
Lex Stein, Microsoft Research Asia
David Holland, Harvard University
Margo Seltzer, Harvard University

Zheng Zhang, Microsoft Research Asia

Can a file system virtualize
processors?

2DesyncFS – Lex Stein

A mystery: what is happening to José's
program?

100%

month0 16 3232

75% 70% 42%

22

utilization

6
10

12

ideal

realized

throughput

3DesyncFS – Lex Stein

Let's look at the program

● An iterative solution to the 1D wave equation:

● The slow processors are holding the fast processors
back

A(i,t+1) = (2.0 * A(i,t)) - A(i,t-1)
 + (c * (A(i-1,t) - (2.0 * A(i,t)) + A(i+1,t)))

1 2 3 4

4DesyncFS – Lex Stein

The problem: ungraceful degradation

processor heterogeneity + synchronization = performance cliff

0 20 40 60 80 100

1

2

0

slow processors (%)

throughput

synchronous

5DesyncFS – Lex Stein

Abstracting away processor heterogeneity

How can we write and run programs to:
● use heterogeneous processors efficiently?
● without knowing the details of the machine?

write: a programming model
run: a runtime system

Desynchronizing
File System
(DesyncFS)

6DesyncFS – Lex Stein

Return to the wave equation

What if we designed a system that?
– Allows the fast to charge ahead
– Actively moves data from the fast to the

slow
– Transparently adjusts partitions to shift

work from the slow

1 2 3 4

7DesyncFS – Lex Stein

Design: data and execution

1. Data model: how is application data structured?

2. Execution model: how is data computed?

8DesyncFS – Lex Stein

● A block is an application data container of a fixed number
of bytes. Blocks can have any size, including zero

● A file is an N-dimensional, block addressable space. N > 3,
1 dimension for file ID, 1 for versions, and at least 1 for
data
– Example: a 5D file containing 3D data:

– An example block address:
● A chunk is a contiguous n-dimensional rectangular set of

blocks
– An example chunk:
– This chunk has 3 * 2 * 4 * 2 = 48 blocks, 3 versions, and

2 * 4 * 2 = 16 blocks per version

Design: DesyncFS data model

([0] [0 1000] [0 3] [0 3] [0 3])

versions datafile ID

([0] [100] [1] [3] [2])

([0] [98 100] [0 1] [0 3] [1 2])

9DesyncFS – Lex Stein

Chunk has region:

Chunk has region:

Chunk has region:

Design: DesyncFS data model (diagram)

0

1

3

0

2

Y

1 2

([1] [0 3] [0 2])
This file (ID 1) is described by:

Block Y has address:

([1] [0 3] [0])

([1] [0 3] [1 2])

([1] [1] [2])

([1] [2] [0 2])

block IDs

versions

an example 3D file with file ID == 1

Block Y has version 1

Chunk is a special kind of chunk,
a version slice of file 1 at 2

10DesyncFS – Lex Stein

1. Data model: how is application data structured?

2. Execution model: how is data computed?

Design: data and execution

11DesyncFS – Lex Stein

Design: DesyncFS execution model

● An application defines a compute function:

● This function is stateless. All state is stored in blocks
● Blocks are immutable
● Computation is achieved by generating new blocks

compute 1 or more new blocks0 or more existing blocks

12DesyncFS – Lex Stein

Design: DesyncFS execution model (high level)

● The file system, not the application, controls
execution

● The application provides constraints on the execution
order
– Dependencies (correctness)
– Hints (performance)
–

example: Y = F (X
0
, X

1
)

App FS

F
F

get [X
0
, X

1
]

Y

FSApp
do [Y]

get [X
0
, X

1
]

Y

traditional control flow DesyncFS control flow

13DesyncFS – Lex Stein

Design: DesyncFS execution model

● Programs do not specify the exact schedule of block
computation, instead they constrain the actual
execution schedule by providing dependency
information:
– File system: I am considering block Y, what do I need to

compute it?
– Application: You need blocks A, B, and C

● Programs express preference among a correct set of
execution schedules by hinting a good execution
ordering:
– File system: Which of blocks X, Y, Z should I consider first?
– Application: Try block Y, then ask me again

14DesyncFS – Lex Stein

Design: DesyncFS execution model (detailed view)

traditional approach DesyncFS

File systemApplication Application File system

compute [Y]

prereqs [Y]

prereqs [Y]

get-prereqs [Y]

check [X
0
, X

1
]

read [X
0
, X

1
]

X
0
, X

1

compute [Y]

read [X
0
, X

1
]

X
0
, X

1

Y = F (X
0
, X

1
)

 write Y write Y

[X
0
, X

1
]

Y = F (X
0
, X

1
)

15DesyncFS – Lex Stein

Design: three models (summary)

1. Data model: how is application data structured?

2. Execution model: how is control flow structured?

computation

execution
application callbacks

data reads and writes DesyncFS system calls

16DesyncFS – Lex Stein

Design: DesyncFS application
callbacks

// Computation: the means to compute any block

void appCompute (const blockaddr *block_address,
 const chunkdesc *file);

// Dependencies: the blocks that must exist to compute a block

void appDepList (const blockaddr *block_address,
 const chunkdesc *file, baddrslist *dep_list, int dir);

// Iteration: hints to execute through a chunk

void *appIterInit (const chunkdesc *chunk);

int appIterNext (void *iter, blockaddr *block_address);

void appIterDone (void *iter);

17DesyncFS – Lex Stein

Design: DesyncFS system calls
(summary)

typedef void *rd_handle;

int desyncfsExists (const blockaddr *block_address);

rd_handle desyncfsRead (const blockaddr *block_address,
const void **datap, int *lenp);

void desyncfsWrite (const blockaddr *block_address,
void *data, int len);

void desyncfsFree (rd_handle dp);

18DesyncFS – Lex Stein

Implementation: high-level
architecture

map

bserv bprocbserv bproc bserv bproc. . .

chunk assignments

global block sharing space

nodes

19DesyncFS – Lex Stein

Design: dynamic adaptation

● Load balancing algorithms have 3 components:
– transfer policy: under what conditions should tasks be

moved?
– placement policy: if a task is to be moved, to where

should it move?
– information policy: how is load information made

available to the placement policy?
● DesyncFS provides the information: block request hits

and misses per chunk
● Lazy chunking: map does not send all chunks at the

beginning of computation, waits to see how the
processors do on some initial chunks

● Lazy chunking is transparent to the application

20DesyncFS – Lex Stein

Evaluation: summary

● Experiments on a small cluster of 400 nodes, using up
to 100 nodes

● Compared DesyncFS against OpenMPI
● Jacobi solver and integer sort benchmark:

– overhead of 10-15% of throughput on homogeneous
processors

– dependency-based prefetching gives DesyncFS better
performance on heterogeneous processors even when
limited by homogeneous chunks

– dynamic adaptation can take DesyncFS closer to
average throughput (rather than minimum)

21DesyncFS – Lex Stein

Questions?

please contact me
stein@eecs.harvard.edu

