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Abstract

This paper sketches the design of the Eliot File System
(Eliot), a mutable filesystem that maintains the pure im-
mutability of its peer-to-peer (P2P) substrate by isolating
mutation in an auxiliary metadata service.

The immutability of address-to-content bindings has sev-
eral advantages in P2P systems. However, mutable filesys-
tems are desirable because they allow clients to update ex-
isting files; a necessary property for many applications.

In order to facilitate modifications, the filesystem must
provide some atom of mutability. Since this atom of mutabil-
ity is a fundamental characteristic of the filesystem and not
the underlying storage substrate, it is a mistake to violate
the integrity of the substrate with special cases for mutabil-
ity. Instead, Eliot employs a separate, generalized metadata
service that isolates all mutation and client state in an aux-
iliary replicated database. Eliot provides fine-granularity
file updates with either AFS open–close or NFS-like con-
sistency semantics. Eliot builds a mutable filesystem on a
global resource bed of purely immutable P2P block storage.

1. Introduction

There has been a flurry of recent research into the design
of peer-to-peer (P2P) lookup services [14] [10] [9] [15].
These systems aim to provide a stable global addressing
structure on top of a dynamic network of constantly fail-
ing and arriving nodes. Once addressing is in place, ser-
vices and distributed applications can be built. Several dis-
tributed applications have been designed to use these P2P
substrates, including some read-only distributed filesystems
[3] [11] and a read-write or mutable filesystem [6].

It turns out that building a mutable filesystem is diffi-
cult due to the manner in which the lookup services ad-
dress data. They derive addresses from the content of the
given resource. If the content changes, so will the address.
Collision-resistant, one-way hash functions such as SHA-1
or MD5 are popular choices for addressing data and nodes.

There are several reasons for using hashes for addresses.

First, by mapping both data and nodes into the same hash
space in a pseudo-randomfashion, data is likely to be evenly
distributed across nodes. Nodes that are proximate in the
hash space are unlikely to be proximate in physical space.
So a failure due to local factors will not affect segments of
the hash space in a systematic way. Second, the collision-
resistant property of the hash function guarantees that it is
highly unlikely that two different resources will map to the
same address. Third, hashes can be used for verification.
If the data contents hash to the object’s address, then the
data was not modified. This is important because it protects
against undetected data tampering or communication er-
rors. Fourth, hash-based addressing facilitates sharing of re-
sources. If two blocks written by two different clients have
the same contents, they will hash to the same address and
only one block will be stored. Fifth, a malicious client can-
not arbitrarily construct a data to address binding for a given
address. While hashes do not protect the system against
denial of service attacks, their collision-resistance property
will prevent a malicious user from overwriting existing data.
Finally, since hash-based addressing eliminates mutationof
address to data bindings, there are no issues of cache con-
sistency. If the bindings were mutable, blocks would have
different versions creating problems of coherency and con-
sistency. Being in a WAN environment, P2P networks de-
pend on aggressive caching for performance.

Given these attractive properties, we chose to maintain
hash-based addressing. However, since this implies an im-
mutable substrate, it presents us with a challenge for the
design of a mutable filesystem.

For the purposes of this discussion, we assume a con-
ventional hierarchical filesystem arrangement with UNIX-
style directories and metadata storage (i.e., inode and indi-
rect blocks). If a traditional filesystem is built on an im-
mutable P2P substrate, every update to a block will force
updates to every block on the path from the original block
to the root of the filesystem. This causes a domino effect
from the updated datablocks (i.e. the leaves of the filesys-
tem) to the root. For example, a datablock modification will
result in the block being moved to a new address. The inode
containing this block’s pointer must be modified to include



the new datablock address. This changes the inode’s hash
and forces the inode to be copied to a new address. Then
the directory must be updated with the new inode address.
The directory contents change, changing the address of the
block containing the directory. This continues all the way
up to the root. This problem is similar to the tree update
problem in functional language implementations [7].

Eliot implements a mutable filesystem on an immutable
P2P substrate. Some atom of mutability is required to
support sharing across filesystem clients. How and where
this mutability is implemented has a significant impact on
the fault-tolerance and sharing semantics of the filesystem.
One of the design principles of Eliot is to maintain the im-
mutability of the P2P substrate.

Suppose there were special cases built into the P2P sub-
strate to accommodate mutable blocks. Mutable blocks
could be stored at a fixed address by taking the hash of
something invariant such as the public key of the filesys-
tem. Now any data can be bound to the address to which
the public key maps. How would the system verify that
a writer has the right to overwrite an address with a new
value? Signatures could be used for verification of client
writes, authenticating and placing trust in the client. How-
ever, to allow for concurrent updates, the private key would
have to be shared across all clients; presenting a key distri-
bution and revocation problem. If different keys were used
per-client then every P2P node storing a root would have to
maintain public-key state for each of the clients authorized
to write to the filesystem. We believe such an approach is
contradictory to the scalability of P2P networks. P2P net-
work nodes should not maintain per-client state. In addition,
this approach has the shortcoming that it provides us with
mutability of only the root directory, making fine-grained
concurrency impossible.

A filesystem with file-level concurrency allows for two
different files to be updated concurrently without their up-
dates interfering. Likewise, a filesystem with block-level
concurrency allows for two different blocks within a file to
be updated concurrently without interference. Eliot sup-
ports file-level concurrency and, depending on the archi-
tecture of the clients, can support block-level concurrency.
This is discussed further in section 3.4.

Eliot uses a metadata service (MS) external to the P2P
substrate to store mutable filesystem metadata. All muta-
bility is isolated to this service, preserving the immutabil-
ity of the substrate and allowing for concurrency within the
filesystem. The P2P substrate is not necessarily under a sin-
gle administrative control. However, the MS is. The MS
is within the physical control of trusted administrators and
is engineered for fault-tolerance. For example, it can be
implemented on a replicated database in a controlled ma-
chine room. The physical proximity of the metadata service
to Eliot clients decreases the latency of open and close file

operations, as well as other metadata operations. The P2P
nodes on the other hand, are contributed by unknown enti-
ties. The nodes themselves are much more prone to Byzan-
tine and failstop failure than the locally controlled and ad-
ministered MS nodes. Failure of P2P nodes is contained
by the Charles so that Eliot views a reliable substrate. The
merits of the P2P substrate relative to the MS nodes include
its accessibility and pervasiveness. The Charles is globally
available as a data resource. Multiple metadata servers can
share the same Charles substrate.

2. Related Work

The field of distributed filesystems has a lengthy and rich
heritage. Although much newer, the field of peer-to-peer
systems is beginning to develop its own history. The work
we describe here is an integration of the two fields in that
we are building a distributed filesystem with a traditional
UNIX interface on top of a somewhat conventional peer-to-
peer substrate. As a result, in this section, we’ll discuss the
most relevant systems in both the distributed filesystem area
as well as the peer-to-peer area.

Peer-to-peer (P2P) research addresses the design of sys-
tems in untrusted, highly dynamic environments. In gen-
eral, these P2P systems are composed of a low-level lookup
service and a higher-level filesystem implementation built
on that lookup service.

CFS [3] stores both metadata and data in servers located
using the Chord [14] lookup service. Both Eliot and CFS
implement a hierarchical filesystem; they are both imple-
mented on potentially untrusted P2P nodes, and both de-
pend on lower layers of software for data persistence and
availability. CFS uses DHash, a layer performing replica-
tion across Chord, for persistence and availability. Eliot
uses the Charles [13]. In CFS, the inodes and datablocks are
addressed by their content-hash. Eliot uses content-hashes
to address datablocks, but inodes, directories, and other mu-
table metadata stored in the metadata server, are named by
randomly generated unique identifiers.

The biggest difference between CFS and Eliot is in how
the two systems support filesystem modification. CFS has a
signed, mutable root to allow for mutation. This root cannot
be addressed by content hash because that address would
change as the contents of the root directory changed. CFS
uses the hash of a filesystem’s invariant public key to ad-
dress roots in the underlying Chord substrate. As discussed
earlier, once the address is no longer a one-way, collision-
resistant function of the contents, illegitimate overwriting
of datablocks becomes an issue. CFS solves this with sig-
natures, requiring external coordination for key distribution
between clients, In contrast, Eliot avoids this problem by
placing mutability outside of the P2P substrate. This al-
lows Eliot to implement filesystem modification in a sim-



pler fashion with finer granularity of updates.
PAST [11] is an immutable file store built on the Pas-

try [10] P2P substrate, a Plaxton-based [8] routing protocol.
While CFS and Eliot break files into blocks spread across
multiple nodes, PAST stores full files on individual nodes
and replicates across nodes for persistence. PAST is in-
tended to provide archival storage and content distribution,
not a general-purpose filesystem. As a result, its files are
immutable and this does not pose a problem as it does for
Eliot whose goal is to be a general-purpose filesystem.

Ivy [6] is a mutable filesystem built on DHash. Ivy
places mutability in a per-client log-head. Every client
writes its updates, both data and metadata, to its log. To
satisfy read operations, a client accesses its own as well
as other clients’ logs to construct the current state of the
filesystem.

The distributed filesystem literature introduced the no-
tion of peer-to-peer systems, calling them serverless dis-
tributed file systems [1].

xFS uses a distributed data structure known as the man-
ager map to locate file blocks. Designed for a secure, low-
latency LAN environment, under a single administrative
control, xFS tolerates failstop, but not malicious or Byzan-
tine nodes. Eliot, on the other hand, is built to take advan-
tage of two different environments. The metadata reside
in a local, reliable, and low-latency environment. The dat-
ablocks reside in a variable latency and dynamic P2P net-
work. For the P2P network, Eliot uses the Charles which
assumes an untrusted WAN environment without a central
administrator.

Eliot installations have a fair amount of flexibility in the
consistency semantics they provide. The semantics are con-
trolled by the clients. This is discussed further in section
3.4.

Eliot borrows one set of filesystem semantics from the
Andrew File System (AFS) [4]. AFS provides open-close
semantics. An operational definition is as follows; clients
fetch a full file on open and cache it on their local disks.
They modify the file locally. On close, they write back the
full file, committing the modifications to the server. All up-
dates committed by others during the period between the
open and close will be lost.

Alternatively, Eliot clients can provide NFS semantics
[2].

The histories of distributed systems and name services
are closely tied in that multiple nodes can only interact in a
coordinated fashion if they can locate one another and dis-
cover what services each provides. The metadata service
component of Eliot shares some similarities with systems
like Grapevine [12] and DNS that provide replicated, fault-
tolerant lookup services. Grapevine provided a distributed
registry for locating resources and authenticating users.It
was built for a messaging system and used the underlying

messaging system to maintain state and pass around repli-
cation updates. In Grapevine, the propagation of updates to
replicas tended to be slow and users often encountered in-
consistencies. Eliot’s metadata service, on the other hand,
must support strong consistency and a high rate of updates,
as clients open and close files, and mutate metadata with
high frequency under varied filesystem workloads.

3. The Eliot File System

The Eliot filesystem consists of several components.
These are:

i An untrusted, immutable, reliable P2P block stor-
age substrate known as the Charles [13].

ii A trusted, replicated database, known as the meta-
data service (MS), storing mutable inodes, direc-
tories, symlinks, and superblocks.

iii A set of filesystem clients.

iv Zero, one, or more cache servers. These are in-
tended to improve performance but are not neces-
sary for correctness.

3.1 The Charles Block Service

The Charles [13] provides a reliable, fault-tolerant, im-
mutable P2P substrate for Eliot. The philosophy behind the
design of our substrate is to split a distributed system intoa
top scalable layer providing global routing correctness and
a bottom layer of protocols that provide the abstraction of
fault-tolerance to the top layer using less scalable proto-
cols. This philosophy addresses the commonly observed
trade-off between the global-knowledge of group member-
ship protocols and performance.

The Charles makes strong safety and liveness guarantees
with regard to the blocks that it stores; namely, if a block
is written to an address, then a client will be able to request
that block, and subsequently receive the block, unmodified,
within a reasonable period of time. To maintain these in-
variants, the Charles must tolerate failstop and Byzantine
node failures. Surviving these failures is crucial to making
guarantees about both the availability and the correctnessof
the stored data. In designing a P2P storage substrate, we
must assume that some nodes will fail, some may become
unreachable, other will send out spurious or incorrect mes-
sages. Though the hash values as addresses protects clients
from accepting bad data blocks, bad nodes can disrupt the
structure of the substrate by providing false routing infor-
mation to neighbors and new nodes. Therefore, the routing
protocols of the Charles Block Service are designed to be
fault tolerant for failstop and Byzantine failures.



3.2 The Metadata Service

The metadata service (MS) stores Eliot’s metadata. This
includes inodes, symlinks, directories, and the filesystem
superblock. Indirect blocks and datablocks are stored in the
Charles. The guiding principle behind the placement of data
objects is that those objects that are mutated by operations
other than a file write are stored in the MS, while objects
that are only mutated during the course of a write are stored
in the Charles.

The MS is implemented as a replicated database for
high-performance and fault-tolerance.

The MS and Eliot clients authenticate one another. Every
Eliot client has a public key registered with MS. Every RPC
from an Eliot client to the MS is authenticated by verifying
the signature. Alongside the client’s public key, MS stores
a sequence number. The RPC is tagged with a sequence
number. To avoid replay attacks, the RPC is discarded if
the sequence number is not strictly increasing.

Each Eliot filesystem installation has one MS. The MS
has a public key well-known to its Eliot clients. The MS
signs all messages sent to clients. The clients attempt to
verify messages and discard those they cannot verify.

3.3 The Cache Service

The latency of Charles’ datablock accesses is alleviated
by cooperative caching [1]. A cache server stores soft state
mapping Charles addresses to clients that hold the corre-
sponding blocks in their cache. Clients update the cache
server periodically with changes in their cache state. Mul-
tiple cache servers can operate concurrently within a sin-
gle Eliot installation, should one become a bottleneck. The
cache server is not required for correctness. It exists solely
to improve performance.

3.4 Implementation and Consistency

Eliot presents a traditional POSIX filesystem interface
to applications. Clients are implemented either as NFS
loopback servers, user-level filesystem libraries, or kernel
filesystems beneath the VFS/Vnode layer. Eliot filesys-
tems are mounted in the client’s filesystem namespace and
present a hierarchical directory structure. Unlike most
filesystems, Eliot clients access the contents of inodes di-
rectly, reading the addresses to request datablocks directly
from the Charles. The MS does not lie on the datapath.

Depending on the architecture of the client, different file
system semantics can be supported. For example, many of
the recent file systems built using the SFS toolkit [5] pro-
vide NFS semantics, because SFS implements filesystems
as NFS loopback servers.

If the Eliot client is structured as an NFS loopback server
then Eliot will provide NFS-like semantics. Traffic to and
from the MS will be higher, because inodes will not be
cacheable at the client. The client will contact the MS for
operations that could otherwise have been satisfied locally
from a cached inode. An NFS-like Eliot client will support
block-level concurrency.

Providing AFS semantics requires a meaningful imple-
mentation of file open and close. This is not possible with
an NFS loopback client because NFS lacks a file open and
close. NFS clients use opaque, server-generated descriptors
to specify files within NFS RPCs. These descriptors are
obtained with a lookup RPC, which includes a parent di-
rectory descriptor and a component name. An open will
usually cause a lookup RPC, but the NFS server has no
way of differentiating a lookup caused by an open from a
lookup caused by another filesystem operation, such as a
name component lookup within a directory. NFS servers
were designed to be stateless to ease crash recovery. Since
the NFS server maintains no client state, a server has noth-
ing to do on a client’s file close, and consequently there was
no reason for the designers of the NFS protocol to include a
close RPC.

Under AFS-like semantics, updates associated with the
last close win. Other updates associated with a file close
following the winning close’s open and preceding the win-
ning close will be lost entirely. AFS provides these seman-
tics by fetching the full file from the fileserver to the local
disk cache on open and writing the full file back on close.
For large files, open and close will have high latency. Inter-
estingly, the immutability of the datablock substrate allows
an AFS-like Eliot client to accomplish open–close seman-
tics without copying any data other than the data and meta-
data blocks updated. The beauty of open–close semantics
is that, unlike NFS, that has probabilistic and undefinable
semantics, updates will not be interleaved and partial. AFS
semantics, however, prohibit block-level concurrency.

To support AFS semantics within Eliot, the client must
be implemented either underneath the VFS/Vnode interface
or within a user-level library. In this case, the client can
cache inodes locally until file close, avoiding communica-
tion with the MS to both improve the latency of filesystem
operations and reduce the aggregate load on the MS.

Operating AFS-like and NFS-like clients within the
same Eliot filesystem will result in unexpected behavior
for both the NFS-like and AFS-like clients. The NFS-like
clients’ writes will lose persistence when interleaved with
the writes of AFS-like clients and the AFS-like clients’
reads will see data that are in a transient (but fully accept-
able for NFS) state between the NFS client application’s
open and close. This is no worse than write-sharing with a
misbehaving client that writes bad data.



3.5 Updates

To illustrate the operation of Eliot, we will trace
through an open-modify-close sequence of the file
/etc/rc.conf.

1 An Eliot client sends a request to MS for the in-
ode associated with namerc.conf within the
directory/etc/. This will have been preceded
by a lookup ofetc within the root directory. The
root directory has a fixed and well-known inode
number.

2 The MS authenticates the user, checks access per-
missions and returns the inode ofrc.conf if ap-
propriate, otherwise returning an error.

3 The client uses the list of Charles addresses in
the inode to translate the block’s logical address
into its Charles address. This translation is anal-
ogous to a local filesystem’s translation from log-
ical block number to physical disk address. In-
direct blocks may be retrieved from the Charles
during address translation.

4 Given the block’s Charles address, the Eliot client
contacts a cache server to see if another client
is caching the block. If one is specified, the
client will request the block and attempt to ver-
ify it. If the cache server does not specify a client,
or if the specified client either does not respond
or returns a datablock that fails the content-hash
check, then the client will retrieve the datablock
from the Charles. If the datablock returned from
the Charles fails the content-hash verification, the
client will return an error code to the application.

5 Once the target datablock is in the local cache, the
client updates it. The datablock now has a new
Charles address because the hash of its contents
has changed.

6 The client writes the datablock (and possibly
modified indirect blocks) to the Charles. The new
address is written into the locally cached inode.

7 The client contacts MS to update the inode. After
the commit of this update, the old datablock is
no longer reachable from the file. If the client
provides open–close semantics, then it will hold
off on committing the inode to the MS until an
application’s file close.

3.6 Fault Tolerance

Eliot depends on the Charles for liveness; the Charles
will eventually return the correct block. Within the Charles,
this is achieved through replication and the assumption that
the number of Byzantine or failstop nodes will be no more
than a fraction of the nodes. If a Byzantine Charles node
tampers with data, Eliot will detect this because the address
will not match the hash, and will ask another node for the
block.

If the MS becomes unavailable, Eliot clients will be un-
able to read or write metadata. Currently, we protect against
failstop failure of MS through database replication.

4 Current and Future Work

We are currently implementing Eliot. Future work will
include investigation into how traditionally difficult, but
certainly important, operations such as backup, snapshots,
and filesystem replication can be supported by Eliot and the
Charles. We expect that the database implementation of the
mutable metadata will facilitate consistent snapshots, back-
ups, and rollback. In addition, the global accessibility ofthe
Charles will allow for portable filesystems and fast filesys-
tem copy. Only the metadata need be copied and sent. The
new Eliot installation can plug into the same Charles sub-
strate to access the data. The new and old filesystems will
operate in coexistence without interference.

5 Conclusion

This paper has sketched the design of Eliot, a mutable
filesystem built on an immutable and reliable P2P storage
substrate. Eliot uses an auxiliary database for storing muta-
ble metadata. Eliot offers concurrency within the filesystem
and either AFS open–close or NFS-like file consistency se-
mantics, while taking advantage of a global P2P network
for its data store.
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