
An Implementation of a Log-
Structured File System for UNIX

Margo Seltzer –Harvard University
Keith Bostic –University of California, Berkeley

Marshall Kirk McKusick –University of California, Berkeley
Carl Staelin –Hewlett-Packard Laboratories

ABSTRACT

Research results [ROSE91] demonstrate that a log-structured file system (LFS) offers
the potential for dramatically improved write performance, faster recovery time, and faster
file creation and deletion than traditional UNIX file systems. This paper presents a redesign
and implementation of the Sprite [ROSE91] log-structured file system that is more robust and
integrated into the vnode interface [KLEI86]. Measurements show its performance to be
superior to the 4BSD Fast File System (FFS) in a variety of benchmarks and not significantly
less than FFS in any test. Unfortunately, an enhanced version of FFS (with read and write
clustering) [MCVO91] provides comparable and sometimes superior performance to our LFS.
However, LFS can be extended to provide additional functionality such as embedded
transactions and versioning, not easily implemented in traditional file systems.

1. Introduction

Early UNIX file systems used a small, fixed
block size and made no attempt to optimize block
placement [THOM78]. They assigned disk
addresses to new blocks as they were created (preal-
location) and wrote modified blocks back to their
original disk addresses (overwrite). In these file sys-
tems, the disk became fragmented over time so that
new files tended to be allocated randomly across the
disk, requiring a disk seek per file system read or
write even when the file was being read sequentially.

The Fast File System (FFS) [MCKU84]
dramatically increased file system performance. It
increased the block size, improving bandwidth. It
reduced the number and length of seeks by placing
related information close together on the disk. For
example, blocks within files were allocated on the
same or a nearby cylinder. Finally, it incorporated
rotational disk positioning to reduce delays between
accessing sequential blocks.

The factors limiting FFS performance are syn-
chronous file creation and deletion and seek times
between I/O requests for different files. The syn-
chronous I/O for file creation and deletion provides
file system disk data structure recoverability after
failures. However, there exist alternative solutions
such as NVRAM hardware [MORA90] and logging
software [KAZA90]. In a UNIX environment, where
the vast majority of files are small
[OUST85][BAKE91], the seek times between I/O
requests for different files can dominate. No solu-
tions to this problem currently exist in the context of
FFS.

The log-structured file system, as proposed in
[OUST88], attempts to address both of these prob-
lems. The fundamental idea of LFS is to improve
file system performance by storing all file system
data in a single, continuous log. Such a file system
is optimized for writing, because no seek is required
between writes. It is also optimized for reading files
written in their entirety over a brief period of time
(as is the norm in UNIX systems), because the files
are placed contiguously on disk. Finally, it provides
temporal locality, in that it is optimized for access-
ing files that were created or modified at approxi-
mately the same time.

The write-optimization of LFS has the potential
for dramatically improving system throughput, as
large main-memory file caches effectively cache
reads, but do little to improve write performance
[OUST88]. The goal of the Sprite log-structured file
system (Sprite-LFS) [ROSE91] was to design and
implement an LFS that would provide acceptable
read performance as well as improved write perfor-
mance. Our goal is to build on the Sprite-LFS work,
implementing a new version of LFS that provides
the same recoverability guarantees as FFS, provides
performance comparable to or better than FFS, and
is well-integrated into a production quality UNIX
system.

This paper describes the design of log-
structured file systems in general and our implemen-
tation in particular, concentrating on those parts that
differ from the Sprite-LFS implementation. We
compare the performance of our implementation of
LFS (BSD-LFS) with FFS using a variety of bench-
marks.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 1



2. Log-Structured File Systems

There are two fundamental differences between
an LFS and a traditional UNIX file system, as
represented by FFS; the on-disk layout of the data
structures and the recovery model. In this section
we describe the key structural elements of an LFS,
contrasting the data structures and recovery to FFS.
The complete design and implementation of Sprite-
LFS can be found in [ROSE92]. Table 1 compares
key differences between FFS and LFS. The reasons
for these differences will be described in detail in
the following sections.

Task FFS LFS

Assign disk addresses block creation segment write

Allocate inodes fixed locations appended to log

Maximum number of inodes statically determined grows dynamically

Map inode numbers to disk addresses static address lookup in inode map

Maintain free space bitmaps cleaner
segment usage table

Make file system state consistent fsck roll-forward

Verify directory structure fsck background checker

Table 1: Comparison of File System Characteristics of FFS and LFS

Disk Layout
In both FFS and LFS, a file’s physical disk lay-

out is described by an index structure (inode) that
contains the disk addresses of some direct, indirect,
doubly indirect, and triply indirect blocks. Direct
blocks contain data, while indirect blocks contain
disk addresses of direct blocks, doubly indirect
blocks contain disk addresses of indirect blocks, and
triply indirect blocks contain disk addresses of dou-
bly indirect blocks. The inodes and single, double
and triple indirect blocks are referred to as ‘‘meta-
data’’ in this paper.

The FFS is described by a superblockthat con-
tains file system parameters (block size, fragment
size, and file system size) and disk parameters (rota-
tional delay, number of sectors per track, and
number of cylinders). The superblock is replicated
throughout the file system to allow recovery from
crashes that corrupt the primary copy of the super-
block. The disk is statically partitioned into cylinder
groups, typically between 16 and 32 cylinders to a
group. Each group contains a fixed number of
inodes (usually one inode for every two kilobytes in
the group) and bitmaps to record inodes and data
blocks available for allocation. The inodes in a
cylinder group reside at fixed disk addresses, so that
disk addresses may be computed from inode
numbers. New blocks are allocated to optimize for
sequential file access. Ideally, logically sequential
blocks of a file are allocated so that no seek is
required between two consecutive accesses.

BLOCK MAP

MAGIC NUMBER

INODE MAP

BLOCK TOTALS

NUM FRAGS AVAIL

LAST BLOCK POS

SUMMARY INFO

NUM DATA BLOCKS

NUM INODE BLOCKS

NUM CYLINDERS

CYLINDER NUM

MOD TIME

Block
Cylinder Group

...

...
...

...
...

...

...
Data Block 1

Inode Block N

...
Inode Block 1

Cylinder Groups

FREE BLOCK POSITION

LAST BLOCK POSITION

LAST INODE POSITION

Figure 1: Physical Disk Layout of the Fast File
System. The disk is statically partitioned into
cylinder groups, each of which is described by
a cylinder group block, analogous to a file sys-
tem superblock. Each cylinder group contains
a copy of the superblock and allocation infor-
mation for the inodes and blocks within that
group.

Because data blocks for a file are typically
accessed together, the FFS policy routines try to
place data blocks for a file in the same cylinder
group, preferably at rotationally optimal positions in
the same cylinder. Figure 1 depicts the physical lay-
out of FFS.

LFS is a hybrid between a sequential database
log and FFS. It does all writes sequentially, like a
database log, but incorporates the FFS index struc-
tures into this log to support efficient random
retrieval. In an LFS, the disk is statically partitioned
into fixed size segments, typically one-half mega-
byte. The logical ordering of these segments creates
a single, continuous log.

2 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



An LFS is described by a superblock similar to
the one used by FFS. When writing, LFS gathers
many dirty pages and prepares to write them to disk
sequentially in the next available segment. At this
time, LFS sorts the blocks by logical block number,
assigns them disk addresses, and updates the meta-
data to reflect their addresses. The updated meta-
data blocks are gathered with the data blocks, and all
are written to a segment. As a result, the inodes are
no longer in fixed locations, so, LFS requires an
additional data structure, called the inode map
[ROSE90], that maps inode numbers to disk
addresses.

...

SUPERBLOCKS

SEGMENT 2 ... SEGMENT I

INODE DISK ADDRESS 1

INODE DISK ADDRESS N

NEXT SEGMENT POINTER

DATA CHECKSUM

SUMMARY CHECKSUM

SEGMENT 1 ... SEGMENT N

SEGMENT

SUMMARY
... DATA NINODESDATA 1

NUM FINFOS NUM INODES

FLAGS

CREATE TIME

FINFO 1...
FINFO N

...

NUM BLOCKS

VERSION NUMBER

INODE NUMBER

...

(a)

(b)

(c)

(d)

LOGICAL BLOCK 1

LOGICAL BLOCK N

Figure 2: A Log-Structured File System. A file sys-
tem is composed of segments as shown in Fig-
ure (a). Each segment consists of a summary
block followed by data blocks and inode blocks
(b). The segment summary contains check-
sums to validate both the segment summary
and the data blocks, a timestamp, a pointer to
the next segment, and information that
describes each file and inode that appears in the
segment (c). Files are described by FINFO
structures that identify the inode number and
version of the file (as well as each block of that
file) located in the segment (d).

Since LFS writes dirty data blocks into the next
available segment, modified blocks are written to the
disk in different locations than the original blocks.
This space reallocation is called a ‘‘no-overwrite’’
policy, and it necessitates a mechanism to reclaim
space resulting from deleted or overwritten blocks.
The cleaner is a garbage collection process that
reclaims space from the file system by reading a
segment, discarding ‘‘dead’’ blocks (blocks that

belong to deleted files or that have been superseded
by newer blocks), and appending any ‘‘live’’ blocks.
For the cleaner to determine which blocks in a seg-
ment are ‘‘live,’’ it must be able to identify each
block in a segment. This determination is done by
including a summary block in each segment that
identifies the inode and logical block number of
every block in the segment. In addition, the kernel
maintains a segment usage tablethat shows the
number of ‘‘live’’ bytes and the last modified time
of each segment. The cleaner uses this table to
determine which segments to clean [ROSE90]. Fig-
ure 2 shows the physical layout of the LFS.

While FFS flushes individual blocks and files
on demand, the LFS must gather data into segments.
Usually, there will not be enough dirty blocks to fill
a complete segment [BAKE92], in which case LFS
writes partial segments. A physical segment con-
tains one or more partial segments. For the
remainder of this paper, segmentwill be used to
refer to the physical partitioning of the disk, and
partial segmentwill be used to refer to a unit of
writing. Small partial segments most commonly
result from NFS operations or fsync(2) requests,
while writes resulting from the sync(2) system call
or system memory shortages typically form larger
partials, ideally taking up an entire segment. During
a sync, the inode map and segment usage table are
also written to disk, creating a checkpointthat pro-
vides a stable point from which the file system can
be recovered in case of system failure. Figure 3
shows the details of allocating three files in an LFS.
File System Recovery

There are two aspects to file system recovery:
bringing the file system to a physically consistent
state and verifying the logical structure of the file
system. When FFS or LFS add a block to a file,
there are several different pieces of information that
may be modified: the block itself, the inode, the free
block map, possibly indirect blocks, and the location
of the last allocation. If the system crashes during
the addition, the file system is likely be left in a
physically inconsistent state. Furthermore, there is
currently no way for FFS to localize inconsistencies.
As a result, FFS must rebuild the entire file system
state, including cylinder group bitmaps and meta-
data. At the same time, FFS verifies the directory
structure and all block pointers within the file sys-
tem. Traditionally, fsck(8) is the agent that performs
both of these functions.

In contrast to FFS, LFS writes only to the end
of the log and is able to locate potential inconsisten-
cies and recover to a consistent physical state
quickly. This part of recovery in LFS is more simi-
lar to standard database recovery [HAER83] than to
fsck. It consists of two parts: initializing all the file
system structures from the most recent checkpoint
and then ‘‘rolling forward’’ to incorporate any
modifications that occurred subsequently. The roll

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 3



forward phase consists of reading each segment after
the checkpoint in time order and updating the file

Inode map blocks

... unused blocks ...

SEGMENTSEGMENT

SEGMENTSEGMENT

Summary Block

file1 file2

file1

more of

file2
block 2 file3

Data Block

(a)

(b)

Inodes

PARTIAL SEGMENT PARTIAL SEGMENT

file1 file2
PARTIAL SEGMENT PARTIAL SEGMENT

... another partial ... ... another partial ...

... another partial ...

Figure 3: A Log-Structured File System. In figure (a), two files have been written, file1 and file2. Each has an
index structure in the meta-data block that is allocated after it on disk. In figure (b), the middle block of
file2 has been modified. A new version of it is added to the log, as well as a new version of its meta-data.
Then file3 is created, causing its blocks and meta-data to be appended to the log. Next, file1 has two more
blocks appended to it, causing the blocks and a new version of file1’s meta-data to be appended to the log.
On checkpoint, the inode mapcontaining pointers to the meta-data blocks, is written.

Phase I Traverse inodes
Validate all block pointers.
Record inode state (allocated or unallocated) and file type for each inode.
Record inode numbers and block addresses of all directories.

Phase II Sort directories by disk address order.
Traverse directories in disk address order.
Validate ‘‘.’’.
Record ‘‘..’’.
Validate directories’ contents, type, and link counts.
Recursively verify ‘‘..’’.

Phase III Attach any unresolved ‘‘..’’ trees to lost+found.
Mark all inodes in those trees as ‘‘found’’.

Phase IV Put any inodes that are not ‘‘found’’ in lost+found.
Verify link counts for every file.

Phase V Update bitmaps in cylinder groups.

Table 2: Five Phases of fsck

system state to reflect the contents of the segment.
The next segment pointers in the segment summary
facilitate reading from the last checkpoint to the end
of the log, the checksums are used to identify valid
segments, and the timestamps are used to distinguish
the partial segments written after the checkpoint and
those written before which have been reclaimed.
The file and block numbers in the FINFO structures
are used to update the inode map, segment usage
table, and inodes making the blocks in the partial
segment extant. As is the case for database
recovery, the recovery time is proportional to the
interval between file system checkpoints.

While standard LFS recovery quickly brings the
file system to a physically consistent state, it does
not provide the same guarantees made by fsck.
When fsck completes, not only is the file system in a
consistent state, but the directory structure has been
verified as well. The five passes of fsck are sum-
marized in Table 2. For LFS to provide the same
level of robustness as FFS, LFS must make many of
the same checks. While LFS has no bitmaps to
rebuild, the verification of block pointers and direc-
tory structure and contents is crucial for the system
to recover from media failure. This recovery will be
discussed in more detail in Section 3.

4 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



3. Engineering LFS

While the Sprite-LFS implementation was an
excellent proof of concept, it had several deficiencies
that made it unsuitable for a production environment.
Our goal was to engineer a version of LFS that
could be used as a replacement for FFS. Some of
our concerns were as follows:

1. Sprite-LFS consumes excessive amounts of
memory.

2. Write requests are successful even if there is
insufficient disk space.

3. Recovery does nothing to verify the con-
sistency of the file system directory structure.

4. Segment validation is hardware dependent.
5. All file systems use a single cleaner and a sin-

gle cleaning policy.
6. There are no performance numbers that meas-

ure the cleaner overhead.

The earlier description of LFS focused on the
overall strategy of log-structured file systems. The
rest of Section 3 discusses how BSD-LFS addresses
the first five problems listed above. Section 4
addresses the implementation issues specific to
integration in a BSD framework, and Section 5
presents the performance analysis. In most ways,
the logical framework of Sprite-LFS is unchanged.
We have kept the segmented log structure and the
major support structures associated with the log,
namely the inode map, segment usage table, and
cleaner. However, to address the problems described
above and to integrate LFS into a BSD system, we
have altered nearly all of the details of implementa-
tion, including a few fundamental design decisions.
Most notably, we have moved the cleaner into user
space, eliminated the directory operation log, and
altered the segment layout on disk.
Memory Consumption

Sprite-LFS assumes that the system has a large
physical memory and ties down substantial portions
of it. The following storage is reserved:
Two 64K or 128K staging buffers

Since not all devices support scatter/gather I/O,
data is written in buffers large enough to allow
the maximum transfer size supported by the
disk controller, typically 64K or 128K. These
buffers are allocated per file system from kernel
memory.

One cleaning segment
One segment’s worth of buffer cache blocks per
file system are reserved for cleaning.

Two read-only segments
Two segments’ worth of buffer cache blocks
per file system are marked read-only so that
they may be reclaimed by Sprite-LFS without
requiring an I/O.

Buffers reserved for the cleaner
Each file system also reserves some buffers for
the cleaner. The number of buffers is specified

in the superblock and is set during file system
creation. It specifies the minimum number of
clean buffers that must be present in the cache
at any point in time. On the Sprite cluster, the
amount of buffer space reserved for 10 com-
monly used file systems was 37 megabytes.

One segment
This segment (typically one-half megabyte) is
allocated from kernel memory for use by the
cleaner. Since this one segment is allocated
per system, only one file system per system
may be cleaned at a time.

The reserved memory described above makes
Sprite-LFS a very ‘‘bad neighbor’’ as kernel subsys-
tems compete for memory. While memory contin-
ues to become cheaper, a typical laptop system has
only three to eight megabytes of memory, and might
very reasonably expect to have three or more file
systems.

BSD-LFS greatly reduces the memory con-
sumption of LFS. First, BSD-LFS does not use
separate buffers for writing large transfers to disk,
instead it uses the regular buffer cache blocks. For
disk controllers that do not coalesce contiguous
reads, we use 64K staging buffers (briefly allocated
from the regular kernel memory pool) to do
transfers. The size of the staging buffer was set to
the minimum of the maximum transfer sizes for
currently supported disks. However, simulation
results in [CAR92] show that for current disks, the
write size minimizing the read response time is typi-
cally about two tracks; two tracks is close to 64
kilobytes for the disks on our systems.

Secondly, rather than reserving read-only
buffers, we initiate segment writes when the number
of dirty buffers crosses a threshold. That threshold
is currently measured in available buffer headers, not
in physical memory, although systems with an
integrated buffer cache and virtual memory will have
simpler, more straight-forward mechanisms.

Finally, the cleaner is implemented as a user
space process. This approach means that it requires
no dedicated memory, competing for virtual memory
space with the other processes.
Block Accounting

Sprite-LFS maintains a count of the number of
disk blocks available for writing, i.e., the real
number of disk blocks that do not contain useful
data. This count is decremented when blocks are
actually written to disk. This approach implies that
blocks can be successfully written to the cache but
fail to be written to disk if the disk becomes full
before the blocks are actually written. Even if the
disk is not full, all available blocks may reside in
uncleaned segments and new data cannot be written.
To prevent the system from deadlocking or losing
data in these cases, BSD-LFS uses two forms of
accounting.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 5



The first form of block accounting is similar to
that maintained by Sprite-LFS. BSD-LFS maintains
a count of the number of disk blocks that do not
contain useful data. It is decremented whenever a
new block is created in the cache. Since many files
die in the cache [BAKE91], this number is incre-
mented whenever blocks are deleted, even if they
were never written to disk.

The second form of accounting keeps track of
how much space is currently available for writing.
This space is allocated as soon as a dirty block
enters the cache, but is not reclaimed until segments
are cleaned. This count is used to initiate cleaning.
If an application attempts to write data, but there is
no space currently available for writing, the write
will sleep until space is available. These two forms
of accounting guarantee that if the operating system
accepts a write request from the user, barring a
crash, it will perform the write.
Segment Structure and Validation

Sprite-LFS places segment summary blocks at
the end of the segment trusting that if the write con-
taining the segment summary is issued after all other
writes in that partial segment, the presence of the
segment summary validates the partial segment.

Segment Summary Blocks

Sprite Segment Structure
next segment pointer

next summary block pointers

12 34

BSD Segment Structure
next segment pointer

1 2 3 4

Figure 4: Partial Segment Structure Comparison
Between Sprite-LFS and BSD-LFS. The
numbers in each partial show the order in
which the partial segments are created. Sprite-
LFS builds segments back to front, chaining
segment summaries. BSD-LFS builds segments
front to back. After reading a segment sum-
mary block, the location of the next segment
summary block can be easily computed.

This approach requires two assumptions: the disk
controller will not reorder the write requests and the
disk writes the contents of a buffer in the order
presented. Since controllers often reorder writes and
reduce rotational latency by beginning track writes
anywhere on the track, we felt that BSD-LFS could
not make these assumptions. Therefore, we build
segments from front to back, placing the segment
summary at the beginning of each segment as shown
in Figure 4. We compute a checksum across four
bytes of each block in the partial segment, store it in

the segment summary, and use this to verify that a
partial segment is valid. This approach avoids
write-ordering constraints and allows us to write
multiple partial segments without an intervening
seek or rotation. We do not yet have reason to
believe that our checksum is insufficient, however,
methods exist for guaranteeing that any missing sec-
tor can be detected during roll-forward, at the
expense of a bit per disk sector stored in the seg-
ment usage table and segment summary blocks.1

File System Verification
Fast recovery from system failure is desirable,

but reliable recovery from media failure is necessary.
Consequently, the BSD-LFS system provides two
recovery strategies. The first quickly rolls forward
from the last checkpoint, examining data written
between the last checkpoint and the failure. The
second does a complete consistency check of the file
system to recover lost or corrupted data, due to the
corruption of bits on the disk or errant software writ-
ing bad data to the disk. This check is similar to the
functionality of fsck, the file system checker and
recovery agent for FFS, and like fsck, it takes a long
time to run.

As UNIX systems spend a large fraction of
their time, while rebooting, in file system checks, the
speed at which LFS is able to recover its file sys-
tems is considered one of its major advantages.
However, FFS is an extremely robust file system. In
the standard 4BSD implementation, it is possible to
clear the root inode and recover the file system
automatically with fsck(8). This level of robustness
is necessary before users will accept LFS as a file
system in traditional UNIX environments. In terms
of recovery, the advantage of LFS is that writes are
localized, so the file system may be recovered to a
physically consistent state very quickly. The BSD-
LFS implementation permits LFS to recover quickly,
and applications can start running as soon as the
roll-forward has been completed, while basic sanity
checking of the file system is done in the back-
ground. There is the obvious problem of what to do
if the sanity check fails. It is expected that the file
system will be forcibly made read-only, fixed, and
then once again write enabled. These events should
have a limited effect on users as it is unlikely to
ever occur and is even more unlikely to discover an
error in a file currently being written by a user, since
the opening of the file would most likely have
already caused a process or system failure. Of
course, the root file system must always be com-
pletely checked after every reboot, in case a system
failure corrupted it.

1The database community uses a technique called patch
tables to verify multi-sector block writes. Although many
people have heard of this technique, none knew of any
published reference for it.

6 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



The Cleaner
In Sprite-LFS the cleaner is part of the kernel

and implements a single cleaning policy. There are
three problems with this, in addition to the memory
issues discussed in Section 3.1. First, there is no
reason to believe that a single cleaning algorithm
will work well on all workloads. In fact, measure-
ments in [SELT93] show that coalescing randomly
updated files would improve sequential read perfor-
mance dramatically. Second, placing the cleaner in
kernel-space makes it difficult to experiment with
alternate cleaning policies. Third, implementing the
cleaner in the kernel forces the kernel to make pol-
icy decisions (the cleaning algorithm) rather than
simply providing a mechanism. To handle theses
problems, the BSD-LFS cleaner is implemented as a
user process.

The BSD-LFS cleaner communicates with the
kernel via system calls and the read-only ifile.
Those functions that are already handled in the ker-
nel (e.g., translating logical block numbers to disk
addresses via bmap) are made accessible to the
cleaner via system calls. If necessary functionality
did not already exist in the kernel (e.g., reading and
parsing segment summary blocks), it was relegated
to user space.

There may be multiple cleaners, each imple-
menting a different cleaning policy, running in paral-
lel on a single file system. Regardless of the partic-
ular policy, the basic cleaning algorithm works as
follows:

1. Choose one or more target segments and read
them.

2. Decide which blocks are still alive.
3. Write live blocks back to the file system.
4. Mark the segment clean.

The ifile and four new system calls, summarized in
Table 3, provide the cleaner with enough informa-
tion to implement this algorithm. The cleaner reads
the ifile to find out the status of segments in the file
system and selects segments to clean based on this
information. Once a segment is selected, the cleaner
reads the segment from the raw partition and uses
the first segment summary to find out what blocks
reside in that partial segment. It constructs an array
of BLOCK_INFO structures (shown in Figure 5) and
continues scanning partial segments, adding their
blocks to the array. When the entire segment has
been read, and all the BLOCK_INFOs constructed,
the cleaner calls lfs_bmapvwhich returns the current
physical disk address for each BLOCK_INFO. If
the disk address is the same as the location of the
block in the segment being examined by the cleaner,
the block is ‘‘live’’. Live blocks must to be written
back into the file system without changing their
access or modify times, so the cleaner issues an
lfs_markvcall, which is a special write causing these
blocks to be appended into the log without updating
the inode times.

Take an array of inode
number/logical block number
pairs and return the disk
address for each block. Used
to determine if blocks in a
segment are ‘‘live’’.

lfs_bmapv

Take an array of inode
number/logical block number
pairs and append them into
the log. This operation is a
special purpose write call that
rewrites the blocks and inodes
without updating the inode’s
access or modification times.

lfs_markv

Causes the cleaner to sleep
until a given timeout has
elapsed or until another seg-
ment is written. This opera-
tion is used to let the cleaner
pause until there may be more
segments available for clean-
ing.

lfs_segwait

Mark a segment clean. After
the cleaner has rewritten all
the ‘‘live’’ blocks from a seg-
ment, the segment is marked
clean for reuse.

lfs_segclean

Table 3: The System Call Interface for the Cleaner

BLOCK_INFO STRUCTURE

BUFFER POINTER

SEGMENT CREATION TIME

CURRENT DISK ADDRESS

LOGICAL BLOCK NUMBER

INODE NUMBER

Figure 5: BLOCK_INFO Structure used by the
Cleaner. The cleaner calculates the current
disk address for each block from the disk
address of the segment. The kernel specifies
which have been superceded by more recent
versions.

Before rewriting the blocks, the kernel verifies that
none of the blocks have ‘‘died’’ since the cleaner
called lfs_bmapv. Once lfs_markv begins, only
cleaned blocks are written into the log, until
lfs_markv completes. Therefore, if cleaned blocks
die after lfs_markv verifies that they are alive, par-
tial segments written after the lfs_markv partial seg-
ments will reflect that the blocks have died. When
lfs_markv returns, the cleaner calls lfs_segcleanto
mark the segment clean. Finally, when the cleaner
has cleaned enough segments, it calls lfs_segwait,
sleeping until the specified timeout elapses or a new
segment is written into an LFS.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 7



Since the cleaner is responsible for producing
free space, the blocks it writes must get preference
over other dirty blocks to be written to avoid running
out of free space. To ensure that the cleaner can
always run, normal writing is suspended when the
number of clean segments drops to two.

The cleaning simulation results in [ROSE91]
show that selection of segments to clean is an
important design parameter in minimizing cleaning
overhead, and that the cost-benefit policy defined
there does extremely well for the simulated work-
loads. Briefly, each segment is assigned a cleaning
cost and benefit. The cost to clean a segment is
equal to the 1 + utilization (the fraction of ‘‘live’’
data in the segment). The benefitof cleaning a seg-
ment is free bytes generated * age of segment
where free bytes generatedis the fraction of
‘‘dead’’ blocks in the segment (1 − utilization) and
age of segmentis the time of the most recent
modification to a block in that segment. When the
file system needs to reclaim space, the cleaner
selects the segment with the largest benefit to cost
ratio. We retained this policy as the default cleaning
algorithm.

Currently the cost-benefit cleaner is the only
cleaner we have implemented, but two additional
policies are under consideration. The first would run
during idle periods and select segments to clean
based on coalescing and clustering files. The second
would flush blocks in the cache to disk during nor-
mal processing even if they were not dirty, if it
would improve the locality for a given file. These
policies will be analyzed in future work.

4. Implementing LFS in a BSD System

While the last section focused on those design
issues that addressed problems in the design of
Sprite-LFS, this section presents additional design
issues either inherent to LFS or resulting from the
integration of an LFS into 4BSD.
Integration with FFS

The on-disk data structures used by BSD-LFS
are nearly identical to the ones used by FFS. This
decision was made for two reasons. The first one
was that many applications have been written over
the years to interpret and analyze raw FFS struc-
tures. It is reasonable that these tools could continue
to function as before, with minor modifications to
read the structures from a new location. The second
and more important reason was that it was easy and
increased the maintainability of the system. A basic
LFS implementation, without cleaner or reconstruc-
tion tools, but with dumpfs(1) and newfs(1) tools,
was reading and writing from/to the buffer cache in
under two weeks, and reading and writing from/to
the disk in under a month. This implementation was
done by copying the FFS source code and replacing
about 40% of it with new code. The FFS and LFS

implementations have since been merged to share
common code.

In BSD and similar systems (i.e., SunOS,
OSF/1), a file system is defined by two sets of inter-
face functions, vfs operations and vnode operations
[KLEI86]. Vfs operations affect entire file systems
(e.g., mount, unmount, etc.) while vnodeoperations
affect files (open, close, read, write, etc.).

Vnode Operations

Read the block at the given offset,
from a file. The two file systems
calculate block sizes and block
offsets differently, because BSD-
LFS does not implement fragments.

blkatoff

Allocate a new inode. FFS must
consult and update bitmaps to allo-
cate inodes while BSD-LFS
removes the inode from the head of
the free inode list in the ifile.

valloc

Free an inode. FFS must update
bitmaps while BSD-LFS inserts the
inode onto a free list.

vfree

Truncate a file from the given
offset. FFS marks bitmaps to show
that blocks are no longer in use,
while BSD-LFS updates the seg-
ment usage table.

truncate

Update the inode for the given file.
FFS pushes individual inodes syn-
chronously, while BSD-LFS writes
them in a partial segment.

update

Write a block into the buffer cache.
FFS does synchronous writes while
BSD-LFS puts blocks on a queue
for writing in the next segment.

bwrite

Vfs Operations

Get a vnode. FFS computes the
disk address of the inode while
BSD-LFS looks it up in the ifile.

vget

Table 4: New Vnode and Vfs Operations. These
routines allowed us to share 60% of the original
FFS code with BSD-LFS.

File systems could share code at the level of a
vfs or vnode subroutine call, but they could not
share the UNIX naming while implementing their
own disk storage algorithms. To allow sharing of
the UNIX naming, the code common to both the
FFS and BSD-LFS was extracted from the FFS code
and put in a new, generic file system module (UFS).
This code contains all the directory traversal opera-
tions, almost all vnode operations, the inode hash

8 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



table manipulation, quotas, and locking. The com-
mon code is used not only by the FFS and BSD-
LFS, but by the memory file system [MCKU90] as
well. The FFS and BSD-LFS implementations
remain responsible for disk allocation, layout, and
actual I/O.

In moving code from the FFS implementation
into the generic UFS area, it was necessary to add
seven new vnode and vfs operations. Table 4 lists
the operations that were added to facilitate this
integration and explains why they are different for
the two file systems.
Block Sizes

One FFS feature that is not implemented in
BSD-LFS is fragments. The original reason FFS had
fragments was that, given a large block size (neces-
sary to obtain contiguous reads and writes and to
lower the data to meta-data ratio), fragments were
required to minimize internal fragmentation (allo-
cated space that does not contain useful data). LFS
does not require large blocks to obtain contiguous
reads and writes as it sorts blocks in a file by logical
block number, writing them sequentially. Still, large
blocks are desirable to keep the meta-data to data
ratio low. Unfortunately, large blocks can lead to
wasted space if many small files are present. Since
managing fragments complicates the file system, we
decided to allocate progressively larger blocks
instead of using a block/fragment combination. This
improvement has not yet been implemented but is
similar to the multiblock policy simulated in
[SELT91].
The Buffer Cache

Prior to the integration of BSD-LFS into 4BSD,
the buffer cache had been considered file system
independent code. However, the buffer cache con-
tains assumptions about how and when blocks are
written to disk. First, it assumes that a single block
can be flushed to disk, at any time, to reclaim its
memory. There are two problems with this: flushing
blocks a single block at a time would destroy any
possible performance advantage of LFS, and,
because of the modified meta-data and partial seg-
ment summary blocks, LFS may require additional
memory to write. Therefore, BSD-LFS needs to
guarantee that it can obtain any additional buffers it
needs when it writes a segment. To prevent the
buffer cache from trying to flush a single BSD-LFS
page, BSD-LFS puts its dirty buffers on the kernel
LOCKED queue, so that the buffer cache never
attempts to reclaim them. The number of buffers on
the locked queue is compared against two variables,
the start write thresholdand stop access threshold,
to prevent BSD-LFS from using up all the available
buffers. This problem can be much more reasonably
handled by systems with better integration of the
buffer cache and virtual memory.

Data Blocks

Double Indirect Blocks

Indirect Blocks

-1048588

-1036

1049612

1048588

2059

1036

...

...

...

...

-12
1035

12

11

0

...

...

...

-1037

Figure 6: Block-numbering in BSD-LFS. In BSD-
LFS, data blocks are assigned positive block
numbers beginning with 0. Indirect blocks are
numbered with the negative of the first data
block to which they point. Double and triple
indirect blocks are numbered with one less than
the first indirect or double indirect block to
which they point.

Second, the buffer cache assumes that meta-
data (both indirect blocks and inodes) are assigned
disk addresses when they are created and can be
assigned block numbers corresponding to those disk
addresses. In BSD-LFS, the disk address is assigned
when blocks are written to disk instead of when they
are written in to the cache. This lazy assignment of
disk addresses violates the assumption that all blocks
have disk addresses. FFS accesses indirect blocks
by hashing on the raw device vnode and the disk
block number. Since BSD-LFS has no disk address
for these indirect blocks, the block name space had
to incorporate meta-data block numbering. This
naming is done by making block addresses be signed
integers with negative numbers referencing indirect
blocks, while zero and positive numbers reference
data blocks. Figure 6 shows how the blocks are
numbered. Singly indirect blocks take on the nega-
tive of the first data block to which they point. Dou-
bly and triply indirect blocks take the next lower
negative number of the singly or doubly indirect
block to which they point. This approach makes it
simple to traverse the indirect block chains in either
direction, facilitating reading a block or creating
indirect blocks. Sprite-LFS partitions the ‘‘block
name space’’ in a similar fashion. Although it is not
possible for BSD-LFS to use FFS meta-data number-
ing, the reverse is not true. In 4.4BSD, FFS uses the
BSD-LFS numbering and the bmap code has been
moved into the UFS area.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 9



The IFILE
Sprite-LFS maintained the inode map and seg-

ment usage table as kernel data structures which are
written to disk at file system checkpoints. BSD-LFS
places both of these data structures in a read-only
regular file, visible in the file system, called the ifile.
There are three advantages to this approach. First,
while Sprite-LFS and FFS limit the number of
inodes in a file system, BSD-LFS has no such limi-
tation, growing the ifile via the standard file mechan-
isms. Second, it can be treated identically to other
files, in most cases, minimizing the special case
code in the operating system. Finally, as is dis-
cussed in section 3.6, we intended to move the
cleaner into user space, and the ifile is a convenient
mechanism for communication between the operat-
ing system and the cleaner. A detailed view of the
ifile is shown in Figure 7.

FREE LIST POINTER

DISK ADDRESS

VERSION NUMBER

FLAGS

LAST MOD TIME

NUM LIVE BYTES

NUM DIRTY SEGMENTS

NUM CLEAN SEGMENTS

INODE MAP

TABLE

USAGE

SEGMENT

IFILE N

...
IFILE 1

SEGUSE N

...
SEGUSE 1

CLEANER INFO

IFILE

Figure 7: Detail Description of the IFILE. The ifile
is maintained as a regular file with read-only
permission. It facilitates communication
between the file system and the cleaner.

Both Sprite-LFS and BSD-LFS maintain disk
addresses and inode version numbers in the inode
map. The version numbers allow the cleaner to
easily identify groups of blocks belonging to files
that have been truncated or deleted. Sprite-LFS also
keeps the last access time in the inode map to
minimize the number of blocks that need to be writ-
ten when a file system is being used only for read-
ing. Since the access time is eight bytes in 4.4BSD
and maintaining it in the inode map would cause the
ifile to grow significantly larger, BSD-LFS keeps the
access time in the inode. Sprite-LFS allocates
inodes by scanning the inode map sequentially until
it finds a free inode. This scan is costly if the file
system has many inodes. BSD-LFS avoids this scan
by maintaining a free list of inodes in the inode
map.

The segment usage table contains the number
of live bytes in and the last modified time of the
segment, and is largely unchanged from Sprite-LFS.
In order to support multiple and user mode cleaning
processes, we have added a set of flags indicating
whether the segment is clean, contains a superblock,
is currently being written to, or is eligible for clean-
ing.

Directory Operations
Directory operations2 pose a special problem

for LFS. Since the basic premise of LFS is that
operations can be postponed and coalesced to pro-
vide large I/Os, it is counterproductive to retain the
synchronous behavior of directory operations. At the
same time, if a file is created, filled with data and
fsynced, then both the file’s data and the directory
entry for the file must be on disk. Additionally, the
UNIX semantics of directory operations are defined
to preserve ordering (i.e., if the creation of file a
precedes the creation of file b, then any post-
recovery state of a file system that includes file b
must include file a). We believe this semantic is
used in UNIX systems to provide mutual exclusion
and other locking protocols3.

Sprite-LFS preserves the ordering of directory
operations by maintaining a directory operation log
inside the file system log. Before any directory
updates are written to disk, a log entry that describes
the directory operation is written. The log informa-
tion always appears in an earlier segment, or the
same segment, as the actual directory updates. At
recovery time, this log is read and any directory
operations that were not fully completed are rolled
forward. Since this approach requires an additional,
on-disk data structure, and since LFS is itself a log,
we chose a different solution, namely segment batch-
ing.

Since directory operations affect multiple
inodes, we need to guarantee that either both of the
inodes and associated changes get written to disk or
neither does. BSD-LFS has a unit of atomicity, the
partial segment, but it does not have a mechanism
that guarantees that all inodes involved in the same
directory operation will fit into a single partial seg-
ment. Therefore, we introduced a mechanism that
allows operations to span partial segments. At
recovery, we never roll forward a partial segment if
it has an unfinished directory operation and the par-
tial segment that completes the directory operation
did not make it to disk.

The requirements for segment batching are
defined as follows:

1. If any directory operation has occurred since
the last segment was written, the next seg-
ment write will append all dirty blocks from
the ifile (that is, it will be a checkpoint,

2Directory operations include those system calls that
affect more than one inode (typically a directory and a
file) and include: create, link, mkdir, mknod, remove,
rename, rmdir, and symlink.

3We have been unable to find a real example of the
ordering of directory operations being used for this
purpose and are considering removing it as unnecessary
complexity. If you have an example where ordering must
be preserved across system failure, please send us email at
margo@das.harvard.edu!

10 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



except that the superblock need not be
updated).

2. During recovery, any writes that were part of
a directory operation write will be ignored
unless the entire write completed. A com-
pleted write can be identified if all dirty
blocks of the ifile and its inode were success-
fully written to disk.

This definition is essentially a transaction
where the writing of the ifile inode to disk is the
commit operation. In this way, there is a coherent
snapshot of the file system at some point after each
directory operation. The penalty is that checkpoints
are written more frequently in contrast to Sprite-
LFS’s approach that wrote additional logging infor-
mation to disk.

The BSD-LFS implementation requires syn-
chronizing directory operations and segment writing.
Each time a directory operation is performed, the
affected vnodes are marked. When the segment
writer builds a segment, it collects vnodes in two
passes. In the first pass, all unmarked vnodes (those
not participating in directory operations) are col-
lected, and during the second pass those vnodes that
are marked are collected. If any vnodes are found
during the second pass, this means that there are
directory operations present in the current segment,
and the segment is marked, identifying it as contain-
ing a directory operation. To prevent directory
operations from being partially reflected in a seg-
ment, no new directory operations are begun while
the segment writer is in pass two, and the segment
writer cannot begin pass two while any directory
operation is in progress.

When recovery is run, the file system can be in
one of three possible states with regard to directory
operations:

1. The system shut down cleanly so that the file
system may be mounted as is.

2. There are valid segments following the last
checkpoint and the last one was a completed
directory-operation write. Therefore, all that
is required before mounting is to rewrite the
superblock to reflect the address of the ifile
inode and the current end of the log.

3. There are valid segments following the last
checkpoint or directory operation write. As in
the previous case, the system recovers to the
last completed directory operation write and
then rolls forward the segments from there to
either the end of the log or the first segment
beginning a directory operation that is never
finished. Then the recovery process writes a
checkpoint and updates the superblock.

While rolling forward, two flags are used in the
segment summaries: SS_DIROP and SS_CONT.
SS_DIROP specifies that a directory operation
appears in the partial segment. SS_CONT specifies
that the directory operation spans multiple partial

segments. If the recovery agent finds a segment
with both SS_DIROP and SS_CONT set, it ignores
all such partial segments until it finds a later partial
segment with SS_DIROP set and SS_CONT unset
(i.e., the end of the directory operation write). If no
such partial segment is ever found, then all the seg-
ments from the initial directory operation on are dis-
carded. Since partial segments are small [BAKE92]
this should rarely, if ever, happen.
Synchronization

To maintain the delicate balance between
buffer management, free space accounting and the
cleaner, synchronization between the components of
the system must be carefully managed. Figure 8
shows each of the synchronization relationships.

Buffers (locked_queue_count)

A waits for B on "address" due to "Reason"
Reason (address)

BA

Dirops (lfs_writer)

Space (lfs_avail)

work (lfs_allclean_wakeup)

work (lfs_allclean_wakeup)

Segments (lfs_avail)

Writing (lfs_dirops)

Writer

Proc

Cleaner

Figure 8: Synchronization Relationships in BSD-
LFS. The cleaner has precedence over all com-
ponents in the system. It waits on the
lfs_allclean_wakeupcondition and wakes the
segment writer or user processes using the
lfs_avail condition. The segment writer and
user processes maintain directory operation syn-
chronization through the lfs_dirop and
lfs_writer conditions. User processes doing
writes wait on the locked_queue_countwhen
the number of dirty buffers held by BSD-LFS
exceeds a system limit.

The cleaner is given precedence over all other pro-
cessing in the system to guarantee that clean seg-
ments are available if the file system has space. It
has its own event variable on which it waits for new
work (lfs_allclean_wakeup). The segment writer and
user processes will defer to the cleaner if the disk
system does not have enough clean space. A user
process detects this condition when it attempts to
write a block but the block accounting indicates that
there is no space available. The segment writer
detects this condition when it attempts to begin writ-
ing to a new segment and the number of clean seg-
ments has reached two.

In addition to cleaner synchronization, the seg-
ment writer and user processes synchronize on the
the availability of buffer headers. When the number
of buffer headers drops below the start write thres-
hold a segment write is initiated. If a write request

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 11



would push the number of available buffer headers
below the stop access threshold, the writing process
waits until a segment write completes, making more
buffer headers available. Finally, there is the direc-
tory operation synchronization. User processes wait
on the lfs_dirop condition and the segment writer
waits on lfs_writer condition.
Minor Modifications

There are a few additional changes to Sprite-
LFS. To provide more robust recovery we replicate
the superblock throughout the file system, as in FFS.
Since the file system meta-data is stored in the ifile,
we have no need for separate checkpoint regions,
and simply store the disk address of the ifile inode in
the superblock. Note that it is not necessary to keep
a duplicate ifile since it can be reconstructed from
segment summary information, if necessary.

5. Performance Measurements

This chapter compares the performance of the
redesigned log-structured file system to more tradi-
tional, read-optimized file systems on a variety of
benchmarks based on real workloads. Read-
optimized policies that favor large blocks or contigu-
ous layout perform similarly [SELT91], so we
analyze FFS and a variant of FFS that does extent-
like allocation. The new log-structured file system
was written in November of 1991 and was left
largely untouched until late spring 1992, and is
therefore a completely untuned implementation.
While design decisions took into account the
expected performance impact, at this point there is
little empirical evidence to support those decisions.

The file systems against which LFS is com-
pared are the regular fast file system (FFS), and an
enhanced version of FFS similar to that described in
[MCVO91], referred to as EFS for the rest of this
paper.

EFS provides extent-based file system behavior
without changing the underlying structures of FFS,
by allocating blocks sequentially on disk and cluster-
ing multiple block requests. FFS is parameterized
by a variable called maxcontig that specifies how
many logically sequential disk blocks should be allo-
cated contiguously. When maxcontig is large (equal
to a track), FFS does what is essentially track alloca-
tion. In EFS, sequential dirty buffers are accumu-
lated in the cache, and when an extent’s worth (i.e.,
maxcontigblocks) have been collected, they are bun-
dled together into a cluster, providing extent-based
writing.

To provide extent-based reading, the interaction
between the buffer cache and the disk was modified.
Typically, before a block is read from disk, the
bmap routine is called to translate logical block
addresses to physical disk block addresses. The
block is then read from disk and the next block is
requested. Since I/O interrupts are not handled

instantaneously, the disk is usually unable to respond
to two contiguous requests on the same rotation, so
sequentially allocated blocks incur the cost of an
entire rotation. For both EFS and BSD-LFS, bmap
was extended to return, not only the physical disk
address, but the number of contiguous blocks that
follow the requested block. Then, rather than read-
ing one block at a time and requesting the next
block asynchronously, the file system reads many
contiguous blocks in a single request, providing
extent-based reading. Because BSD-LFS potentially
allocates many blocks contiguously, it may miss
rotations between reading collections of blocks.
Since EFS uses the FFS allocator, it leaves a rota-
tional delay between clusters of blocks and does not
pay this penalty.
The Evaluation Platform

Our benchmarking configuration consists of a
Hewlett-Packard series 9000/300 computer with a 25
Mhz MC68040 processor. It has 16 megabytes of
main memory, and an HP RD335 with an HPIB4

interface. The hardware configuration is summarized
in Table 5. The system is running the 4.4BSD-Alpha
operating system and all measurements were taken
with the system running single-user, unattached to
any network. Each of the file systems uses a 4K
block size with FFS and EFS having 1K fragments.

Disk (HP RD335)
Average seek 16.6 ms
Single rotation 15.0 ms
Transfer time 1 MB / sec
Track size 56.5 KB / track
CPU 25 Mhz
MIPS 10-12

Table 5: Hardware Specifications

The three file systems being evaluated run in
the same operating system kernel and share most of
their source code. There are approximately 6000
lines of shared C code, 4000 lines of LFS-specific
code, and 3500 lines of FFS-specific code. EFS uses
the same source code as FFS plus an additional 500
lines of clustering code, of which 300 are also used
by BSD-LFS for read clustering.

Each of the next sections describes a bench-
mark and presents performance analysis for each file
system. The first benchmark analyzes raw file sys-
tem performance. The next two benchmarks attempt
to model specific workloads. A time-sharing
environment is modeled by a software development
benchmark, and a database environment is modeled
by the industry-standard TPCB benchmark
[TPCB90].

4HPIB is an unbelievably slow interface as is shown in
Table 6.

12 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



Raw File System Performance
The goal of this test is to measure the max-

imum throughput that can be expected from the
given disk and system configuration for each of the
file systems. For this test, the three file systems are
compared against the maximum speed at which the
operating system can write directly to the disk. The
benchmark consists of either reading or writing a
large amount of data sequentially to a newly created
file system or a raw partition. Two versions of this
test are run. In the first, the data is appended, while
in the second the same data is repeatedly overwrit-
ten. While FFS and EFS merely rewrite the existing
data blocks, BSD-LFS is continually allocating new
blocks and marking the old blocks as no longer in
use, thus requiring more CPU processing than any of
the other file systems. The results for both the
APPEND and OVERWRITE tests are shown in
Table 6.

APPENDS

Writes Reads
Transfer Unit .5 M 1 M 2 M .5M 1 M 2 M

RAW 0.31 (0.00) 0.31 (0.00) 0.31 (0.00) 0.45 (0.01) 0.45 (0.00) 0.45 (0.00)

FFS 0.11 (0.00) 0.11 (0.00) 0.12 (0.00) 0.14 (0.00) 0.14 (0.00) 0.14 (0.00)

EFS 0.26 (0.02) 0.28 (0.01) 0.28 (0.01) 0.38 (0.02) 0.38 (0.00) 0.36 (0.03)

LFS 0.27 (0.00) 0.28 (0.00) 0.29 (0.00) 0.33 (0.00) 0.36 (0.00) 0.37 (0.00)

OVERWRITES

Writes Reads
Transfer Unit .5 M 1 M 2 M .5M 1 M 2 M

RAW 0.30 (0.00) 0.30 (0.00) 0.30 (0.00) 0.43 (0.00) 0.43 (0.00) 0.43 (0.00)

FFS 0.12 (0.00) 0.12 (0.00) 0.12 (0.00) 0.12 (0.00) 0.14 (0.00) 0.14 (0.00)

EFS 0.29 (0.01) 0.30 (0.00) 0.28 (0.00) 0.35 (0.00) 0.37 (0.00) 0.37 (0.00)

LFS 0.25 (0.00) 0.26 (0.00) 0.28 (0.00) 0.33 (0.00) 0.35 (0.00) 0.36 (0.00)

BSD-LFS Overwrite Performance with Cleaner Running

Writes Reads
Transfer Unit .5 M 1 M 2 M .5M 1 M 2 M

0% Utilization 0.25 (0.00) 0.26 (0.00) 0.28 (0.00) 0.33 (0.03) 0.35 (0.02) 0.36 (0.01)

50% Utilization 0.24 (0.01) 0.26 (0.01) 0.27 (0.03) 0.33 (0.03) 0.35 (0.02) 0.36 (0.01)

Table 6: Raw File System Performance (MB/sec). The first two tables show the raw file system performance in
megabytes/second. The numbers shown are averages of ten runs with the standard deviation in parentheses.
In the first table, new data is appended to a file each time, while in the second, the data is overwritten.
The benchmark issues the writes in .5 megabyte, 1 megabyte, or 2 megabyte requests as specified by the
columns. The third table shows the overwrite test for BSD-LFS when the cleaner is running. In the first
row, the same file is repeatedly overwritten, leaving very little work for the cleaner while in the second,
alternating files are overwritten so that each segment cleaned is approximately half full.

Given the sequential layout of both BSD-LFS
and EFS, the expectation is that both should perform
comparably to the speed of the raw disk. For the
write test, both are nearly identical and within 10%
of the raw disk speed. This 10% difference is an
approximation of the file system overhead. In BSD-
LFS, the overhead comes from creating segments,
while in EFS the overhead comes from doing block
allocation. Since FFS does sequential allocation
with a rotational delay between each block, the
expectation is that it should exhibit performance
approximately half that of EFS and BSD-LFS. The
performance measurements support this hypothesis.

FFS demonstrates read performance approxi-
mately 10% better than write performance for the
append tests. The 10% improvement is due partially
to read-ahead and partially to avoiding the file sys-
tem block allocation overhead required during writ-
ing. Since EFS and BSD-LFS do sequential alloca-
tion, the expectation is that the read performance

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 13



should be comparable to that of the raw disk. How-
ever, Table 6 shows that BSD-LFS and EFS are
achieving only 70% and 85% of the raw disk perfor-
mance respectively. The explanation for BSD-LFS
lies in the mapping between the file written and the
on-disk segment layout. The file system is
configured with one megabyte segments. A one
megabyte segment does not hold one megabyte
worth of data, due to the presence of meta-data (seg-
ment summary blocks, inode blocks, and indirect
blocks) in the segment. As a result, the requests
span segment boundaries, and the resulting seek
often incurs the penalty of a full rotation. The
extent-based system does better because it takes
advantage of FFS’ understanding of rotational delay.
It pays only a rotational delay (on the order of 0.25
rotations) between clusters of blocks. All the sys-
tems suffer a small (approximately 5%) performance
penalty for the overwrite test, since a disk seek is
required before each read is issued.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

FFS 3.30 13.20 7.00 16.10 48.80

EFS 3.30 11.80 6.90 13.20 46.00

LFS 1.30 13.70 8.00 16.60 46.20

Table 7: Single-User Andrew Benchmark Results. This table shows the average elapsed time, in seconds, for
each phase of the Andrew benchmark. As expected, BSD-LFS does best on phase 1, the directory creation
portion of the text. However, in the remaining tests, the extent-based system provides the best performance
because it benefits from contiguous layout on both reading and writing, but does not vie for disk servicing
with the cleaner.

The third table in Table 6 shows impact of the
cleaner on BSD-LFS. In the first row (0% utiliza-
tion), the same file is overwritten repeatedly. As a
result, the only valid data is in the current segment,
and the cleaner does very little work to reclaim
space. In the second row, (50% utilization), every
other file is overwritten, leaving each segment half
full. In this case, the cleaner copies one-half seg-
ment, on average, to reclaim one segment of space.

As expected, the cleaner had virtually no
impact during the read test (since there was no data
being overwritten). For the 0% utilization test, there
is also no impact on performance which is not
surprising. Even when each segment is half utilized,
the impact is under 10%, However, when the cleaner
is running, performance is less predictable as is evi-
denced by the 10% standard deviations observed dur-
ing those tests.

The remaining tests are all designed to stress
the file systems. For BSD-LFS, that means the
cleaner is running and the disk systems are fairly full
(above 80%), so that the cleaner is forced to reclaim
space. For EFS and FFS, it becomes more difficult
for them to allocate blocks optimally when they run
on fairly full file systems, so degradation is expected
for those systems as well.

Software Development Workload
The next tests evaluate BSD-LFS in a typical

software development environment. The Andrew
benchmark [OUST90] is often used for this type of
measurement. The Andrew benchmark was created
by M. Satyanarayanan of the Information Technol-
ogy Center at Carnegie-Mellon University. It con-
tains five phases.

1. Create a directory hierarchy.
2. Make several copies of the data.
3. Recursively examine the status of every file.
4. Examine every byte of every file.
5. Compile several of the files.

Unfortunately, the test set for the Andrew bench-
mark is small, and main-memory file caching can
make the results uninteresting. To exercise the file
systems, this benchmark is run both single-user and
multi-user, and the system’s cache is kept small (1.6
megabytes). Table 7 shows the performance of the
standard Andrew benchmark with multi-user results
presented in Table 8.

As expected, BSD-LFS does quite well on the
directory creation phase of the benchmark (Phase 1),
as BSD-LFS avoids synchronous writes and pays no
allocation overhead during directory creation. How-
ever, the remaining phases of the test exercise read
performance, and EFS performs the best with BSD-
LFS and FFS performing comparably. Although
BSD-LFS can take advantage of contiguous layout,
as does EFS, it exhibits poorer performance due to
I/Os issued by the cleaner. In this test, the cleaner
pays a substantial performance penalty during clean-
ing, because it reads entire segments before deter-
mining which blocks are ‘‘live’’. Since the files in
this benchmark are created and deleted in large
groups, most of the blocks read by the cleaner are
discarded and most of the reads accomplished noth-
ing.

These single-user results are significantly dif-
ferent from those of Sprite-LFS discussed in
[ROSE92]. There are several reasons for this. As
mentioned earlier, a goal of this test is to stress the
file systems, so both the cache and the file system
are small. The small cache (1.6 megabytes) ensures
that both read and write performance to the disk can
be measured. The small file system guarantees that

14 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



the cleaner has work to do, so its impact on system
performance can be analyzed.

For the multi-user benchmark, four separate
trees are created and the benchmark runs con-
currently in each tree. The reported results are aver-
aged across ten runs on each of the four trees for a
total of forty iterations. The multi-user Andrew
results are shown in Table 8.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

FFS 10.68 36.17 19.18 36.27 167.40

EFS 9.12 34.25 16.90 32.55 168.75

LFS 1.02 22.30 19.23 31.10 183.20

Table 8: Multi-User Andrew Benchmark Results. This table shows the average elapsed time, in seconds, of
each phase of the Andrew benchmark with four concurrent invocations. The times are less than four times
slower than the single-user times due to the overlapped CPU and I/O time. The multi-user test emphasizes
the strengths and weaknesses of BSD-LFS. It performs well in phases 1 and 2 which are predominantly
writes and in phase 4 where temporal locality produces good read performance. However, performance
suffers in Phase 5 where read and write traffic is interspersed and the impact of the cleaner is most severe.

Transactions Elapsed Time
per second 1000 transactions

FFS 8.9 112.51 (1.2)

EFS 9.0 111.03 (1.3)

LFS (no cleaner) 10.8 92.76 (0.87)
LFS (cleaner, 1M) 4.3 232.57 (16.84)
LFS (cleaner, 128K) 5.0 200.57 (68.72)

Table 9: TPCB Performance Results for FFS, EFS, and BSD-LFS. The TPCB database was scaled for a 10
TPS system (1,000,000 accounts, 100 tellers, and 10 branches). The elapsed time is reported for runs of
1000 transactions. The BSD-LFS results show performance before the cleaner begins to run and after the
cleaner begins to run. The after-cleaner performance is shown for file systems with segment sizes of one
megabyte and 128K.

In a multi-user environment, the strengths and
weaknesses of BSD-LFS become more apparent.
Phase 1 performance is exceptionally good because
BSD-LFS is not doing synchronous file and directory
creation. Since phase 2 is write intensive, BSD-LFS
performs approximately 35% better than its nearest
competitor (EFS), because it pays very few seeks in
writing. In phase 3, where every file’s inode is
examined, EFS demonstrate approximately 10%
better performance then either LFS or FFS. In phase
4 every byte of every file is examined. Both LFS
and EFS achieve approxmiately a 10% performance
improvement over FFS due to the contiguous nature
of their reads. LFS performs slightly better because
the different trees were likely to be created at
approximately the same time, and their data is likely
to be physically close on the disk. Phase 5
highlights the weakness in LFS. This phase is
characterized by interspersed reads and writes. Once
again, the large reads and writes performed by the
cleaner compete with synchronous read requests,

making LFS the poorest performer by approximately
8%. When the cleaner is forced to run, synchronous
I/O performance, typically read performance, suffers.
The next benchmark demonstrates this even more
dramatically.
Transaction Processing Performance

The industry-standard TPCB is used as a
database-oriented test. Our benchmark is a modified
version of the TPCB benchmark, configured for a 10
transaction per second system. While the benchmark
is designed to be run multi-user, we show only
single-user (worst case) results. Additionally, we do
not keep redundant logs and we do not model ‘‘think
time’’ between transactions. Each data point
represents ten runs of 1000 transactions. The count-
ing of transactions is not begun until the buffer pool
has filled, so the measurements do not exhibit any
artifacts of an empty cache. Transaction run lengths
of greater than 1000 were measured, but there was
no noticeable change in performance after the first
1000 transactions.

When the cleaner is not running, BSD-LFS
behaves as predicted in simulation [SELT90]. It
shows approximately 20% improvement over the
extent-based system. However, the impact of the
cleaner is far worse than was expected. With one
megabyte segments and the small random I/Os done
by TPCB, most segments have only a few dead
blocks available for reclamation. As a result, the

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 15



cleaner does large reads as well as large writes to
reclaim space. Each of these large I/O operations
busies the disk for long periods of time, making the
TPCB reads wait.

In an attempt to reduce this wait time, a second
set of tests were run with a smaller segment size
(128 kilobytes). The performance before cleaning is
the same as for the 1 megabyte case, but the after-
cleaning performance is slightly better (about 13%).
In either case, the impact of the cleaner is so severe
that BSD-LFS cannot compete with either FFS or
EFS. For the tests presented here, the disk was run-
ning at 85% utilization, and the cleaner was continu-
ally running. Note that FFS and EFS allocate up to
90% of the disk capacity without exhibiting any per-
formance degradation [MCKU84]. This result shows
that log-structured file systems are much more sensi-
tive to the disk utilization. While the user-level
cleaner avoids synchronization costs between user
processes and the kernel, it cannot avoid the conten-
tion on the disk arm.

(file 1)Data Blocks (file 1)

3

2

1

Inode BlockLive Data

Indirect Block
Inode Block

Deleted Data

Clean Segment

. . .

. . .

Figure 10: Segment Layout After Cleaning. The
cleaner cleaned segment 1. In doing so, it
rewrote the indirect block that previously
resided in segment 2. Now that block has been
deleted and the cleaner will be able to reclaim
a disk block by cleaning segment 2.

Clean Segment

Deleted Data

...

Inode Block

Indirect Block
Live Data Inode Block

1

2

3

Data Blocks (file 1)

(file 1)

Figure 9: Segment Layout for Bad Cleaner
Behavior. Segments 1 and 2 contain data. The
cleaner will attempt to free up the one disk
block of deleted data from segment 1.
However, to rewrite the data in segment 1, it
will dirty the meta-data block currently in
segment 2. As a result, the cleaner will not
generate any additional clean blocks.

6. Conclusions

The implementation of BSD-LFS highlighted
some subtleties in the overall LFS strategy. While
allocation in BSD-LFS is simpler than in extent-
based file systems or file systems like FFS, the
management of memory is much more complicated.
The Sprite-LFS implementation addressed this prob-
lem by reserving large amounts of memory. Since
this is not feasible in most environments, a more
complex mechanism to manage buffer and memory
requirements is necessary. LFS operates best when
it can write out many dirty buffers at once. How-
ever, holding dirty data in memory until much data

has accumulated requires consuming more memory
than might be desirable and may not be allowed
(e.g., NFS semantics require synchronous writes). In
addition, the act of writing a segment requires allo-
cation of additional memory (for segment summaries
and on-disk inodes), so segment writing needs to be
initiated before memory becomes a critical resource
to avoid memory thrashing or deadlock.

The delayed allocation of BSD-LFS makes
accounting of available free space more complex
than that in a pre-allocated system like FFS. In
Sprite-LFS, the space available to a file system is
the sum of the disk space and the buffer pool. As a
result, data is written to the buffer pool for which
there might not be free space available on disk.
Since the applications that wrote the data may have
exited before the data is written to disk, there is no
way to report the ‘‘out of disk space’’ condition.
This failure to report errors is unacceptable in a pro-
duction environment. To avoid this phenomena,
available space accounting must be done as dirty
blocks enter the cache instead of when they are writ-
ten from cache to disk. Accounting for the actual
disk space required is difficult because inodes are
not written into dirty buffers and segment summaries
are not created until the segment is written. Every
time an inode is modified in the inode cache, a count
of inodes to be written is incremented. When blocks
are dirtied, the number of available disk blocks is
decremented. To decide if there is enough disk
space to allow another write into the cache, the
number of segment summaries necessary to write
what is in the cache is computed, added to the
number of inode blocks necessary to write the dirty
inodes and compared to the amount of space

16 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA



available on the disk. To create more available disk
space, either the cleaner must run or dirty blocks in
the cache must be deleted.

A third and more critical situation arises when
the cleaner consumes more disk space than it frees
during cleaning. Although this cannot happen over
the long term, during short term intervals it can.
Consider the simple three segment file system shown
below in Figure 9. Segment 1 contains one free
block (the first block marked ‘‘Deleted Data’’).
However, cleaning that segment requires rewriting
the indirect block for file 1. Therefore, after seg-
ment 1 is cleaned, segment 3 will be full, segment 1
will be clean, and one block in segment 2 will be
dead (Figure 10). While the total number of live
blocks on the system has not increased, it has not
decreased either, and the act of cleaning the segment
has not created any additional space. It is possible
to construct cases where cleaning a segment actually
decreases the amount of available space (consider a
segment that contains N blocks from N different
files, each of which is accessed via an indirect block
and the indirect block resides in a different seg-
ment). Therefore two segments are reserved for the
cleaner. One guarantees that the cleaner can run at
all, and the second ensures that small overflows can
be accommodated until more space is reclaimed.

7. Future Directions

The novel structures of BSD-LFS makes it an
exciting vehicle for adding functionality to the file
system. For example, two characteristics of BSD-
LFS make it desirable for transaction processing.
First, the multiple, random writes of a single transac-
tion get bundled and written at sequential speeds, so
we expect a dramatic performance improvement in
multi-user transaction applications, if sufficient disk
space is available. Second, since data is never
overwritten, before-images of updated pages exist in
the file system until reclaimed by the cleaner. An
implementation that exploits these two characteris-
tics is described and analyzed in [SELT93] on
Sprite-LFS, and we plan on doing a prototype imple-
mentation of transactions in BSD-LFS.

The ‘‘no-overwrite’’ characteristic of BSD-LFS
makes it ideal for supporting unrm which would
undo a file deletion. Saving a single copy of a file
is no more difficult than changing the cleaner policy
to not reclaim space from the last version of a file,
and the only challenge is finding the old inode.
More sophisticated versioning should be only margi-
nally more complicated.

Also, the sequential nature of BSD-LFS write
patterns makes it nearly ideal for tertiary storage
devices [KOHL93]. LFS may be extended to
include multiple devices in a single file system. If
one or more of these devices is a robotic storage
device, such as a tape stacker, then the file system
may have tremendous storage capacity. Such a file

system would be particularly suitable for on-line
archival or backup storage.

An early version of the BSD-LFS implementa-
tion shipped as part of the 4.4BSD-Alpha release.
The current version described in this paper will be
available as part of 4.4BSD. Additionally, the FFS
shipped with 4.4BSD will contain the enhancements
for clustered reading and writing.

8. Acknowledgements

Mendel Rosenblum and John Ousterhout are
responsible for the original design and implementa-
tion of Sprite-LFS. Without their work, we never
would have tried any of this. We also wish to
express our gratitude to John Wilkes and Hewlett-
Packard for their support.

9. References

[BAKE91] Baker, M., Hartman., J., Kupfer., M.,
Shirriff, L., Ousterhout, J., ‘‘Measurements of a
Distributed File System,’’ Proceedings of the
13th Symposium on Operating System Princi-
ples, Monterey, CA, October 1991, 198-212.
Published as Operating Systems Review 25, 5
(October 1991).

[BAKE92] Baker, M., Asami, S., Deprit, E.,
Ousterhout, S., Seltzer, M., ‘‘Non-Volatile
Memory for Fast, Reliable File Systems,’’ to
appear in Proceedings of the Fifth Conference
on Architectural Support for Programming
Languages and Operating Systems, Boston,
MA, October 1992.

[CAR92] Carson, S., Setia, S., ‘‘Optimal Write
Batch Size in Log-structured File Systems’’,
Proceedings of 1992 Usenix Workshop on File
Systems, Ann Arbor, MI, May 21-22 1992, 79-
91.

[KAZA90] Kazar, M., Leverett, B., Anderson, O.,
Vasilis, A., Bottos, B., Chutani, S., Everhart,
C., Mason, A., Tu, S., Zayas, E., ‘‘DECorum
File System Architectural Overview,’’ Proceed-
ings of the 1990 Summer UsenixAnaheim, CA,
June 1990, 151-164.

[HAER83] Haerder, T. Reuter, A. ‘‘Principles of
Transaction-Oriented Database Recovery’’,
Computing Surveys, 15(4); 1983, 237-318.

[KLEI86] S. R. Kleiman, "Vnodes: An Architecture
for Multiple File System Types in Sun UNIX,"
Usenix Conference Proceedings, June 1986,
238-247.

[KOHL93] Kohl, J., Staelin, C., Stonebraker, M.,
‘‘Highlight: Using a Log-structured File Sys-
tem for Tertiary Storage Management,’’
Proceedings 1993 Winter Usenix, San Diego,
CA, January 1993.

[MCKU84] Marshall Kirk McKusick, William Joy,
Sam Leffler, and R. S. Fabry, ‘‘A Fast File
System for UNIX’’, ACM Transactions on

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 17



Computer Systems, 2(3), August 1984, 181-197.
[MCKU90] Marshall Kirk McKusick, Michael J.

Karels, Keith Bostic, ‘‘A Pageable Memory
Based Filesystem,’’ Proceedings of the 1990
Summer Usenix Technical Conference,
Anaheim, CA, June 1990, 137-144.

[MORA90] Moran, J., Sandberg, R., Coleman, D.,
Kepecs, J., Lyon, B., Breaking Through the
NFS Performance Barrier,’’ Proceedings of the
1990 Spring European Unix Users Group,
Munich, Germany, 199-206, April 1990.

[MCVO91] McVoy, L., Kleiman, S., ‘‘Extent-like
Performance from a Unix File System’’,
Proceedings Winter Usenix 1991, Dallas, TX,
January 1991, 33-44.

[OUST85] Ousterhout, J., Costa, H., Harrison, D.,
Kunze, J., Kupfer, M., Thompson, J., ‘‘A
Trace-Driven Analysis of the UNIX 4.2BSD
File System,’’ Proceedings of the Tenth Sympo-
sium on Operating System Principles,
December 1985, 15-24. Published as Operating
Systems Review 19, 5 (December 1985).

[OUST88] Ousterhout, J., Douglis, F., ‘‘Beating the
I/O Bottleneck: A Case for Log Structured File
Systems’’, Computer Science Division (EECS),
University of California, Berkeley, UCB/CSD
88/467, October 1988.

[OUST90] Ousterhout, J. ‘‘Why Aren’t Operating
Systems Getting Faster As Fast as Hardware?’’
Proceedings of the 1990 Summer Usenix,
Anaheim, CA, June 1990, 247-256.

[ROSE90] Rosenblum, M., Ousterhout, J. K., ‘‘The
LFS Storage Manager’’, Proceedings of the
1990 Summer Usenix, Anaheim, CA, June
1990, 315-324.

[ROSE91] Rosenblum, M., Ousterhout, J. K., ‘‘The
Design and Implementation of a Log-Structured
File System’’, Proceedings of the Symposium
on Operating System Principles, Monterey, CA,
October 1991, 1-15. Published as Operating
Systems Review 25, 5 (October 1991). Also
available as Transactions on Computer Systems
10, 1 (February 1992), 26-52.

[ROSE92] Rosenblum, M., ‘‘The Design and Imple-
mentation of a Log-structured File System’’,
PhD Thesis, University of California, Berkeley,
June 1992. Also available as Technical Report
UCB/CSD 92/696.

[SELT90] Seltzer, M., Chen, P., Ousterhout, J.,
‘‘Disk Scheduling Revisited,’’ Proceedings of
the 1990 Winter Usenix, Washington, D.C.,
January 1990, 313-324.

[SELT91] Seltzer, M., Stonebraker, M., ‘‘Read
Optimized File Systems: A Performance
Evaluation,’’ Proceedings 7th Annual Interna-
tional Conference on Data Engineering, Kobe,
Japan, April 1991, 602-611.

[SELT93] Seltzer, M., ‘‘Transaction Support in a
Log-Structured File System,’’ To appear in the

Proceedings of the 1993 International Confer-
ence on Data Engineering, April 1993, Vienna.

[THOM78] Thompson, K., ‘‘Unix Implementation’’,
Bell Systems Technical Journal, 57(6), part 2,
July-August 1978, 1931-1946.

[TPCB90] Transaction Processing Performance
Council, ‘‘TPC Benchmark B’’, Standard
Specification, Waterside Associates, Fremont,
CA., 1990.

Author Information

Margo I. Seltzer is an Assistant Professor at
Harvard University. Her research interests include
file systems, databases, and transaction processing
systems. She spent several years working at startup
companies designing and implementing file systems
and transaction processing software and designing
microprocessors. Ms. Seltzer completed her Ph.D.
in Computer Science at the University of California,
Berkeley in December of 1992 and received her AB
in Applied Mathematics from Harvard/Radcliffe Col-
lege in 1983.

Keith Bostic has been a member of the Berke-
ley Computer Systems Research Group (CSRG)
since 1986. In this capacity, he was the principle
architect of the 2.10BSD release of the Berkeley
Software Distribution for PDP-11’s. He is currently
one of the two principal developers in the CSRG,
continuing the development of future versions of
Berkeley UNIX. He received his undergraduate
degree in Statistics and his Masters degree in Electr-
ical Engineering from George Washington Univer-
sity. He is a member of the ACM, the IEEE and
several POSIX working groups.

Dr. Marshall Kirk McKusick got his undergra-
duate degree in Electrical Engineering from Cornell
University. His graduate work was done at the
University of California, where he received Masters
degrees in Computer Science and Business Adminis-
tration, and a Ph.D. in the area of programming
languages. While at Berkeley he implemented the
4.2BSD fast file system and was involved in imple-
menting the Berkeley Pascal system. He currently is
the Research Computer Scientist at the Berkeley
Computer Systems Research Group, continuing the
development of future versions of Berkeley UNIX.
He is past-president of the Usenix Association, and a
member of ACM and IEEE.

Carl Staelin works for Hewlett-Packard Labora-
tories in the Berkeley Science Center and the Con-
current Systems Project. His research interests
include high performance file system design, and ter-
tiary storage file systems. As part of the Science
Center he is currently working with Project Sequoia
at the University of California at Berkeley. He
received his PhD in Computer Science from Prince-
ton University in 1992 in high performance file sys-
tem design.


