
52 communications of the acm | JULY 2008 | voL. 51 | no. 7

practice

THE NUMBER AND VARIETY of computing devices in the
environment are increasing rapidly. real computers
are no longer tethered to desktops or locked in server
rooms. pdAs, highly mobile tablet and laptop devices,
palmtop computers, and mobile telephony handsets
now offer powerful platforms for the delivery of new
applications and services. these devices are, however,
only the tip of the iceberg. hidden from sight are the
many computing and network elements required to
support the infrastructure that makes ubiquitous
computing possible.

With so much computing power traveling around
in briefcases and pockets, developers are building
applications that would have been impossible just a
few years ago. Among the interesting services available
today are text and multimedia messaging, location-
based search and information services (for example,

on-demand reviews of nearby restau-
rants), and ad hoc multiplayer games.
Over the next several years, new classes
of mobile and personalized services,
impossible to predict today, will cer-
tainly be developed.

While these services differ from one
another in major ways, they also share
some important attributes. One—the
focus of this article—is the need for
data storage and retrieval functions
built into the application. Messaging
applications need to move messages
around the network reliably and with-
out loss. Location-based services need
to map physical location to logical lo-
cation (for example, GPS or cell-tower
coordinates to postal code) and then
look up location-based information.
Gaming applications must record and
share the current state of the game on
distributed devices and must manage
content retrieval and delivery to each
of the devices in real time. In all these
cases, fast, reliable data storage and re-
trieval are critical.

As soon as the discussion turns to
data storage and retrieval, relational
databases come to mind. Relational
databases have been tremendously
successful over the past three decades
and SQL has become the lingua franca
for data access. While data manage-
ment has become almost synonymous
with RDBMS, however, there are an
increasing number of applications for
which lighter-weight alternatives are
more appropriate.

This article begins with a brief re-
view of how relational systems came to
dominate the data management land-
scape, and discusses how the relational
technologies have evolved. It presents
a data-centric overview of today’s emer-
gent applications, and delves into data
management needs for today’s and to-
morrow’s applications.

Relational Prehistory
Relational databases came out of re-
search at IBM1,5 and the University of
California at Berkeley7 in the 1970s. Re-
lational databases were fundamentally
a reaction to escalating costs in deploy-

Beyond
Relational
Databases

Doi: 10.1145/1364782.1364797

There is more to data access than SQL.

BY maRGo seLtzeR

practice

JULY 2008 | voL. 51 | no. 7 | communications of the acm 53

related trends emerged. First, the RD-
BMS vendors increased functionality
to provide market differentiators and
to address each new market niche as
it arose. Second, few applications need
all the features available in today’s
RDBMSs, so as the feature set size in-
creased, each application used a de-
creasing fraction of that feature set.

This drive toward increasing DBMS
functionality has been accompanied
by increasing complexity, and most
deployments now require a specialist,
trained in database administration,
to keep the systems and applications
running. Since these systems are devel-
oped and sold as monolithic entities,
even though applications may require
only a small subset of the system’s
functionality, each installation pays
the price of the total overall complexity.
Surely, there must be a better way.

ing and maintaining complex systems.
The key observation was that pro-

grammers, who were very expensive,
had to rewrite large amounts of appli-
cation software manually whenever the
content or physical organization of a
database changed. Because the appli-
cation generally knew in detail how its
data was stored, including its on-disk
layout, reorganizing databases or add-
ing new information to existing data-
bases forced wholesale changes to the
code accessing those databases.

Relational databases solved this
problem in two ways. First, they hid the
physical organization of the database
from the application and provided only
a logical view of the data. Second, they
used a declarative language to describe
the data of interest in a particular que-
ry, rather than forcing the programmer
to write a collection of function calls

to fetch the data. These two changes
allowed programmers to describe the
information they wanted and to leave
the details of optimization and access
to the database management system.
This transformation relieved program-
mers of the burden of rewriting appli-
cation code whenever the database lay-
out or organization changed.

Relational databases enjoyed tre-
mendous success in the IT shops and
data centers of the world. Businesses
with large quantities of data to manage
and sophisticated applications using
that data adopted the new technology
quickly. Demand for relational prod-
ucts created a market worth billions of
dollars in licensing revenue per year.
Several RDBMS vendors arose in the
1980s to compete for this lucrative
business.

In the 20 years that followed, two I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 C
E

L
I

A
 J

O
H

N
S

O
N

54 communications of the acm | JULY 2008 | voL. 51 | no. 7

practice

the new frontier
We are not the first to notice these
tides of change. In 1998, the leading
database researchers concluded that
database management systems were
becoming too complex and that auto-
mated configuration and management
were becoming essential.2 Two years
later, Surajit Chaudhuri and Gerhard
Weikum proposed radically rethink-
ing database management system
architecture.4 They suggested that da-
tabase management systems be made
more modular and that we broaden
our thoughts about data management
to include rather simple, component-
based building blocks. Most recently,
Michael Stonebraker joined the cho-
rus, arguing that “one size no longer
fits all,” and citing particular applica-
tion examples where the conventional
RDBMS architecture is inappropriate.8

As argued by Stonebraker, the rela-
tional vendors have been providing the
illusion that an RDBMS is the answer to
any data management need. For exam-
ple, as data warehousing and decision
support emerged as important appli-
cation domains, the vendors adapted
products to address the specialized
needs that arise in these new domains.
They do this by hiding fairly different
data management implementations
behind the familiar SQL front end.
This model breaks down, however, as
one begins to examine emerging data
needs in more depth.

Data warehousing. Retail organi-
zations now have the ability to record
every customer transaction, producing
an enormous data source that can be
mined for information about custom-

Web search. Internet search en-
gines lie at the intersection of database
management and information retriev-
al. The objects upon which they oper-
ate are typically semistructured (that
is, HTML instead of raw text), but the
queries posed are most often keyword
lookups where the desired response is
a sorted list of possible answers. Practi-
cally all the successful search engines
today have developed their own data
management solution to this problem,
constructing efficient inverted indices
and highly parallelized implementa-
tions of index and lookup. This appli-
cation is read-mostly with bulk updates
and nontraditional indexing.

Mobile device caching. The preva-
lence of small, mobile devices intro-
duces yet another category of applica-
tion: caching relevant portions of a
larger dataset on a smaller, low-func-
tionality device. While today’s users
think of their cell phone’s directory as
their own data collection, another view
might be to think of it as a cache of a
global phone and address directory.
This model has attractive properties—
in particular, the ability to augment
the local dataset with entries as they
are used or needed. Mobile telephony
infrastructure requires similar caching
capabilities to maintain communica-
tion channels to the devices. The ac-
cess pattern observed in these caches
is also read-mostly, and the data itself
is completely transitory; it can be lost
and regenerated if necessary.

XML management. Online transac-
tions are increasingly being conducted
by exchanging XML-encoded docu-
ments. The standard solution today in-
volves converting these documents into
a canonical relational organization,
storing them in an RDBMS, and then
converting again when one wishes to
use them. As more documents are cre-
ated, transmitted, and operated upon in
XML, these translations become unnec-
essary, inefficient, and tedious. Surely
there must be a better way. Native XML
data stores with Xquery and Xpath ac-
cess patterns represent the next wave
of storage evolution. While new items
are constantly added to and removed
from an XML repository, the documents
themselves are largely read-only.

Stream processing. Stream process-
ing is a bit of an outcast in this laun-
dry list of data-intensive applications.

ers’ purchasing patterns, trends in
product popularity, geographical pref-
erences, and countless other phenom-
ena that can be exploited to increase
sales or decrease the cost of doing busi-
ness. This database is read-mostly: it is
updated in bulk by periodically adding
new transactions to the collection, but
it is read frequently as analysts cull the
data extracting useful tidbits. This ap-
plication domain is characterized by
enormous tables (tens or hundreds
of terabytes), queries that access only
a few of the many columns in a table,
and a need to scan tables sorted in a
number of different ways.

Directory services. As organizations
become increasingly dependent upon
distributed resources and personnel,
the demand for directory services has
exploded.3 Directory servers provide
fast lookup of entities arranged in a
hierarchical structure that frequently
matches the hierarchical structure of
an organization. The LDAP standard
emerged in the 1990s in response to the
heavyweight ISO X.400/X.500 directory
services. LDAP is now at the core of au-
thentication and identity management
systems from a number of vendors (for
example, IBM Tivoli’s Directory Server,
Microsoft’s Active Directory Server, the
Sun ONE Directory Server). Like data
warehousing, LDAP is characterized by
read-mostly access. Queries are either
single-row retrieval (find the record
that corresponds to this user) or look-
ups based on attribute values (find all
users in the engineering department).
The prevalence of multivalued attri-
butes makes a relational representa-
tion quite inefficient.

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 C
E

L
I

A
 J

O
H

N
S

O
N

practice

JULY 2008 | voL. 51 | no. 7 | communications of the acm 55

Strictly speaking, stream processing
is not a data management task; it is a
data-filtering task. That is, data is pro-
duced at some source and sent stream-
ing to recipients that filter the stream
for “interesting” events. For example,
financial institutions watch stock tick-
ers looking for hotly traded items and/
or stocks that aren’t being traded as
heavily as expected.

The reason that these stream-
processing applications are included
here is a linguistic one: the filters that
are typically desired in these environ-
ments look like SQL; however, while
SQL was designed to operate on persis-
tently stored tables, these queries act
upon a real time stream of data values.
Stonebraker explains in some depth
how poorly equipped databases are for
this task. Perhaps the bigger surprise
is not that database systems are poorly
equipped to address this task, but that
because SQL appears to be the “right”
query language, developers use rela-
tional database systems for applica-
tions that have no persistent storage!

Stream processing represents a
class of applications that could benefit
from a SQL-like query language atop a
data management system with prop-
erties that are radically different from
an RDBMS. Since streaming queries
frequently operate on data observed
during a time window, some transient
local storage is necessary, but this stor-
age needn’t be persistent, transaction-
al, or support complex query process-
ing. Instead, it must be blindingly fast.
Although relational databases are well-
equipped to handle dynamic queries
over relatively static or slowly changing
data, this application class is charac-
terized by a fairly static query set over
highly dynamic data.

flexible solutions
Relational systems have been designed
to satisfy online transaction process-
ing (OLTP) workloads characterized by
ad hoc queries, significant write traffic,
and the need for strong transactional
and integrity guarantees. In contrast,
the applications described here are al-
most all read-dominated, and stream-
ing applications don’t even take advan-
tage of persistent data, just an SQL-like
query language. Few of these applica-
tions require transactional guarantees,
and there is little inherently relational

about the data being accessed. Thus,
the data management question be-
comes how best to satisfy the needs of
these different types of applications.
We claim (like Stonebraker) that there
really is no single right answer. In-
stead, we must focus on flexible solu-
tions that can be tailored to the needs
of a particular application.

There are several ways to deliver flex-
ibility in today’s changing data environ-
ment. The back-to-basics approach is
to require that every single application
build its own data storage service. This
option, while seemingly simple, is im-
practical in all but the simplest of appli-
cations. Some data-intensive applica-
tions running today, however, are built
upon simple, homegrown solutions.

The second way to address the need
for flexibility is to provide a smorgas-
bord of data management options,
each of which addresses a particular
application class. We see this approach
emerging in the traditional relational
market, where the SQL veneer is used to
hide the different capabilities required
for OLTP and data warehousing.

The third approach to flexibility is to
produce a storage engine that is more
configurable so that it can be tuned to
the requirements of individual applica-
tions. This solution has the advantage
of allowing concentrated investment
in a single storage system, improv-
ing quality. Configurability, however,
makes new demands of developers
who use the database, since they must
understand the configuration options
and then integrate the data manage-
ment component properly into their
product designs.

In fact, the solution emerging in the
marketplace is to have a handful of rea-
sonably configurable storage systems,
each of which is useful across a broad
application class.

There are fundamentally two prop-
erties that a solution must possess to
address the wide range of application
needs emerging today: modularity
and configurability. Few applications
require all the functionality possible
in a data management system. If an
application doesn’t need function-
ality, it should not have to “pay” for
that functionality in size (footprint,
memory consumption, disk utiliza-
tion, and so on), complexity, or cost.
Therefore, a flexible engine must allow

there are
fundamentally two
properties that
a solution must
possess to address
the wide range
of application
needs emerging
today: modularity
and configurability.

56 communications of the acm | JULY 2008 | voL. 51 | no. 7

practice

the developer to use or exclude major
subsystems depending on whether the
application needs them. Once a system
is sufficiently modular to permit a truly
small footprint, we will find that sys-
tem deployed on an array of hardware
platforms with staggeringly large dif-
ferences in capabilities. In these cases,
the system must be configurable to its
operating environment: the specific
hardware, operating system, and appli-
cation using it.

modularity
Some argue that database architecture
is in need of a revolution akin to the
RISC revolution in computer hardware.
The conventional monolithic DBMS ar-
chitecture is not facile enough to adapt
to today’s data demands, so we must
build data management capabilities
out of a collection of small, simple,
reusable components. For example,
instead of viewing SQL as a simple bi-
nary decision, Chaudhuri and Weikum
argue that query capabilities should be
provided at different levels of sophisti-
cation: a single-table selection proces-
sor that has a B+ tree index that sup-
ports simple indexing, updating, and
selection. To this, you might add trans-
actions. Continuing up the complex-
ity hierarchy, consider a select-project-
join processor. Next, add aggregates. In
this manner, you transform SQL from
a monolithic language into a family
of successively richer languages, each
of which is provided as a component
and satisfies a significant number of
application domains. Any particular
application selects the components it
needs. This idea of a component-based
architecture can be extended to in-
clude several other aspects of database
design: concurrency control, transac-
tions, logging, and high availability.

Concurrency control lends itself to
a hierarchy similar to that presented in
the language example. Some applica-
tions are completely single-threaded
and require no locking; others have low
levels of concurrency and would be well
served by table-level locks or API-level
locks (allowing only one writer or mul-
tiple readers into the database system
simultaneously); finally, highly con-
current applications need fine-grain
locking and multiple degrees of isola-
tion (potentially allowing applications
to see values that have been written by

old-style database
systems solve
old-style problems;
we need new-style
databases to solve
new-style problems.

incomplete transactions).6 In a conven-
tional database management system,
locking is assumed; in the brave new
world discussed here, locking is op-
tional and different components can
be used to provide different levels of
concurrency.

Transactions provide the illusion
that a collection of operations are ap-
plied to a database in an atomic unit
and that once applied, the operations
will persist, even in the face of appli-
cation or system failure. Transaction
management is at the heart of most da-
tabase management systems, yet many
applications do not require transac-
tions. In a component-based world,
transactions, too, are optional. When
they are present, a system might still
have a number of different components
providing basic transactional mecha-
nisms, savepoints (the ability to identi-
fy a point in time to which the database
may be rolled back), two-phase commit
to support transactions that span mul-
tiple databases, nested transactions
to decompose a large operation into a
number of smaller ones, and compen-
sating transactions to undo high-level,
logical operations.

Many transaction systems use some
form of logging to provide rollback and
recovery capabilities. In that context,
it hardly seems necessary to treat log-
ging as a separable component, but it
should be. A transactional component
might be designed to work with mul-
tiple implementations, some of which
do not use logging (for example, no-
overwrite schemes such as shadow-pag-
es). Perhaps even more interesting, a
logging system might be useful outside
the context of transactions; it might be
used for auditing or provide some sort
of backup mechanism. In either case,
it should be an application designer’s
decision whether logging is necessary
rather than having it imposed by the
database vendor.

Finally, data is sometimes so critical
that downtime is unacceptable. Many
database systems provide replicated
or highly available systems to address
this need. Although this functionality is
often available as an add-on in today’s
systems, they have not gone far enough.
A developer may wish to use a data-
base’s HA (high-availability) configura-
tion, but may use it in conjunction with
some other company’s HA substrate. If

practice

JULY 2008 | voL. 51 | no. 7 | communications of the acm 57

the application already has a substrate
that performs heartbeat protocols (or
any other mechanism that notifies the
application or system when a compo-
nent fails), fail-over, and redundant
communication channels, then you
will want to exclude those components
from the database management sys-
tem and hook into the existing func-
tionality. Monolithic systems do not al-
low this, whereas a component-based,
modular architecture does.

In addition to providing smaller,
simpler applications, components with
well-defined, clean, exposed interfaces
provide for a degree of extensibility that
is simply not possible in a monolithic
system. For example, consider the ba-
sic set of components needed to con-
struct a transactional system: a trans-
action manager, a lock manager, and a
log manager. If these modules are open
and extensible, then the developer can
build systems that incorporate items
that are not managed by the database
system into transactions. Consider, for
example, a network switch: the state of
the configuration database depends on
the state of hardware inside the device,
and vice versa. If the electrical control
over chips and boards can be incorpo-
rated into transactions, by allowing the
programmer to extend the locking and
logging system to communicate with
them, then operations such as “power
up the backup network interface card”
can be made transactional.

Modularity is a powerful tool for
managing size and complexity of appli-
cations and systems while also enabling
the application and data management
capabilities to seamlessly interact.
Thus, we have proposed an architec-
ture that enables developers to exclude
functionality they do not need and in-
clude functionality they do need but is
not provided by the database vendor.

configurability
The second property of a flexible data
management system is configurability.
Whereas modularity is an architectural
mechanism, configuration is mostly a
runtime mechanism. With a compo-
nent-based architecture, the build-time
configuration is involved in selecting
appropriate components. A single col-
lection of components may still run on
a range of systems with wildly different
capabilities. For example, just because

make the right decisions.
Variability in persistent storage

technologies places new demands
on the database engine as well. Not
only must it work well in the presence
of spinning, magnetic storage, but it
should also run well on other media
(for example, flash) with constraints on
behaviors (such as the number of writes
to a particular memory location), and it
may need to run in the absence of any
persistent storage. For example, some
applications want to manage data en-
tirely in main memory, with no per-
sistence; some want to manage data
with full synchronous transactional
guarantees on updates; and some need
something in the middle. Each of these
policies should be implemented by
the same transactional component,
but the database should allow the pro-
grammer to control whether or not data
persists across power-down events and
the strictness of any transactional as-
surances that the system makes to the
end user.

Although many embedded systems
are now able to use commodity off-the-
shelf hardware platforms, many pro-
prietary devices still exist. The ubiqui-
tous data management solution will be
portable to these special-purpose hard-
ware devices. It will also be portable to a
variety of operating systems as well; the
services available from the operating
system on a mobile telephone handset
are different from those available on a
64-way multiprocessor with gigabytes
of RAM, even if both are running Linux.
If the data management system is to
run everywhere, then it must rely only
on the services common to most oper-

two applications both want transac-
tions and B-trees, this does not mean
that both can support a multi-gigabyte
in-memory cache. The ability to adapt
to radically different circumstances is
critical. Configurability refers to how
well a system can be matched to its en-
vironment and application needs. In
this article we discuss configurability
with respect to the hardware, the envi-
ronment in which the application runs
(for example, the operating system),
the application’s software architecture,
and the “natural” data format of the ap-
plication.

Hardware environments introduce
variability in CPU speed, memory size,
and persistent storage capabilities.
Variability in CPU speed and persis-
tent storage introduces the possibility
of trading computation for disk band-
width. On a fast processor, it may be
beneficial to compress data, consum-
ing CPU cycles, in order to save I/O;
on a PDA, where CPU cycles are sparse
and persistent I/O is fast, compression
might not be the right trade-off.

In a world where resource-con-
strained devices require potentially so-
phisticated data management, develop-
ers must have control over the memory
and disk consumption policies of the
database. In different environments,
applications may need control over the
maximum size of in-memory data struc-
tures, the maximum size of persistent
data, and the space consumed by trans-
actional logs. Policies for consump-
tion of these resources must be set by
the application developer, not the end
user, since the developer is more likely
to have the technical savvy necessary to

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 C
E

L
I

A
 J

O
H

N
S

O
N

58 communications of the acm | JULY 2008 | voL. 51 | no. 7

practice

XML, object-oriented, among others)
would add overhead for no benefit. The
configurable engine must support stor-
ing data in the format that is most nat-
ural for the application. It is then the
programmer’s responsibility to select
the format that meets the “most natu-
ral” criteria.

new-style Databases
for new-style Problems
Old-style database systems solve old-
style problems; we need new-style da-
tabases to solve new-style problems.
While the need for conventional da-
tabase management systems isn’t go-
ing away, many of today’s problems
require a configurable database sys-
tem. Even without a crystal ball, it
seems clear that tomorrow’s systems
will also require a significant degree of
configurability. As programmers and
engineers, we learn to select the right
tool to do a job; selecting a database is
no exception. We need to operate in a
mode where we recognize that there
are options in data management, and
we should select the right tool to get
the job done as efficiently, robustly,
and simply as possible.

References
1. Astrahan, M.M. System R: Relational approach

to database management. ACM Trans. Database
Systems 1, 2 (1976), 97–137.

2. Bernstein, P. The Asilomar Report on database
research. ACM SIGMOD Record 27, 4 (1998); www.
sigmod.org/record/issues/9812/asilomar.html.

3. Broussard, F. Worldwide IT asset management
software forecast and analysis, 2002–2007. (2004).
IDC Doc. #30277; www.idc.com/getdoc.jsp?containerI
d=30277&pid=35178981.

4. Chaudhuri, S., and Weikum, G. Rethinking database
system architecture: Towards a self-tuning RISC-
style database system. The VLDB Journal. (2000),
1–10; www.vldb.org/conf/2000/P001.pdf.

5. Codd, E.F. A relational model of data for large shared
data banks. Commun. ACM 13, 6 (June 1970):
377–387.

6. Gray, J., and Reuter, A. Transaction Processing:
Concepts and Technologies. Morgan Kaufman, San
Mateo, CA, 1993, 397-402

7. Stonebraker, M. The design and implementation of
Ingres. ACM Trans. Database Systems 1, 3 (1976),
189–222.

8. Stonebraker, M., and Cetintemel, U. One size fits
all: An idea whose time has come and gone. In
Proceedings of the 2005 International Conference on
Data Engineering (April 2005); http://www.cs.brown.
edu/~ugur/fits_all.pdf.

Margo I. Seltzer (margo@eecs.harvard.edu) is the
Herchel Smith Professor of Computer Science and a
Harvard College Professor in the Division of Engineering
and Applied Sciences at Harvard University, Cambridge,
MA. She is also a founder and CTO of Sleepycat Software,
the makers of Berkeley DB.

A previous version of this article appeared in the April 2005
issue of ACM Queue.Vol 3, .No. 3.

©2008 ACM 0001-0782/08/0700 $5.00

ating systems, and it must provide ex-
plicit mechanisms to allow portability,
through simple interposition libraries
or source-code availability.

Even on a single platform, the de-
veloper makes architectural choices
that affect the database system. For ex-
ample, a system may be built using: a
single thread of control; a collection of
cooperating processes, each of which
is single-threaded; multiple threads
of control in a single process; multiple
multithreaded processes; or a strictly
event-based architecture. These choic-
es are driven by a combination of the
application’s requirements, the devel-
oper’s preferences, the operating sys-
tem, and the hardware. The database
system must accommodate them.

The database must also avoid mak-
ing decisions about network protocols.
Since the database will run in environ-
ments where communication takes
place over backplanes, as well as en-
vironments where it takes place over
WANs, the developer should select
the appropriate communication infra-
structure. A special-purpose telephone
switch chassis may include a custom
backplane and protocol for fast com-
munication among redundant boards;
the database must not prevent the de-
veloper from using it.

Up to this point, configurability has
revolved around adapting to the hard-
ware and software environment of the
application. The last area of configura-
tion that we address revolves around
the application’s data. Data layout, in-
dexing, and access are critical perfor-
mance considerations. There are three
main design points with respect to data:
the physical clustering, the indexing
mechanism, and the internal structure
of items in the database. Some of these,
like the indexing mechanism, really
are runtime configuration decisions,
whereas others are more about giving
the application the ability to make de-
sign decisions, rather than having de-
signers forced into decisions because
of the database management system.

Database management systems de-
signed for spinning magnetic media
expend considerable effort clustering
related data together on disk so that
seek and rotation times can be amor-
tized by transferring a large amount of
data per repositioning event. In gen-
eral, this clustering is good, as long as

the data is clustered according to the
correct criteria. In the case of a configu-
rable database system, this means that
the developer needs to retain control
over primary key selection (as is done
in most relational database manage-
ment systems) and must be able to ig-
nore clustering issues if the persistent
medium either does not exist or does
not show performance benefits to ac-
cessing locations that are “close” to the
last access.

On a related note, the developer
must be left the flexibility to select an
indexing structure for the primary keys
that is appropriate for the workload.
Workloads with locality of reference
are probably well served by B+ trees;
those with huge datasets and truly ran-
dom access might be better off with
hash tables. Perhaps the data is highly
dimensional and require a completely
different indexing structure; the exten-
sibility discussed in the previous sec-
tion should allow a developer to pro-
vide an application-specific indexing
mechanism and use it with all of the
system’s other features (for example,
locking, transactions). At a minimum,
the configurable database should pro-
vide a range of alternative indexing
structures that support iteration, fast
equality searches, and range searches,
including searches on partial keys.

Unlike relational engines, the con-
figurable engine should permit the
programmer to determine the inter-
nal structure of its data items. If the
application has a dynamic or evolving
schema or must support ad hoc que-
ries, then the internal structure should
be one that enables high-level query ac-
cess such as SQL, Xpath, Xquery, LDAP,
etc. If, however, the schema is static
and the query set is known, selecting
an internal structure that maps more
directly to the application’s internal
data structures provides significant
performance improvements. For ex-
ample, if an application’s data is inher-
ently nonrelational (for example, con-
taining multivalued attributes or large
chunks of unstructured data), then
forcing it into a relational organiza-
tion simply to facilitate SQL access will
cost performance in the translation
and is unlikely to reap the benefits of
the relational store. Similarly, if the ap-
plication’s data was relational, forcing
it into a different format (for example,

