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A Primer on Provenance

Better understanding data requires tracking its history and context
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Ripduman Sohan, Margo Seltzer, Andy Hopper

Assessing the quality or validity of a piece of data is not usually done in isolation. You typically 
examine the context in which the data appears and try to determine its original sources or review 
the process through which it was created. This is not so straightforward when dealing with digital 
data, however: the result of a computation might have been derived from numerous sources and by 
applying complex successive transformations, possibly over long periods of time.

As the quantity of data that contributes to a particular result increases, keeping track of how 
different sources and transformations are related to each other becomes more difficult. This 
constrains the ability to answer questions regarding a result’s history, such as: What were the 
underlying assumptions on which the result is based? Under what conditions does it remain valid? 
What other results were derived from the same data sources?

The metadata that needs to be systematically captured to answer those (or similar) questions is 
called provenance (or lineage) and refers to a graph describing the relationships among all the elements 
(sources, processing steps, contextual information and dependencies) that contributed to the 
existence of a piece of data.

This article presents current research in this field from a practical perspective, discussing not only 
existing systems and the fundamental concepts needed for using them in applications today, but 
also future challenges and opportunities. A number of use cases illustrate how provenance might be 
useful in practice.

WHERE DOES DATA COME FROM?

Consider the need to understand the conditions, parameters, or assumptions behind a given result—
in other words, the ability to point at a piece of data, e.g. research result or anomaly in a system 
trace, and ask: Where did it come from? This would be useful for experiments involving digital data 
(such as in silico experiments in biology, other types of numerical simulations, or system evaluations 
in computer science).

The provenance for each run of such experiments contains the links between results and 
corresponding starting conditions or configuration parameters. This becomes important especially 
when considering processing pipelines, where some early results serve as the basis of further 
experiments. Manually tracking all the parameters from a final result through intermediary data 
back to the original sources is burdensome and error-prone.

Of course, researchers are not the only ones who need this type of tracking. The same techniques 
could be used to help people in the business or financial sectors—for example, figuring out the set of 
assumptions behind the statistics reported to a board of directors, or determining which mortgages 
were part of a traded security.
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WHO IS USING THIS DATA?

Instead of tracking a result back to its sources, you can capture provenance to understand where that 
result has been subsequently used or to find out what data was further derived from it. For example, 
a company might want to identify all the internal uses of a certain piece of code in order to respect 
licensing agreements or to keep track of code still using deprecated or unsafe functions that need to 
be removed.

Using similar mechanisms, end users should be able to track what personal information is used 
by a mobile application and determine whether it is displayed locally or sent over the network to a 
third party. The same use case covers the general propagation of erroneous results, when we need to 
understand what pieces of data have been invalidated by the discovery of an error.

HOW WAS IT OBTAINED?

Provenance can also be used to obtain a better understanding of the actual process through which 
different pieces of input data are transformed into outputs. This is important in situations where 
computer engineers or system administrators need to debug the problems that arise when running 
complex software stacks.

In cases where it is possible to differentiate between correct and erroneous system output, 
comparing their provenance will point to a list of potential root causes of the error. In more complex 
scenarios, the issue might not be directly linked to particular outputs but to an (undesired) change 
in behavior. Detecting system intrusions or explaining why the response tail latency for a server 
has increased by 20 percent are good examples. In those cases, grouping outputs with similar 
provenance could be used for identifying normal versus abnormal system behavior and explaining 
the differences between the two.

PROVENANCE SYSTEMS
Together, the three use cases provide an overview of the ideal provenance application space, but 
they do not describe the technical details involved in making those applications possible. To realize 
each scenario in practice, one or more provenance systems need to be integrated into the data-
processing workflow, becoming responsible for capturing provenance, propagating it among related 
components, and making it accessible to user queries.

In many ways, you might already be running a specialized version of such a system: all auditing, 
tracing frameworks, or change-tracking solutions collect some form of provenance, even though they 
might not identify it as such. The advantage of thinking about provenance as a stand-alone concept 
is the ability to use this metadata in a principled way, allowing result verifiability and complex 
historical queries regardless of the underlying mechanisms used to collect it and across applications 
and software stacks.

Historically, provenance systems were the focus of research in the database field, with the aim 
of understanding how and when materialized views should be updated in response to changes in 
the underlying tables.9 Because of the well-defined relational model, it has proven possible both 
to derive precise provenance information from queries7 and to develop formalisms that allow its 
concise representation.13 This has been further extended in systems such as Trio,28 allowing records 
to incorporate an associated uncertainty which can be propagated across multiple queries by using 
provenance.
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In contrast, capturing provenance for applications performing arbitrary computations (not 
restricted to a small set of valid transformations) has proven more challenging. Research efforts in 
this area have focused on the collection of provenance at particular points in the software stack (by 
modifying applications, the runtime environment, or the kernel).

Figure 1 presents a general timeline of provenance systems. This article looks at the characteristics 
of eight of these (PASS, SPADE, VisTrails, ZOOM, Burrito, Lipstick, and RAMP), each representative of 
a larger class of solutions:

Operating-system level. PASS22,23 and SPADE12 investigate provenance by observing application 
events such as process creation or I/O. Those are then used for inferring dependencies among 
different pieces of data. 

Workflows. VisTrails26 and ZOOM2 are workflow-management systems with the ability to track 
provenance for the execution of various workflows and (in the case of VisTrails) for the evolution of 
the workflows themselves.

Application level. Burrito14 tracks user-space events, while also supporting additional user-provided 
annotations. SPROV16 focuses on the security of provenance and provides a thin wrapper around the 
standard C I/O library. A newer version is capable of using provenance captured by other systems, 
such as PASS.

Big data. Lipstick1 and RAMP24 both tackle the problem of tracking provenance in big-data 
scenarios (MapReduce jobs).

It is the properties of these systems that define what can be recorded and with what tradeoffs, 
overhead, and security implications.

PROVENANCE SYSTEM PROPERTIES
Effectively using provenance systems in practice requires understanding a number of aspects related 
to:
• The exact metadata being captured. 
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• The effort required for integrating provenance systems within existing workflows (running special 
kernels, making runtime changes, or linking applications with provenance libraries).
• Understanding how provenance metadata can be queried later.
• Evaluating the overhead imposed by those systems.
• Security issues added by provenance, which might require different access controls from those of 
the data itself.

This article categorizes the properties of the systems selected as representative according to these 
features (summarized in table 1), referring to the motivating use cases as required. 

WHAT CAN IT CAPTURE?

The metadata captured by provenance systems typically relates the state of digital entities (files, 
tables, programs, network connections, etc.) at different stages in their lifetimes to historic 
dependencies on other entities or processes. In this context, two concepts are fundamental for 
determining what is captured and how: granularity and layering.

Granularity. The granularity of capture refers to the size of basic primitives that accumulate 
provenance within a system. Consider a scientist who uses a configuration file storing various 
experiment parameters as one of the inputs to a simulation program. Capturing provenance at file 
granularity will establish the dependency between the simulation program and the configuration file 
name. The scientist is interested in understanding the relationships between the simulation results 
and individual parameters in the file, however, and this requires capture at subfile granularity.

The exact meaning of varying granularity (from fine to coarse) also depends on the underlying 
data model of the application. For example, database-provenance systems could store provenance 
metadata for an entire table, a row within the table, or for each cell. Provenance capture at the 
table level is coarse-grained and can answer questions such as: From which other tables has table X 
derived its data? Finer granularities would determine the relationships between individual rows or 
cells. Of course, multiple granularities can be considered at the same time.

Systems such as PASS6 capture provenance by intercepting system calls made by applications 
as they execute. At this level, provenance is fine-grained and can provide a detailed image of an 
application’s execution and dependencies.

The noise levels in the collected data, however, are also elevated, making it harder to extract 
useful information. Consider a Python script that copies one file to another. When running the 
script, the Python interpreter will first read and load any required modules from disk. Thus, beyond 
the dependency on the actual input, the final provenance graph will link the output file to all the 
Python modules used by the interpreter. This extra data can make it difficult to sift through the 
provenance graph as an end user, so, generally, heuristics are needed to determine which entities are 
important and which should be ignored.

Workflow systems such as VisTrails26 avoid the noise problem and can capture provenance at any 
granularity, because the processing steps and their dependencies are explicitly declared by the end 
user. Such systems, however, are also inherently limited to recording only those data transformations 
that were part of the defined workflow.

The n-by-m problem. Independent of the system that is chosen, accurately determining the 
dependencies between input and output data may not be possible. This is illustrated by the n-by-m 
problem, where a program reads n input files and writes m output files. Even when tracing system 
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OS Level Workflow Systems Application Level Big Data (MapReduce)
PASSv2 SPADE Vistrails ZOOM SPROV Burrito Lipstick RAMP

Capture
Disclosed 
(DPAPI) and 
Observed

Disclosed 
(custom capture 
module) and 
Observed

Disclosed 
(WF) and 
Observed (WF 
evolution)

Disclosed Observed
Disclosed 
(annotations) 
and Observed

Disclosed Observed

Granularity

Mainly system 
calls, user 
defined with 
DPAPI 

File-level, 
potentially at 
byte level, given 
custom capture 
modules

Data  
artifact

Data  
artifact

C library  
calls

System calls 
and custom 
plug-ins

Module level 
(coarse), 
operators and 
state (fine-
grained)

Record  
level

Layering

Mainly OS. 
DPAPI links 
this to storage 
and application 
layers.

Provenance at 
application, OS, 
and middleware 
levels

Workflow 
execution 
and data 
generated

Application
Application  
(in the 
prototype)

OS and 
application 
level

Pig  
workflows

MapReduce 
workflows

Mapping Using DPAPI
Fusion and 
composition 
filters

-- -- -- Using 
annotations -- --

Versioning Events Events
Events  
and data  
changes

Events and 
append-only 
file system.

Events and 
potentially 
data changes

Events and 
causality-
based 
versioning

Append-only 
file system

Append-only 
file system

Setup / 
Integration Custom kernel Kernel module

User-defined 
workflows; 
annotations

User-defined 
workflows; 
annotations

Library that is 
linked to any 
application

SystemTap 
script, custom 
plug-ins; users 
annotate 
activity events

Seamless to 
the user by 
augmenting 
pig-latin 
operators

Minimal 
modifications 
to the user 
code

Query  
Types

Exploratory 
using PQL

Directed and 
limited support 
for Exploratory

Exploratory 
and Directed 
queries using 
vtPQL

Hybrid Directed Activity feed Directed Directed

Time 
Overhead1 1%-23% 10% 1% 1% 11% 12% 3x 20%--75%

Space 
Overhead1 20% On the order of 

I/O operations

Minimal (# 
of module 
invocations)

Minimal (# 
of module 
invocations)

On the order 
of write 
operations

2 GB/month N/A On the order  
of records

Provenance 
Graph 
Construction

Background 
thread

Background 
thread On demand On demand -- -- Post-

processing
During 
runtime

Query 
Overhead N/A N/A N/A Seconds N/A N/A Seconds Minutes

Security -- -- -- -- Integrity and 
confidentiality -- -- --

TABLE 1: Summary of System Properties

1  Typical overhead as described in the evaluation section of the corresponding system; not directly comparable 
as they were not obtained by running the same workloads.

N/A: Data not available

  --: Not applicable
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calls for individual reads and writes, it’s not possible to infer which reads affected a particular write, 
so the provenance graph has to link each output file to all of the inputs. A system that is unaware of 
the semantics of individual data transformations within a process will always present a number of 
such false-positive relationships. Both PASS and VisTrails have this problem, as they treat the process 
or each workflow step as a black box.

The n-by-m problem can be solved by capturing provenance at an even finer granularity. This can 
be done using binary instrumentation techniques25 and computing the provenance of the output 
as a function of the executed code path and data dependencies. Even if this method requires no 
modification of the application, the tradeoff is a significant increase in space and time overhead. 
A low-overhead alternative would be to modify the application to explicitly disclose relevant 
provenance using an API such as CPL,17 but this requires additional effort from the developer, as 
discussed in the next section.

Granularity is not the only aspect that users need to think about when determining their 
requirements for a provenance system. It is just as important to know in which layer the provenance 
collection takes place.

Layering. Provenance metadata can be captured at multiple layers in the stack (i.e., for the 
application, middleware (runtime/libraries), operating system, and/or in hardware). Capturing 
provenance across multiple layers provides users with the ability to reason about their data and 
processes at different levels of abstraction, with each layer providing a different view on the same set 
of events happening in the system.

For example, consider copying rows between two tables in a spreadsheet and saving the result. 
A system that collects provenance at the operating-system layer will observe a number of I/O 
operations to/from the file. The notions of tables and rows, however, are known only to the 
application, and dependencies among them cannot be inferred from the metadata collected by lower 
layers. If querying for such relationships is needed, provenance must be captured in the application 
layer as well.

Cooperation between layers. When requiring provenance capture at multiple layers, a practitioner 
could choose a different (specialized) provenance system for each layer in the stack or a single 
provenance system that was designed to span capture across multiple layers.

In both cases, multiple provenance-aware components must cooperate by communicating 
different metadata between layers. This can be achieved either by adhering to a common provenance 
data model, such as OPM (Open Provenance Model)21 or PROV-DM20 (Provenance Data Model), or 
by providing a universal API and allowing each component to both accept and generate provenance 
using it. PASSv2 provides a disclosed-provenance API (DPAPI) that can be used for this purpose.

A second issue exists, however. Merely collecting metadata at different layers will result in islands 
of provenance, unrelated to each other. For an actual mapping of provenance objects between layers, 
all entities describing the same event must be grouped—for example, by tagging them with a unique 
identifier.

SPADEv2, for example, uses a multisource fusion filter (with process ID as a tag) to combine 
provenance data from multiple sources describing the same event and working at the same level of 
abstraction. When provenance is reported at different levels of abstraction, SPADEv2 uses a cross-
layer composition filter that has the same purpose.

Data versioning. Provenance collection in a given layer typically involves capturing the chain 
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of events performed by the application on a given piece of data, though this does not necessarily 
require the system to capture multiple versions of data as it is being transformed. Assume that a user 
edits a file using a text editor on a PASS-enabled system. The provenance metadata saved by PASS 
can provide information such as the program used to edit, number of bytes written to the file, etc., 
but it is not possible to revert the file to a previous state or know what the actual data changes were. 
In cases where the current contents of the file depend on values in previous versions, provenance 
systems need to store versions of data as well as events in order to assure full verifiability. 

Because of this, provenance systems such as Burrito14 not only track system call-level events, but 
also run on top of a versioning file system. Other systems such as Lipstick and RAMP do not require 
versioning as they run on top of append-only file systems (all versions are implicitly stored). 

Versioning can prove expensive when done for certain layers in the stack (i.e. for hardware 
registers), but in other cases it might simplify the capture of provenance. This is the case in 
the application layer, where data versions are implicitly stored as undo/redo actions. Most GUI 
applications provide this functionality by default, and intercepting the undo stack has been shown 
to be a viable method for automatically inferring provenance.8

INTEGRATING PROVENANCE INTO EXISTING WORKFLOWS

The effort needed for integrating a new piece of technology within an existing workflow is an 
important practical criterion when choosing a provenance system. This measures how much the 
provenance system will intrude on the user’s normal working practices, and a cost-benefit analysis 
should be made depending on the use case.

Some systems impose larger up-front expenses because of how they collect metadata. For example, 
some systems require developers to attest explicitly to provenance information through APIs that 
record annotations about the actions being executed. An example of this is DPAPI, which offers 
augmented read and write calls to which one can pass data indicating the meaning of the read or 
write call being made. The result is an increase in the development effort, as code must be updated 
to call the new API. All future code changes must also keep the provenance-related code in sync, and 
failing to do so will most likely cause invalid metadata to be captured.

Similarly, systems such as ZOOM or VisTrails require you to declare the entire workflow in advance 
and can track only those dependencies that run on top of their execution engines. Subsequent work 
must be done within the same system if dependency links need to be maintained. As a group, the 
literature refers to these as disclosed provenance systems, and they are recognized for their ability 
to offer improved semantic descriptions of provenance. The trustworthiness of the provenance 
captured in this way, however, is a concern when running in untrusted environments.

Other provenance systems aim to reduce the overhead imposed on the user. These tend to take 
a different approach by observing the users’ applications, recording information about how these 
applications interact with each other and the rest of the operating system, and inferring provenance 
based on it. They are often referred to as observed provenance systems. Examples are systems such 
as PASS that intercept system calls made by a program, or others such as SPADE that can hook 
into the audit subsystem in the Linux kernel to observe the program’s actions. They tend to have 
the lowest intrusiveness. Often, once the system is installed, a user can proceed as usual while 
provenance is captured for all the executed operations. Observed provenance systems have their 
own shortcomings, however, mostly because of the loss of semantic information when treating each 
process as a black box.
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HOW DO YOU ANSWER QUESTIONS USING PROVENANCE?

A provenance system is only as useful as the questions that one can answer based on the collected 
metadata. Querying, however, is recognized as a challenging problem: users often want to query over 
a broad range of information, or they ask questions that the designers of the provenance system did 
not anticipate; depending on the granularity of capture, the system either might have insufficient 
data to respond to a query, or it might produce so much data that it is difficult to explore and 
understand it. From the research performed to date in the field, two core paradigms of querying have 
emerged, and a smaller number of systems use a hybrid of both approaches.

Exploratory. The first major paradigm is the exploratory query, which takes advantage of the 
human ability to spot patterns. This is important when users don’t have an exact idea of what 
metadata they might want to retrieve. Exploratory systems are usually characterized by presenting 
the user with a visual representation of the provenance graph and providing tools to explore it 
without succumbing to information overload. This is a notably hard problem, given that even small 
provenance graphs can easily contain thousands of nodes. A number of the approaches involve 
either exploring subgraphs based on contextual filtering (such as InProv4) or using intelligent 
clustering methods. An example of the latter is the PASS Map Orbiter18 viewer, which implements an 
algorithm for dynamically summarizing nodes, allowing the user to expand and contract areas of 
detail while browsing.

Directed. The second major paradigm is the directed query, an approach more closely linked to 
the classic field of database query. It requires the user to express questions about the provenance of 
data as queries in a language that is often a specialized extension of SQL or a path query language.

This is effective if the user knows precisely what information is required, but unlike exploratory 
methods, the directed query approach does not facilitate discovery of new insights about the 
provenance graph.

One example of the directed approach is vtPQL,26 used in the VisTrails system. The language 
is designed to enable the user to express provenance queries about three different aspects of the 
workflow: the execution log, the abstract workflow representation, and the evolution of the workflow 
in time.

The user can specify restrictions on all of these spaces simultaneously—for example, restricting 
the execution logs to a particular day, highlighting a single workflow module, and choosing 
a particular version of the workflow. This is helpful, as it allows the user to think in terms of 
orthogonal querying concerns.

Hybrid. Some systems use a hybrid of the two paradigms. For example, the ZOOM system2 starts 
from a user-provided “declaration of interest” to derive a contextually appropriate minimal form of 
the provenance graph. The heart of the system is an algorithm that summarizes “irrelevant” parts 
of the graph in ways that maintain their semantics. The user needs only to provide the list of the 
modules in the workflow definition that are of interest and is then allowed to browse the provenance 
graph without being distracted by unimportant pieces of information.

UNDERSTANDING OVERHEAD

As with any computational functionality, provenance capture has associated temporal and spatial 
costs. Given that provenance support is likely to be an additional consideration to the primary 
function of the system, leveraged only when the lineage properties of the data are required, it is 
imperative to minimize the overhead.
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General-purpose provenance systems typically capture either (disclosed) evolutions of a given 
workflow or (observed) low-level operations carried out by executing processes. Broadly speaking, 
the time and space overhead for capturing the provenance of workflow evolution is proportional to 
both the number of changes in the workflow and the number of times a workflow is executed. In 
comparison, the provenance overhead of capturing an execution log is proportional to the number 
of recordable operations executed.

Time overhead. In practice, the provenance-capture cost of workflow systems (and, by extension, 
other disclosed provenance systems) is minuscule because of their limited approach to collecting 
running process information. Both ZOOM and VisTrails, for example, report an approximately 1 
percent increase in execution time.2,10

For systems that record process execution, provenance capture costs are a function of the costs of 
intercepting and recording observable operations. While intuitively it may appear that provenance 
capture at the operation level is prohibitively expensive from a temporal perspective, reported results 
show that this is not the case. Kernel-based system-call interception mechanisms such as in PASSv2 
have a 1  to 23 percent overhead on workloads representative of real-world applications.22,23 Similarly, 
SPADEv2, which uses kernel auditing infrastructure for provenance capture, reports less than a 10 
percent overhead on Windows, Linux, and OS X for production Apache runs.12

For I/O-heavy workloads, however, provenance capture may impose larger runtime overheads. 
PASS, for example, reports up to a 230 percent overhead on small file benchmarks,23 even though the 
absolute increase in execution times remains small.

The interception mechanism can also significantly influence provenance-capture overhead in this 
regard. SPADEv2, for example, supports operation interception via the kernel auditing mechanisms 
on OS X, while on Windows it requires a file-system filter driver that relays operations to the 
provenance collector. As a consequence, provenance-enabled Apache builds are 50 percent slower on 
Windows but only 5 percent slower on OS X.

The temporal cost of recording operations may also be of potential concern where provenance 
is being recorded at an extremely fine-grained level. In such situations it is common for the cost 
of provenance capture to equal or exceed the cost of the recorded operation, leading to slowdowns 
exceeding 100 percent. For example, in the Lipstick system, operator-level provenance is reported to 
lead to a slowdown of two to three times,1 while in the RAMP system, where provenance is collected 
at the tuple level by propagating tags through a MapReduce workflow, it is common to observe a 
temporal overhead of up to 75 percent.24

Spatial overhead. Similar to temporal overhead, the spatial overhead of recording process 
execution is a function of the amount of data per operation and the number of recorded operations. 
In the set of systems we studied, only half (SPROV, Burrito, Lipstick, and RAMP) are capable of 
recording data changes.

While the actual overhead of any workload is sensitive to multiple factors, here are two reported 
data points for illustrative purposes: 
•  The general-purpose PASSv2 system requires, on average, approximately 20 percent additional 

space overhead (as compared with the original output size) to log all the operations for a workload 
representative of real-world applications.22 

•  The Burrito system, running on a real user workload, required 800 MB for provenance storage and 
2 GB for file versions over a two-month period.14 
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These results indicate that storage overhead should not be prohibitive for most cases.
Overhead tradeoffs. Generally speaking, there is a direct tradeoff between capture granularity 

and provenance overhead. SPADEv2, for example, allows users to capture information at the 
function call level or an application-defined level at the cost of increased temporal and spatial 
capture overhead. Similarly, SPROV allows users to specify modifications in higher-level semantics 
(e.g., “new section added to file”) at the cost of reduced per-operation observability.

For users to adopt the most suitable system for their needs, it may be useful for them to 
predetermine what provenance information will be required to answer queries and at what 
granularity this information will be sufficient, mapping it to the appropriate system.

Most systems also delay provenance construction in order to minimize capture overhead. PASSv2, 
for example, captures raw operation records, converting them to their final representation via an 
asynchronous user-space daemon.22 SPADEv2 uses separate provenance collection threads to extract, 
filter, and commit operations to the provenance log. Other systems delay provenance collection 
to query time to avoid wasting resources computing provenance that will never be accessed. For 
example, Lipstick carries out provenance construction only when a query is made.1 This delayed 
provenance construction is present in some workflow systems as well. ZOOM, for example, will 
compute some of the provenance at query time, based on the current user view. Depending on the 
required cardinality, timeliness, and complexity of provenance queries, deciding on those tradeoffs 
may considerably improve overhead.

SECURITY ISSUES

It is imperative for provenance data to be secured against unauthorized access and not to leak any 
information about the data against which it is collected.5 Fundamentally, this requires provenance 
to be managed under different access policies than those of the data. Doing so allows the user 
flexibility over the disclosure of provenance information. For example, one might make provenance 
inaccessible to people outside an organization, as it would reveal proprietary workflow or processes. 
The final data result, however, might be freely available to anyone.

Formally, the security aspects of provenance are defined as its confidentiality (only authorized 
parties can read it) and its integrity (it cannot be forged or altered). Both properties are considered 
essential for performing integrity, validation, and consistency checks on data.

Two solutions to the problem of providing secure provenance have been put forth. The first 
leverages the concept of reference monitors: Patrick McDaniel et al. discuss a secure system for end-
to-end provenance based on the principle of a host-based tamper-proof provenance monitor that 
mirrors the well-known reference monitor concept for the enforcement of security policies.19 The 
presence of the reference monitor means that the security of provenance collection doesn’t have to 
rely on the integrity of other system components such as the kernel. While this solution is feasible, 
there is no known practical implementation to date.

The second solution is based on provenance chains11,16 where processes that generate provenance 
must attest to the information added in an encrypted, nonmodifiable, and nonrepudiable 
manner. Guaranteeing these three properties ensures that all collected provenance can remain 
confidential and keep its integrity. Of the systems included in this article, SPROV16 is a practical 
implementation of provenance chains. It primarily provides confidentiality and integrity guarantees 
for file modifications. SPROV leverages a number of concepts in cryptography to fulfill the security 



DATA

11

requirements: confidentiality is maintained by encrypting the metadata describing each change; 
record integrity is maintained by checksumming records; and attestation is supported by signing 
records with the public key of the creating user.

In addition to the key concepts of confidentiality and integrity, SPROV provides a number of 
useful features that may be of interest to the practitioner (and a consideration for future secure 
provenance systems): through the use of cryptographic commitments,3 SPROV enables selective 
exposure of records to third parties; by employing broadcast encryption,15 it supports selective access 
control for multiple auditors without requiring a corresponding proportional increase in the number 
of keys; finally, threshold encryption27 is supported, enabling separation-of-duty scenarios in which 
the decryption of records requires participation from at least one auditor in a number of distinct 
groups.

SPROV has no mechanism for preventing unauthorized reads, relying instead on the encryption 
of records to prevent unauthorized access. It is, however, the only system of those included here that 
provides any provenance confidentiality and integrity guarantees. While all systems acknowledge 
that the security of provenance is a fundamental concern, the rest rely on existing access-control 
mechanisms such as SQL grant privileges and file permissions to ensure security.

RESEARCH CHALLENGES AND OPPORTUNITIES
Contrasting the initial use cases and what can actually be achieved with current provenance systems 
makes it clear that research is needed in a number of areas.

Querying and visualization. Despite the research carried out so far toward querying and 
visualizing provenance, these are still challenging problems. It remains to be seen how existing 
knowledge about graph exploration and visualizations could be applied, or whether totally different 
representations are required.

Computing with provenance. Moving beyond human queries, provenance should be made 
available to applications, allowing automated validation of inputs, limiting error propagation, or self-
diagnosing changes in output quality or system behavior.

Distributed systems. There have been attempts to extend provenance to networked systems, but 
problems related to heterogeneity (not all nodes being provenance-aware), scalability, long-term 
collection, and storage remain to be solved.

Security and privacy. Collecting provenance has implications on data security and privacy, but 
most implementations have not considered untrusted environments or adversarial workloads.

CONCLUSION
The computing power and storage capacities available today allow large quantities of data to be 
processed in complex ways. Sometimes the transformations applied are not directly controlled by 
or even known to developers (multiple layers of abstraction, learning algorithms). Therefore, a lot of 
information about a result is lost when no provenance is recorded, making it harder to assess quality 
or reproducibility. Computing is becoming pervasive, and the need for guarantees about it being 
dependable will only aggravate those problems; treating provenance as a first-class citizen in data 
processing represents a possible solution.
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