
systems can provide applications with the ability to
override policy decisions. Cao et al. [CAO94]
motivate this sort of extension by examining the
performance improvement achieved by allowing an
application to control the buffer cache eviction policy.
Their system did not allow applications to add new
policy code to the kernel; rather, multiple policies
were compiled into the kernel and an application
chose among them. This work showed the benefit of
allowing applications to control policy; however, we
believe that it is not possible to determine (and
implement) all policies a priori; a more general
extensibility mechanism is required.

The HiPEC system [LEE94] is similar to, but
more flexible than, Cao’s system. HiPEC allows
applications to control VM caching policy using
programs written in a simple, assembler-like,
interpreted language designed specifically for the task
of managing a queue of VM pages. The performance
impact of executing a program in this language is low,
but the expressiveness of the HiPEC language is



C (the DOS approach), C in user-level servers (the
microkernel approach), software fault isolation,
Modula-3, Java, and Tcl. Our goal is to understand the
performance implications of the extension technology
choice.

3 Graft Taxonomy

We refer to a kernel extension as agraft and the pro-
cess of adding a graft to the running kernelgrafting1.
We have found three motivations for grafting code
into the operating system kernel:
• Policy: the application wants to control kernel

policy, e.g. how it manages the buffer cache, VM
cache, or process scheduling.

• Performance: the application wants to migrate
portions of itself into the kernel in order to improve
overall performance. This technique can save data
copies between kernel and user space (e.g. when
copying data from the disk to the network), and
upcalls into user space (e.g. to handle a mouse
event).

• Functionality: the application wants to add general
functionality to the kernel, e.g. support for access
control lists, automatically compressed files, or
new communication models.

Although there are an unlimited number of ways
in which a graft can be structured, we have identified
three basic structures into which the implementation
for most grafts will fall:Prioritization grafts,Stream
grafts, andBlack Box grafts.

3.1 Prioritization

There are numerous places in a kernel where one of a
set of entities is selected. Choosing a victim is the
central policy decision made by the virtual memory
system (which page to evict), the buffer cache man-
ager (which buffer to evict), and the process scheduler
(which process to schedule next). We call this aPrior-
itization policy decision, and a graft that replaces pri-
oritization policy code aPrioritization graft.

Normally, the VM system and the buffer cache
use a least-recently-used (LRU) policy (or a variant
thereof), although in some cases a different policy
works better. An application might know that each
block of a file will be read once, in order, and not read
again, in which case it makes sense to use a most-
recently-used (MRU) strategy for that file. As another
example, while processing a query, a database system

1. This is a (weak) pun on the name of our project, the
VINO kernel.

knows which blocks of the database will be needed
soon and which blocks are no longer needed.

The access pattern of a set of pages or file blocks
is often a good heuristic for deciding which pages or
blocks will be used in the near future, but it is not
infallible. For example, a garbage collector copies
live objects from partially filled pages with the goal of
decreasing fragmentation. After a collection, a page
from which live objects have been taken has been
accessed recently, but contains no useful data; on the
other hand, pages that are full of live data have not
been accessed recently. Using an LRU strategy, the
former will be retained in memory and the latter will
be evicted, which is the opposite of what is desired.

Process scheduling is another example of a
prioritization policy. At each scheduling point the
kernel has a list of candidates, and chooses one to run.
No scheduling algorithm is appropriate for all
application mixes; the demands of interactive
applications differ from those of applications with
real-time deadlines, and a scheduler optimized for one
class will not satisfy the other. Processes may wish to
be scheduled as a group; a client-server application
may not want the server to be scheduled unless there
is an outstanding client request, in which case it
should be scheduled ahead of any client.

In general, a Prioritization graft is one that is
presented with a list of options and must select the
item of highest priority. It uses some internally
defined weighting function to choose a candidate. The
weighting function may use just the information in the
list, or it may have access to some data from the
application (e.g. which blocks or pages will not be
needed again).

Our Prioritization graft benchmark models a VM
page eviction policy. We assume that the kernel
maintains a list of pages in LRU order; when it comes
time to evict a page, the kernel normally chooses the
page at the head of the LRU queue as its candidate. In
our model, instead of immediately evicting the
candidate, the kernel determines which process owns
the candidate page and allows the process to offer one
of its other resident pages for eviction. Our model
application keeps a “hot list” of pages that will be
needed in the near future. The goal of the page
eviction graft is to ensure that none of these pages are
evicted.

The page eviction graft receives a pointer to the
head of the LRU queue. The graft checks to see if the
candidate (the head of the queue) is on the
application’s hot list; if it is not, it accepts the kernel’s
candidate. If the candidate is on the hot list, the graft
searches through the queue for an acceptable page



that is not on the application’s hot list. This page is
returned to the kernel.

For this benchmark we model a TPC-B
transaction processing benchmark database
[TPCB90]. The database holds 1,000,000 records in a
four-level b-tree; the b-tree has approximately 400
internal pages (16MB) and 50,000 data pages (200
MB). The b-tree is 50% full, and has one root page,
four pages at the second level, 391 pages at the third
level, and approximately 50,000 pages at the fourth
level; each third-level page in the b-tree points to up
to 128 fourth level pages.

The server accesses the database by mapping it
into its virtual address space. When the server does a
non-keyed lookup, it traverses the b-tree in depth-first
order, starting from the root. When it reaches a third-
level page it knows which 128 fourth-level pages it
will access next, hence which of the memory mapped
pages of the database should not be paged out. During
such a search, it constructs a hot list of these 128
pages. If a page fault occurs during a search, our graft
is called with the LRU chain head, and it uses the hot
list to find an eviction candidate that is acceptable to
the application. As each page is processed, its entry is
removed from the hot list, so as the simulation runs,
the queue grows shorter. We presume that the kernel
keeps track of candidate pages and graft-proposed
alternates, as in Cao’s system [CAO94], to ensure that
an application does not manipulate the VM system to
gain more physical memory than it would receive
under the default strategy.

This test is not particularly compute-intensive.
Instead, it is sensitive to the overhead associated with
traversing a list of items. If the extension technology
requires extensive pointer checking, or does not
support traversal of linked lists, this test will highlight
it.

Because there are 50,000 data pages in the
database, there is a low probability that a page that the
application will need is already in the cache (roughly
64/50,000, or once every 781 times). However, if one
of the pages is in memory, we want to ensure that it is
not evicted. For the graft to be successful, the
overhead of checking on each eviction should be low
relative to the cost of evicting and then re-faulting a
page. Our test computes the break-even point,
showing how often the graft will need to save an
eviction in order to pay for its per-eviction cost.

3.2 Stream

Our second graft model is based on the idea of Unix
filters and pipes. Frequently, it is useful to apply a set

of filters to a data stream. For example, we might
want the kernel to transparently compress a file when
it is written and decompress it when it is read, or
automatically encrypt a file when written and decrypt
it when read by the appropriate user. For security
reasons we might want to compute a secure
checksum, orfingerprint, of an executable when it is
loaded, to verify that it has not been compromised by
a virus. Astream graft is such a filter. It consists of
filtering code that is inserted into a data stream,
normally between the storage system and application
level.

A journaling file system is one that accepts a
stream of I/O requests, saves a journal of the metadata
changes, and passes along the original requests. A
standard filesystem could be transformed into a
journaling filesystem by inserting into the request
stream a graft that journals the changes made to the
metadata.

The Stream Input-Output System of UNIX
[RITCH84] decomposed the character I/O system of
UNIX into a set of filters. Network and terminal
protocols were built up by linking filters into chains.
Characters read from (or sent to) a device were passed
to the first filter in the chain; each filter processed the
characters in its input queue and moved them on to
the next filter in the chain. This mechanism was used
not only to handle erase and kill processing, but also
to create pseudo-devices, such as virtual displays and
keyboards, to construct multiple virtual terminals
from a single terminal.

Another example of a stream graft is one that
takes a data source (e.g. the disk) and, rather than
modifying it on the way to application level, writes it
elsewhere (e.g. the network). Recent research into fast
path connections, such as thex-kernel work at
Arizona [DRUS93], the video server benchmark of
the SPIN operating system [BERS95], and Fall’s
work in decreasing I/O time through use of in-kernel
copying [FALL93] show that there is a substantial
performance gain from saving copies to and from
user-level. A stream graft that takes its input and
directs it to an output connection, perhaps after
transforming the data, could be used to build this type
of fast path connection.

Our representative stream graft is an
implementation of the MD5 Message-Digest
Algorithm [RFC1321], which produces a 128-bit
fingerprint of a file. The MD5 fingerprint is both
expensive to compute and computationally infeasible
to forge. MD5 is useful for ensuring that a file has not
been tampered with; a change to the contents of the
file will result in a change to the fingerprint. If the
fingerprint is kept separate from the file (say, on a



small amount of safe media, such as a read-only
floppy disk), a change to the file can be detected by
computing its MD5 fingerprint and comparing it to
the saved fingerprint.

Like many compression and encryption
algorithms, MD5 is stream-based. The algorithm
maintains a small amount of state as it processes the
data; unlike compression and encryption algorithms,
the data output is the same as the input; when the
algorithm completes, the graft can be queried for the
fingerprint, and the computed fingerprint can then be
compared to the saved fingerprint.

If the MD5 fingerprint can be computed as
quickly as data can be read from the disk, the time
spent in the MD5 code can be overlapped with I/O
activity. However, if it takes longer to compute a
fingerprint than it takes to read the data from the disk,
the overall processing time will increase. Our test
measures whether a graft written in a given
technology can keep up with the disk.

3.3 Black Box

The Black Box graft structure is more general than
that of a Prioritization or Stream graft. A Black Box
graft has some number of inputs, some state, and a
single output. We see it operating as a “black box”
function, normally producing a single output value.
For example, at the center of the code that implements
Access Control Lists is a small database that (at an
abstract level) accepts a triple containing a file access
request, a user ID, and a file ID, and responds “yes” or
“no.”

File system read-ahead code, which determines
how many (and which) blocks of a file to prefetch, is
another example of a “black box” function. If the
application knows ahead of time the order in which
blocks of a file will be read, the kernel can use this
information to make read-ahead decisions. In some
cases, an application will read a subset of the blocks
of a file in order, and then skip to another region of the
file. If the kernel uses heuristics (rather than
application knowledge) to choose a read-ahead policy,
it can not cope with arbitrary application behavior.
With the cooperation of the application, it can make
more appropriate read-ahead decisions.

A Logical Disk facility (LD) [DEJON93] sits
between the filesystem and the physical disk. The
filesystem reads and writes logical blocks, and the LD
maps the logical requests to locations on the physical
disk. The LD can be used to transparently replicate
data, by writing it in multiple places on the same disk
or multiple disks, and speed write performance, by

writing logically discontiguous blocks on a physically
contiguous region. A log-structured file system
[ROSE91] can be implemented using a logical disk
facility; the filesystem lays out blocks as its sees fit,
and the Logical Disk reorders and buffers writes to
improve write performance.

Our black box test application is a simple logical
disk facility that converts random writes to sequential
writes. It accepts block write requests, batches them
into physical segments, and maintains a mapping
from logical block numbers to physical block
numbers. If the savings in I/O time due to batching is
greater than the cost of translating logical block
numbers on each read/write, the graft is effective.

4 Extension Technologies

Each extension technology offers a different level of
safety and imposes a different level of trust. An exten-
sion written in an unsafe language (e.g. C) can read,
write, or jump to any location in the address space
(using pointer arithmetic); one written in a safe lan-
guage (e.g. Modula-3 or Java) is restricted to code
addresses exported to the extension. In either case, we
need a mechanism to ensure that extension code not
monopolize the CPU; we must be able to preempt an
extension that runs too long. This means that exten-
sion code should not be able to disable interrupts.

For an operating system extension, read
protection is important, even if it is not required for
reasons of data privacy. Because an extension running
in the kernel has access to memory mapped devices,
an extension can destructivelyread a device register.

Once safety is ensured, the performance of a
technology determines its suitability for different
applications. The overhead of a graft intended to
increase performance should not cause performance
to degrade.

We also need to make sure that an extension
technology is sufficiently expressive, so that it is
possible to implement the grafts we want to write. A
small, specialized language designed around a single
problem domain may perform better than a general-
purpose language, but will be difficult to reuse in
other domains.

The size of the runtime environment can have an
impact on overall performance. The runtime code size
of support environments ranges from tens of kilobytes
to several megabytes. If we require that the support
environment run in the kernel and remain resident,
any memory used by the environment is memory
unavailable for other uses.



The extension technologies we examine fall into
three basic trust models:hardware protection,
software protection, andinterpretation.

4.1 Hardware Protection

The simplest, and perhaps most dependable,
method for ensuring the safety of the kernel is to place
extensions outside the kernel’s address space in order
to take advantage of the protection offered by the
hardware. When the kernel wants to run an extension,
it upcalls into user-level code; when the code returns,
the kernel continues. Along with memory protection,
the kernel can time-slice the extension to ensure that it
does not monopolize the CPU. If the extension runs
too long, the kernel can abort it and carry on without
it.

The primary disadvantage of this model is that
there is a cost associated with an upcall; for small
extensions, this per-invocation overhead can be much
larger than the cost of running the extension.

4.2 Software Protection

Using software protection, we place extension code in
the same address space as the kernel, but restrict the
instructions that are evaluated by the extension. By
controlling the language (e.g. Modula-3), or the com-
piler, or by patching the binary code [WAHBE93], we
can control the instructions evaluated by the exten-
sion. This allows us to ensure that the extension does
not read or write outside its bounds, or jump to arbi-
trary kernel code. In addition, we can ensure that it
does not issue instructions that disable interrupts or
that initiate I/O operations.

Software protection can offer the highest
performance of the three options, but requires control
of, and trust in, the language translation tools used to
process the extension source. The security of the
kernel is a function of the correctness of the generated
code; if the translation tool can be coaxed into
generating unsafe code, the security of the kernel can
not be guaranteed. If, for example, under certain
circumstances the array bounds checking of a
compiler can be subverted, it may be possible to write
code that overwrites its stack and circumvents the
kernel’s security mechanisms.

Even assuming that the translation tools work
correctly, the kernel still needs to verify that code
loaded into the kernel was in fact processed by a
trusted language tool. This can be accomplished by
performing the translation at load time, or by marking
the code (say, with a cryptographic checksum) at the

time it is generated. The former technique requires a
high cost at extension load time; the latter implies that
we are able to embed a secret key of some sort in the
language tool and mark the generated code with this
key. Methods for generating cryptographic checksums
are well known; the social issues of key distribution
and management are outside the scope of this paper.

The goal ofsoftware fault isolation (SFI) is to
make it more efficient to ensure the validity of
memory references using software than by using
hardware. One type of SFI,sandboxing, ensures that
the high bits of a memory address match those of the
sandbox region assigned to the function or module. In
this way, a module can, at worst, overwrite its own
data with a stray pointer or jump to locations in its
own code. Sandboxing can be done at compile time or
performed as a post-processing phase on object files,
allowing separation of the sandboxing tools from the
compiler. At load time, a linear-time algorithm can be
used to guarantee that all memory references in a
piece of object code have been correctly sandboxed.

Omniware C++ [COLU95] is a commercial
system that includes a compiler that generates
machine independent code. A run-time system
translates the machine independent code into native
code with software fault isolation instructions and
links the code into the executable.

Many modern languages, such as Modula-3 and
ML, do not suffer the safety problems of C. In a
typesafe andpointer-safe language it is impossible to
construct a pointer to an arbitrary memory location, or
be left with a “dangling” pointer to deallocated
memory. If type casting is available, it is combined
with compile-time analysis or a runtime type check to
ensure that the cast is valid. Similarly, array bounds
are checked on access to ensure that a program does
not access memory outside the array.

Although the definition of a language may ensure
type and pointer safety, the language tools written to
compile and run the language may not correctly
implement the definition. It is infeasible (using
present technology) to verify the correctness of a
Modula-3 compiler; because of this, we can not be
sure that a compiler will not generate incorrect code.
(In fact, while running our VM Page Eviction
benchmark, we found a bug of this type in the
Modula-3 compiler.)

4.3 Interpretation

Instead of depending on the safety and security of
a compiler, we can create a virtual machine, an
interpreter, to run grafts. The source language (which



could be C, Modula-3, or anything else) would be
compiled to intermediate or machine code for a real or
virtual machine. The kernel would include an
interpreter to run the code, ensuring its safety. This
model allows complete control over the behavior of
the extension by implementing only safe operations in
the interpreter.

The intermediate code could also be used as the
input to a runtime code generator. A reasonably fast
interpreter runs 10 to 100 times more slowly than
compiled code [MAY87]; however, using incremental
code generation techniques, performance can
approach that of compiled code [HOLZE94]. (Note
that there is a flexible line between generating native
code at load time – as above – and dynamically
generating native code from interpreted code.)

Java is compiled to a compact byte code for the
Java Virtual Machine. As interpreters go, the Java
interpreter is fairly fast. In addition, Sun plans to
release a runtime code generator for Java in the near
future. The authors of Java expect that compiled Java
will run at about the same speed as compiled C or
C++ ([GOSL95], p. 48), which, based on current
technology, is believable.

The currently available Java system is Alpha-
release software. Versions for Sparc/Solaris and
Windows are available from Sun (on java.sun.com);
Java has been ported to HP-UX and UnixWare (by
OSF) and Linux (found on java.blackdown.org).

Another technique for building an interpreted
language is not to transform the source to an
intermediate format, but rather to interpret it directly.
This technique, used inawk, sh, andTcl, leads to a
smaller start-up time, with a higher overhead per
statement. Because source-interpreted scripting
languages are immensely popular, and have been
proposed as a vehicle for writing grafts [CAMP95],
we include Tcl as one of our tested technologies.

5 Performance Analysis

Given the wide range of extension technologies avail-
able, it is not obvious which is “best” in any dimen-
sion. In fact, extensible systems are being built that
employ nearly every technology described. In this
section, we measure and analyze the performance of
our sample extensions.

5.1 Hardware

We ran tests on four hardware platforms: three com-
mercial workstations and one Intel x86 “PC”.
• Alpha: DEC AlphaStation 400 4/233 (233MHz),

running DEC OSF/1 v3.2A, 64MB of memory.

• HP-UX: HP PA-RISC 9000/735 (99MHz), running
HP-UX A.09.03, 80MB of memory.

• Linux: “PC”-class Pentium (90MHz), running
Linux 1.1.95, 16MB of memory.

• Solaris: Sun SPARCStation 20 (75MHz), running
SunOS 5.4, 128MB of memory.

5.2 Extension Technologies

We implemented our grafts on five different extension
technologies. Not all tests were run on all platforms;
for example, the current release of the Omniware
compiler runs only on Solaris.
• C: compiled withgcc -O (version 2.6.3 on HP-

UX, 2.7.0 on all other platforms).
• Java: release Alpha 3.
• Modula-3: version 3.5.3 of DEC SRC Modula-3.
• Omniware: compiled with Colusa’s omniC++

compiler, version 1.0 beta, release 1.5. (This
commercially available compiler generates
machine-independent code that is translated to
native, fault-isolated code at runtime. This pre-
release version of the compiler supports write and
jump protection, but no read protection, and does
not include an optimizer for the SFI instructions.)

• Tcl: Tcl version 3.7.

5.3 Upcall Overhead

As a baseline for comparison, we implemented each
benchmark in C. Since C is not a safe language, we
estimated the cost of implementing the benchmark as
a user-level server by determining the break-even
point as a function of the time required to upcall to
such a server; if an upcall is free (takes no time), the
performance of a system written using user-level
servers is equal to that of one with unsafe C linked
into the kernel. As the cost of an upcall increases, the
performance of a system written using user-level
servers will decrease.

When the kernel makes an upcall to a user-level
server, it pushes a new call frame on the server’s stack
and switches to the server. When the server is done
handling the upcall, it returns to the kernel. This
process is similar to (but simpler than) the one
followed by the kernel when it posts a signal to a
process. First, the kernel pushes a call frame for the
signal handler on the application’s stack, then
schedules the application process. When the process
returns from the signal handler, it re-enters the kernel.
The kernel cleans up the state of the process and
returns it to the point where the signal was handled.



To give a feeling for the cost of an upcall on each
platform, we measured the time required to handle a
signal sent to a process. The test program forks a child
process, which registers handlers for a group of
twenty signals and then suspends itself (by sending
itself SIGTSTP). When the parent is notified that the
child is suspended, it posts the handled signals to the
child, then wakes it (by sending itSIGCONT). The
child awakes, handles the signals, and suspends itself
again. When the parent is notified that the child has
once again been suspended, it knows that all signals
have been handled.

We then measured the time to post the signals to
the child when the child ignores (rather than handles)
the group of signals. The latter time is subtracted from
the former; the result is divided by the number of
signals handled, which gives an estimate of the time
required to handle a single signal. The results of this
test are shown in Table 1.

We implemented and measured the performance
of a simple upcall mechanism on BSD/OS 2.0. On a
486-DX266 we measured a signal handling time of
63.1µ, and an upcall time of 37.2µs (about 40%
quicker).

These upcall estimates are fairly conservative.
Work done to improve exception handling times
([THEK94]) and cross-domain procedure calls
([Ford94]) lead us to believe that it is feasible to
implement an upcall mechanism that takes less than
one fourth the time we measured for signal delivery.

5.4 VM Page Eviction

As described in Section 3.1, our sample Prioritization
graft takes the LRU-ordered list of page eviction can-
didates and returns a candidate not on its hot list.

We assume that the application keeps the hot list
(of active pages) in its memory at a known location,
so that it is accessible to the graft. In addition, we

Platform Signal Handling Time

Alpha 19.5µs(7.5%)

HP-UX 25.8µs(1.4%)

Linux 55.9µs(0.1%)

Solaris 40.3µs(3.8%)

Table 1. Signal Handling Time We measure the time
required to send twenty signals to a child process that
handled the signals, then subtract the time required to send
twenty signals to a child process that ignores the signals.
The difference is divided by the number of signals to give a
per-signal handling time. Each time is the mean of thirty
runs of 1000 iterations each (standard deviations in
parenthesis).

assume that the application keeps the hot list in a form
that can be easily traversed by the graft; for example,
the C graft searches a linked list of structs, where the
Modula-3 graft searches a linked list of Modula-3
RECORDs.

In our model application, the hot list starts out
with 128 entries (the number of data pages referenced
by a level-three internal page), and as each page is
faulted, it removes that page from the hotlist. On
average, the hotlist contains 64 pages, which is the
number we simulate.

We determined the time to check the 64 element
hotlist in each of the supported technologies, and
present that time in Table 2. To give an intuitive
feeling for the performance of each technology, we
also normalized the time relative to unsafe C code.

To determine the break-even point for this graft,
we measured the page fault time on each of our test
platforms (Table 3). The times listed indicate how
long it takes to handle a page fault event, not how
long it takes to bring in a single faulted page; Alpha
and HP-UX bring in multiple disk pages on each
fault.2 We assume that the systems are performing
read-ahead in order to take advantage of (expected)
locality of reference. However, our model database
server would not be able to take advantage of this
behavior, as the faulted data pages are scattered
throughout the database.

(The page fault read-ahead policy exhibited here
is an obvious candidate for grafting; if we are able to
control how many pages the system brought in on a
fault, we can reduce the per-fault time.)

Once we have computed the page fault time, we
can determine the break-even point for this graft. We
divide the page fault time by the time required to run
the graft; the result is the number of times we can run
the graft for each page eviction saved and still be
ahead of the game.

Remember that our model application would find
a page to save, on average, once ever 781 invocations.
If the break-even point is less than this, our model
application would not benefit from this graft. Worse
yet, if the number is less than one, the amount of time
to run the graft is greater than the page fault time,
hence under no circumstances would the graft be
beneficial.

In Table 2 we see that on Solaris the relative
times of Omniware and Modula-3 are quite close,
each running about 40% slower than unprotected C.

2. The number of pages faulted was determined by
running the page fault test on an otherwise unloaded
system while watching the output of iostat or vmstat.



Platform C Java Modula-3 Omniware

raw 2.9µs(0.2%) 3.2µs(1.5%)

Alpha normalized 1.0 N.A. 1.1 N.A.

break-even 8655 7843

raw 6.0µs(0.4%) 159µs(0.8%) 6.8µs(1.7%)

HP-UX normalized 1.0 26.5 1.1 N.A.

break-even 2983 113 2632

raw 3.7µs(0.1%) 237µs(0.1%) 9.1µs(0.1%)

Linux normalized 1.0 64 2.5 N.A.

break-even 1270 20 516

raw 4.5µs(0.1%) 141µs(0.3%) 6.3µs(2.8%) 6.3µs(0.2%)

Solaris normalized 1.0 31.3 1.4 1.4

break-even 1533 49 1095 1095

Table 2.VM Page Eviction Test We measure the mean time required to search a 64 element “hot list” of page numbers. Raw times
and time normalized to unprotected C code (on the same platform) are given. The break-even point is the number of times the graft
can run in the time it takes handle a page fault. Each time is the mean of 30 runs of 100,000 searches each (standard deviations in
parenthesis).

(Remember, however, that this version of Omniware
does not include read protection, which gives it a
performance advantage over Modula-3.) On Alpha
and HP-UX the Modula-3 code runs 10% slower than
the C code, which is not a significant difference for
this test.

On Linux, we see a 150% slowdown for Modula-
3, a greater difference than we see on other platforms
and with other tests. Examining the code generated by
the Modula-3 compiler, we found that it includes a
runtime check against NIL (location zero) on each
pointer access. The code generated on the other
platforms (Solaris, Alpha, and HP-UX) does not
include explicit NIL checks. The Modula-3 language
specification [NELS91, p. 50] states that
dereferencing NIL should cause a runtime error; on
Solaris and Alpha, dereferencing location zero causes
a segmentation violation, which is trapped by the
Modula-3 runtime system. This is not the case on
Linux, so the runtime check is needed. (We found that

Platform Fault Time Num Pages

Alpha 25.1ms(5.0%) 16

HP-UX 17.9ms(0.8%) 4

Linux 4.7ms(0.5%) 1

Solaris 6.9ms(3.2%) 1

Table 3. Page Fault Time Measured usinglmbench
(standard deviations in parenthesis). Alpha and HP-UX
bring in more than one disk page on a fault, performing
read-ahead, even though the test performs random accesses
to memory.

although no runtime checks are generated by the HP-
UX version of the Modula-3 compiler, dereferencing
location zero does not cause a segmentation violation.
This appears to be a bug in the Modula-3 compiler.)

For our purposes (i.e., operating system
extensions), the Alpha and Solaris slowdowns are the
more appropriate comparison – because we can
ensure that dereferencing location zero causes a fault,
we would not need runtime NIL checks. (This fault
would not be handled by a signal mechanism in the
kernel, but would instead require some support by the
normal kernel fault logic.)

On Solaris, the Java code runs at about 1/30th the
speed of compiled C code, and about 1/20 of Modula-
3. On this platform we see that the break-even point
for Modula-3 is about 1100 pages; for Java, the break-
even point is about 50 pages, too low to benefit our
model application.

To compare these results to the overhead of
performing an upcall on each eviction, we computed
the break-even point as a function of upcall time,
allowing the upcall time to range from 0 to 50µs (see
Figure 1). When compared with the break-even points
for Modula-3 and Omniware, we find that we would
need an upcall time on the order of 5µs for upcalls to
compete with the compiled extension technologies,
which would be difficult to achieve.

Unsurprisingly, we found that Tcl is not the
appropriate tool for this job. Measurements of Tcl
showed that it was four orders of magnitude slower
than the compiled languages (C and Modula-3),
taking 40ms on Solaris, as compared with the C
version, which took 4.5µs. With a break-even point
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close to or less than one (i.e. the Tcl code would have
to save a page each time it was called in order to not
degrade performance), Tcl is not competitive here
with the other technologies.

5.5 MD5 Fingerprinting

We took the standard C implementation of the MD5
algorithm (found in RFC1321) and modified or reim-
plemented it for each of our test platforms. The MD5
algorithm makes heavy use of array access and
unsigned 32-bit arithmetic. The standard implementa-
tion takes advantage of C’s behavior of silently ignor-
ing numeric overflow by performing computation
modulo 232. The code worked correctly in C on all
platforms, and was easily translated into Java and
Modula-3.

This test is very compute intensive. It uses almost
none of the support facilities of the extension
technology (e.g. no data types other than array), but
instead gives an indication of the cost of performing
array access and numerical computation. The results
are shown in Table 5.

Because the cost of computing the fingerprint is
so high, the cost of an upcall is comparatively low. If
we assume that there would be one upcall to the user-
level extension for every 64KB read from disk, we
would need to add the cost of 1MB/64KB = 16
upcalls. Assuming a (pessimistic) upcall time of 50µs,
this would add 8ms to the raw C time, which is not

significant when added to compute times of 150ms to
800ms.

To compute a break-even point, we measured the
write bandwidth of the disk on each system (Table 4).
This measurement was used to estimate the time
required to read 1MB of data. If the time needed to
compute the checksum of 1MB of data is less than
that required to read the data from the disk,
computation can time can be hidden by I/O time.
(This optimistically assumes that the disk read
requires no CPU cycles, and is a best-case break-even
calculation.)

The Omniware code is faster than the Modula-3
code, but slower than compiled C. To see if the size of
the test was affecting the results, we ran a larger test
(64MB) and saw a similar overhead (14480ms for
Omniware vs. 9498ms for C, an overhead of 50%).
We believe that this overhead is representative of this
implementation of Omniware for MD5. (Once again,

Platform Bandwidth
(KB/s)

1MB access
time

Alpha 4364(1.2%) 235ms

HP-UX 1855(13%) 552ms

Linux 1694(5.7%) 604ms

Solaris 3126(11%) 320ms

Table 4. Disk I/O Time Write bandwidth in KB/s on each
platform, measured usinglmbench. From this, the time to
access 1MB of data is computed. Each time is the mean of
30 runs (standard deviations in parenthesis).



Platform C Java Modula-3 Omniware

raw 159ms(1.8%) 207ms(0.4%)

Alpha normalized 1.0 N.A. 1.3 N.A.

MD5/disk 0.67 0.9

raw 239ms(1.6%) 23987ms(2.5%) 352ms(0.3%)

HP-UX normalized 1.0 100 1.5 N.A.

MD5/disk 0.43 43 0.64

raw 202ms(0.3%) 22887ms(1.0%) 387ms(0.1%)

Linux normalized 1.0 113 1.9 N.A.

MD5/disk 0.33 38 0.64

raw 146ms(1.7%) 10368ms(0.3%) 294ms(0.1%) 219ms(0%)

Solaris normalized 1.0 71 2.0 1.5

MD5/disk 0.46 32 0.92 0.68

Table 5. MD5 Fingerprinting Mean time required to compute the MD5 fingerprint of 1MB of data. The time is compared to the
time needed to read 1MB from the disk. If this number is less than one, the computation of the fingerprint can be overlapped with
I/O. If it is greater than one, computing the fingerprint will decrease throughput. The mean of 30 runs is reported (standard
deviations in parenthesis).

this version of Omniware does not include read
protection, which gives it a performance advantage
over Modula-3.)

Unlike C, Modula-3 does not ignore arithmetic
overflow. The Word package supports computation
modulo the native wordsize, so on the 32-bit
platforms (HP-UX, Linux, and Solaris) we were able
to implement MD5 efficiently. On the 64-bit Alpha,
the Word package performs computation modulo 264,
which produces incorrect results for MD5. We
implemented two versions of MD5 on Alpha: one
uses 64-bit integers and the Word package, doing
roughly the same amount of work as the 32-bit
implementations (but computing an incorrect
checksum), and the other using 32-bit integers, which
produces the correct checksum, but generates more
instructions (by a factor of four). For our performance
measurements we used the 64-bit version, which
gives a more accurate comparison of the relative
performance of the technologies. We found that the
32-bit version took approximately ten times as long to
run as the 64-bit version. (We see this as an artifact of
the compiler implementation, and not a characteristic
of the Alpha processor or of Modula-3.)

The Modula-3 code runs from 1/2 to 3/4 the
speed of compiled C. There is no reason for the
numerical computation to be slower; we attribute the
difference to run-time array bounds checking. On all
platforms, the time required to compute the
fingerprint was less than the time to read the data from
the disk, so a Modula-3 implementation of MD5
could keep up with disk access and overlap its
computation with I/O time.

On the other hand, we found that neither Java nor
Tcl were able to keep up with the disk. The Java code,
at best 1/30th disk speed, seems unlikely to be used
for this application. And, as above, we found that our
Tcl implementation was four orders of magnitude
slower than one written in a compiled language, and
hence too slow for this type of graft. (On Solaris it
took 50 minutes to complete, as compared with 1.9
seconds for the C code.)

5.6 Logical Disk

Our simulation models a logical disk designed to sup-
port a log-structured layer between a filesystem and
the physical disk. The simulation accepts write
requests for logical blocks and maintains the mapping
between these logical blocks and the physical blocks
onto which they are stored. As with the system imple-
mented by de Jonge et al. [DEJON93], our simulation
maintains all data structures in main memory.

We simulate a 1GB physical disk with 4KB
blocks and 64KB (16 block) segments. Our
simulation uses a stream of block write requests that
are skewed so that 80% of the requests are for 20% of
the blocks. Because our simulation does not include a
cleaner, we run it for 262144 iterations (the number of
blocks on the disk).

We measured the absolute time required to
maintain the mapping between logical and physical
blocks for the entire run. To justify using this graft, it
must save more time than it takes: the overhead
incurred per write should be less than the time saved



Platform C Java Modula-3 Omniware

raw 0.74s(1.9%) 1.3s(2.0%)

Alpha normalized 1.0 N.A. 1.75 N.A.

per block 2.8µs 5.0µs

raw 1.3s(1.3%) 32.2s(0.6%) 2.1s(0.7%)

HP-UX normalized 1.0 25 1.6 N.A.

per block 5.0µs 123µs 8.0µs

raw 1.3s(0.8%) 46.5s(0.1%) 1.7s(0.9%)

Linux normalized 1.0 36 1.3 N.A.

per block 5.0µs 177µs 6.6µs

raw 1.9s(0.2%) 24.6s(0.4%) 2.9s(0.4%) 2.2s(0.1%)

Solaris normalized 1.0 13 1.5 1.16

per block 7.2µs 94µs 11.1µs 8.4µs

Table 6. Logical Disk Time to handle bookkeeping for 262,144 writes to a Logical Disk. The time is normalized to compiled C
code. The per-block overhead is how much time must be saved on each write in order for the graft to break even. The mean of 30
runs is reported (standard deviations in parenthesis).

by batching writes into segments. We found that the
compiled technologies (Omniware and Modula-3)
add a sub-10µs overhead per write, which is on the
order of 1% of a typical disk seek time.

The Java overhead is on the order of 100µs,
roughly 10% of a typical seek, so we would need to
save one seek for every ten blocks written. This is not
an unreasonable assumption to make; interpreted Java
would work for this task. (Because of performance of
Tcl on the first two tests, we did not take Tcl
measurements for this test.)

When looking at a user-level server for managing
the mapping, we assume that there is one upcall on
each block write, with a upcall estimate of 10µs. This
would double the overhead per write, but still keep it
substantially lower than that of interpreted Java. The
performance of a user-level server for this task would
be relatively close to that of compiled code.

6 Conclusions

We believe that our taxonomy of grafts and of graft
architectures encompasses a significant share of the
operating system extension space. Our sample grafts
(VM page eviction, MD5 fingerprinting, and Logical
Disk) are equivalent in structure and performance
characteristics to the policy, performance, and func-
tionality grafts we envision. Given the performance of
these representative grafts, we are able to determine
what kinds of extensions are worth building.

The anecdotal evidence has been that structuring
a system with fine-grained user-level extensions and
upcalls is not feasible; our VM page eviction test

supports this position. On the other hand, the coarse-
grained and computationally expensive MD5 test
shows that there are some situations where this
overhead does not matter, and the Logical Disk
simulation shows that upcalls can be successfully
hidden in the face of a large number of I/O operations.

Given that we want both safety and performance,
a compiled technology such as Modula-3 or SFI is our
best choice. Because Modula-3 is unfamiliar to many
developers, it may be that a hybrid language with the
syntax of C or C++ but the safety of Modula-3 would
be more widely accepted. The two compelling
candidates are compiled Java and SFI with full (read,
write, and jump) protection. Neither is available
today, but both are currently under development. In
the near future we will be able to measure their
performance and compare them directly.

In their current state, neither of the interpreted
technologies are up to the task. While Tcl and Java are
well suited for interactive applications, where the
relevant metric is human perceptual time, they are not
suitable for building kernel extensions because
system events occur at a finer timing granularity.

7 Status and Availability

All code is available on the World Wide Web, at
http://www.eecs.harvard.edu/~chris.
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