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ABSTRACT 
 Simultaneous multithreading (SMT) processors run multiple 
threads simultaneously on a single processing core, and the 
threads compete for the processor’s shared resources. Severe 
resource contention can lead to performance degradation. On 
SMT processors it is often beneficial to employ a non-work-
conserving scheduling policy: running fewer threads 
simultaneously than the processor allows even if there are threads 
ready to run. In cases of severe resource contention, non-work-
conserving scheduling can alleviate the contention significantly 
enough so as to result in better performance than if the processor 
were utilized to the full extent. Conventional operating systems 
typically do not employ non-work-conserving policies. We 
present a prototype of an operating system thread scheduler that 
uses a non-work-conserving policy whenever it may result in 
better performance. To determine when to use the non-work-
conserving policy, the scheduler uses an analytical model that, 
unlike existing models, is sufficiently simple and practical for use 
inside the operating system. We demonstrate that the scheduler 
using our model correctly determines when to use the non-work-
conserving policy and improves performance in those cases.  
 
1. INTRODUCTION 
 An SMT processor is equipped with multiple hardware 
contexts, or virtual processors, that enable concurrent execution 
of multiple threads [1-4,6,22,23]. Although SMT processors differ 
from conventional processors, it is common to use the operating 
systems designed for conventional processors on SMT systems. 
Conventional operating systems are work-conserving: they 
schedule a thread to run on every virtual processor, never leaving 
a virtual processor idle if there are threads ready to run. On SMT 
processors work-conserving scheduling can result in sub-optimal 
performance [12]. The threads running simultaneously contend 
for the SMT processor’ s shared resources, and if contention 
becomes too great the threads may complete altogether less work 
than they would if some virtual processors were left idle and the 
competition for the shared resources were less severe. In systems 
this phenomenon is known as thrashing. To prevent thrashing, a 
scheduler must be able to predict whether using a non-work-
conserving policy [21,25], i.e., keeping some virtual processors 
idle even if there are threads ready to run, might result in better 
performance.  

We present a user-level prototype of a non-work-conserving 
operating system scheduler. At the heart of the scheduler is a new 
analytical model that helps decide when it is beneficial to employ 
non-work-conserving scheduling. The model estimates the 
instructions per cycle (IPC), or throughput, of the workload for a 
given degree of concurrency, i.e. the numbers of threads running 
simultaneously. The scheduler uses this model to determine the 
degree of concurrency yielding the highest IPC, and then uses 
only as many virtual processors as needed to achieve the optimal 
degree of concurrency.  

The analytical model is the key contribution of our work. 

Similar models proposed in the past [16,17] were designed for 
offline studies of SMT architectures. Their main objective was 
accuracy. Efficiency, i.e. the number of steps it takes to produce 
the IPC estimates using the model, was less important. It was also 
acceptable to obtain the inputs for the model offline.  

In contrast, our model is designed specifically for use inside 
an operating system scheduler. The scheduler is a performance 
critical component of the operating system invoked hundreds of 
times per second, and any computation that it performs must be 
quick, in order to impose little overhead on performance of user 
applications. Therefore, our model has two critical requirements 
of simplicity and practicality: a) the model calculations must be 
simple enough so they could be performed in a small number of 
steps and implemented without floating-point operations (many 
modern operating systems do not permit floating-point operations 
inside the kernel); b) inputs for the model must be obtainable at 
runtime or at compilation time.  

We achieve simplicity in the model by focusing on those 
resources, contention for which is most likely to cause thrashing. 
We model them precisely, while representing the effects of 
contention for other resources with simple, less precise, models.  
We identify contention for the L2 cache as the prime cause of 
performance degradation and thrashing. Our decision is based on 
previous studies that have shown that contention for the L2 cache 
can significantly affect throughput on SMT processors [8,9,31] 
(also see Figures 1a and 1b). Contention for the L2 cache 
increases the miss rate, requiring more accesses of the main 
memory. The cost of memory access has now reached 200-300 
processor cycles and has been growing at 50% per year [24]. It is, 
therefore, probable that thrashing due to L2 cache contention 
remains a problem in the future, and this is another reason why we 
focus on the L2 cache. Our model precisely expresses the 
relationship between the L2 cache miss rate and the IPC; we 
approximate contention for other resources with models derived 
using linear regression, which significantly simplifies our model. 
To foster simplicity we model the effect of the L2 cache miss rate 
on the IPC using basic probability theory, which results in the 
model that is notably less complex than those based on Markov 
chains, used in the past [16,17].  

We assume the SMT architecture of the UltraSPARC T1 
[6] processor released by Sun Microsystems in 2006, and we 
validate our model for this architecture. This is a first step towards 
creating a general model. We compare our model’s IPC 
predictions for the SPEC CPU2000 integer benchmarks to actual 
measurements from an execution-driven simulator of UltraSPARC 
T1 [5], and find them to be accurate to within 10% for most 
workloads, with the largest observed difference between predicted 
and measured values of 31%. This accuracy is comparable to 
results previously reported in literature for more complex off-l ine 
models [16,17].  

With our prototype we demonstrate that a scheduler using 
our model is able to correctly determine the optimal degree of 
concurrency in most cases. We show that applications using our 
scheduler achieve throughput improvement of 3 to 56% when 
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there is benefit to be gained from non-work-conserving 
scheduling, and perform no worse than with the default scheduler 
otherwise. In this study we focus on homogeneous workloads – 
multithreaded workloads where all threads are performing similar 
work. Such workloads are common in data mining and 
bioinformatics [28-30]. 

The rest of the paper is organized as follows: In Section 2 
we describe our target SMT architecture and the simulator used 
for our experiments. In Section 3 we present the model and 
evaluate its accuracy. In Section 4 we present the scheduler 
prototype and the performance results.  In Section 5 we discuss 
related work, and in Section 6 we conclude.   
 
2. THE SMT ARCHITECTURE  
 On modern SMT processors switching among the running 
threads occurs if more than one thread requires exclusive use of a 
shared resource [6,22,23]. Our model is designed for the 
UltraSPARC T1 [4,6] architecture where all components of a 
single-issue pipeline are shared, and switching occurs on every 
CPU clock cycle. We assume a single-core SMT processor with 
four virtual processors, shared first-level (L1) instruction and data 
caches, and a second-level (L2) unified cache. The L2 cache is 
connected to main memory (DRAM) by a shared bus. We assume 
a single core, because our model’ s novelty is in representing the 
interaction among the threads inside the core. We believe our 

model can be easily extended to work for multi-core architectures.   
We run our experiments on an execution-driven full-system 

simulator [5] of UltraSPARC T1. Using a simulator allowed us to 
validate our model for various hardware configurations. We 
validated the simulator against the UltraSPARC T1 hardware. 
Table 1 summarizes the architectural characteristics of the 
simulated processor. The configuration differs from that of 
UltraSPARC T1 in the number of cores (we simulate a single 
core, while the T1 has eight), the memory bandwidth, and the 
clock speed (we could not model the precise clock speed of the T1 
due to simulator constraints). Our simulator can execute the 
Solaris operating system and all applications that commonly run 
on Solaris/SPARC platforms.  
 
3. THE MODEL   
 Processor’ s cycles per instruction can be broken down into 
two components: 1) the busy cycles 2) the blocked cycles: the 
cycles spend handling L2 cache misses. We define the first 
component as ideal cycles per instruction (ideal CPI) – the CPI 
when there are no non-compulsory L2 cache misses: this is when 
the processor runs at its ideal IPC. The second component is 
determined by the L2 cache miss rate. And so we express the IPC 
as the function of the ideal IPC and the L2 cache miss rate: 
 
 IPC = F(ideal_IPC, L2 miss rate) 
 
Since our goal is to prevent thrashing due to contention for the L2 
cache, we precisely model the effect of the L2 cache miss rate on 
the IPC. Contention for other shared resources, for which we use 
simpler models, is captured by ideal_IPC. In this section we 
describe how we model the IPC based on the L2 miss rate, 
assuming that the ideal IPC is known. We explain how to 
approximate the ideal IPC in Section 4. 
 
Our model requires the following parameters: 
 
Architectural parameters – obtained on system configuration:  
• the number of virtual processors,  
• DRAM latency, 
• L2 cache size, 
• memory bus bandwidth. 
 
Workload parameters – measured at runtime and provided by a 
compiler:  

Figure 1a. Normalized throughput for memory-intensive 
SPEC CPU2000 benchmarks. The experiment is run on a 
simulated SMT processor with four virtual processors. There is a 
set of bars for each benchmark/L2 cache size. Each bar within a 
set corresponds to a different number of concurrent threads. 
Each thread runs its own benchmark instance. Using a high 
degree of concurrency causes thrashing due to extreme 
contention for the L2 cache (see Figure 1b). Lowering the 
degree of concurrency eliminates thrashing and improves the 
throughput. 

Figure 1b. Normalized L2 miss rate cor responding to the 
exper iments in Figure 1a.  

Processor 992 MHz, single processing core, 4 
virtual processors 

L1 data cache Shared, 8KB, 4-way set associative 

L1 instruction cache Shared, 16KB, 4-way set associative 

L2 cache Shared, 12-way set associative, size 
varies from 48KB to 192KB. 
(We use the L2 cache size that is smaller 
than a typical L2 cache on modern SMT 
processors because we eventually want 
to target architectures that have multiple 
SMT cores sharing the L2 cache [6,35], 
and on these architectures, the amount of 
L2 cache per core is smaller.) 

M emory bandwidth 5.2 GB/s  

Table 1. Simulator configuration. 
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• the number of concurrently running threads 
• ideal IPC – the IPC with an infinitely-sized L2 cache.  
• L2 cache miss rate for a given number of concurrently 

running threads.  
 
In Section 4 we explain how we obtain the workload parameters 
at runtime. 
 For a machine with given architectural parameters, our 
model is expressed as follows: 
 
 IPC =  F(N, L2 miss rate, ideal_IPC(N)), 
 
where N is the number of concurrent threads.  
 We begin by describing the IPC model for a processor 
running in a single-threaded mode (Section 3.1), then we extend 
the model for the multithreaded mode (Section 3.2).  
 
3.1 Single-threaded model 
 For simplicity we explain how we model cycles per 
instruction (CPI), the inverse of instructions per cycle (IPC).  
 

 
CPI

IPC
1

=        (1) 

 
First, we introduce some definitions: 
 
L2_CPI – for a given L2 miss rate, the number of cycles per 

instruction that a thread is blocked handling misses in the 
L2 cache.  

Ideal_CPI – the inverse of ideal IPC, the cycles per instruction 
achieved with an infinitely sized L2 cache. 

L2_RMR – L2 read miss rate – the number of L2 read misses per 
instruction. This includes data read misses and instruction 
fetch misses. 

L2_WMR – the number of L2 write misses per instruction.  
L2_MCOST – the cost, in cycles, of handling a miss in the L2 

cache. This includes the memory latency and the memory-
bus delay. While the memory latency of a given architecture 
is fixed, the memory-bus delay varies depending on the 
workload. We now assume that memory-bus delay is zero, 
and relax this assumption at the end of Section 3. 

 
L2_CPI depends on the L2 miss rate and the cost of each miss: 
 

MCOSTLWMRLRMRLCPIL _2*)_2_2(_2 +=  (2) 
 
The CPI is comprised of its ideal_CPI and its L2_CPI: 
 
 CPI_LCPI_idealCPI 2+=    (3) 
  
 
 On processors with write-back caches, such as UltraSPARC 
T1, a cache transaction may trigger a write-back: an operation of 
writing a dirty cache line back to the memory. A write-back may 
be triggered on a cache read miss or on a write miss. As will 
become clear soon, we must distinguish among those write-back 
operations triggered by read misses and those triggered by write 
misses. We express the respective write-back rates as follows: 
 
L2_WBR_R – the write-back rate (operations per instruction) 

triggered by read and instruction-fetch misses. 
L2_WBR_W – the write-back rate (operations per instruction) 

triggered by write misses. 

 
We found that the fraction of write-back operations triggered by 
each type of cache misses can be accurately approximated by the 
fraction of the corresponding cache misses: for example, if 60% of 
the cache misses are read misses, then roughly 60% of the write-
back transactions are triggered by the read misses. 
 To account for write-back transactions, we extend our 
definitions of read/write miss rates as follows: 
 
L2_COMB_RMR – combined L2 read miss rate – the L2 read miss 

rate that includes the write-back operations triggered by 
these misses: 

 
 L2_COMB_RMR = L2_RMR + L2_WBR_R 
 
L2_COMB_WMR – combined L2 write miss rate – the L2 write 

miss rate that includes the write-back operations triggered 
by write misses:  

 
 L2_COMB_WMR =  L2_WMR +  L2_WBR_W. 
 
On modern processors, not all L2 cache misses stall the processor. 
Usually there is a write buffer that absorbs the effects of write 
misses and the write-back operations triggered by write misses. A 
processor only blocks when the write buffer becomes full. To 
account for the write-buffer effect we derive an architecture-
specific parameter write stall coefficient (WSC). WSC expresses 
the fraction of write misses that stall the processor for a given 
write miss rate. We derive this parameter empirically by 
measuring the fraction of write transactions that stall our 
processor for SPEC CPU 2000 integer workloads [10]. We found 
that for workloads with the combined L2 write miss rate of greater 
than 0.005, 90% of the writes stall the processor, while for 
workloads with a smaller miss rate, most of the writes are non-
blocking. Accordingly, we set WSC as: 
 
 

�
�
�

≤

>
=

005.0__            0,

,005.0__2         ,9.0

WMRCOMBL2

WMRCOMBL
WSC  

 
In our model we multiply the L2 write miss rate by WSC to 
account only for those write-miss transactions that stall the 
processor: those writes that do not stall the processor do not have 
the effect on the IPC, so we do not account for them. Using the 
WSC coefficient instead of modeling the full complexity of the 
write buffer is a reasonable simplification: for most workloads, the 
write buffer absorbs most writes, and, therefore, having a detailed 
write buffer model is not necessary. WSC needs to be derived for 
a specific architecture. 

Expression for L2_CPI changes as follows: 
 

MCOSTLWSCWMRCOMBLRMRCOMBL

CPIL

_2*)*__2__2(

_2

+
=

 

          (4) 
 
Substituting the L2_CPI, computed using equation (4), into 
equation (3) we compute the CPI, and then the IPC (equation (1)).  
 

3.2 Multithreaded model 
When the processor executes in multithreaded mode, one or 

more virtual processors may be blocked handling an L2 cache 
miss while others continue executing instructions (See Figure 2). 
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The entire processor is blocked only when all virtual processors 
are blocked. In Section 3.1 we showed how to model the time that 
a single virtual processor is blocked on L2 misses (L2_CPI). In 
this section we show how to use L2_CPI to estimate the time that 
the entire processor is blocked due to handling L2 misses.  

We introduce an individual blocking probability – the 
probability that an individual virtual processor is blocked on an 
L2 cache miss. Then we combine individual blocking 
probabilities to estimate the time that the overall processor is 
blocked.  
 
3.2.1 Individual blocking probability 
 We derive the individual blocking probability in single-
threaded mode using ideal_CPI and L2_CPI (Section 3.1): 
   
 

CPILCPIideal

CPIL
indblockedprob

_2_

_2
__

+
=  

  
The individual blocking probability in multithreaded mode 

is expressed using the individual ideal CPI of the thread when the 
processor runs in multithreaded mode, ideal_CPI_mt_ind. 
Ideal_CPI_mt_ind is obtained using ideal_CPI_mt – the ideal CPI 
for the entire workload. For our architecture, the relationship 
between ideal_CPI_mt_ind and ideal_CPI_mt is determined by 
the number of virtual processors V.  Recall that the processor 
switches threads on every cycle, so for each cycle that a thread is 
busy, it waits for the rest of the threads to take their turn using the 
processor:  
 

V*mtideal_CPI_mt_indideal_CPI_ =  (5). 
 
The individual blocking probability for the multithreaded mode is 
expressed as: 
  

CPILindmtCPIideal

CPIL
indmtblockedprob

_2___

_2
___

+
=  (6),  

 
3.2.2 Modeling multithreaded IPC 
 Let V be the number of virtual processors. An SMT 
processor can be in one of these V+1 states: 
 
(0) All V virtual processors are blocked, 
(1) Exactly one virtual processor is busy – (V-1) are blocked, 
(2) Exactly two virtual processors are busy,  
… 

(V) All virtual processors are busy.  
 
In State V, the processor is running at IPC equal to ideal_IPC_mt 
(the inverse of ideal_CPI_mt). In State 0, the processor is running 
at the IPC equal to zero. In the remaining states the processor is 
running at some IPC that is less than or equal to ideal_IPC_mt – 
we will refer to this quantity as R_IPC(i), where i corresponds to 
the number of virtual processors that are busy. So, for example, if 
exactly three virtual processors are busy and one is blocked (i=3), 
the processor is running at R_IPC(3). We show how we derive 
R_IPC in the next section.  
 We use the probability that a virtual processor is blocked to 
compute the corresponding probability that a virtual processor is 
busy (prob_busy_mt_ind): 
 

prob_busy_mt_ind = 1 – prob_blocked_mt_ind . 
 
We compute probabil ities P(i) that a processor is in state i, 

(0 ≤  i ≤  V) as follows:  
 

iVi ind_mt_blocked_prob*ind_mt_busy_prob*
i
V

)i(P −
�
�

�
�
�

	=

where i is the number of virtual processors that are busy in state i. 
We then compute the IPC in multithreaded mode (IPC_mt) by 
multiplying the IPC achieved in each state by the probability of 
that state and summing across all states: 
 


 == N
i

iIPCRiPmtIPC
0

)(_*)(_    (7). 

  
3.2.3. Deriving R_IPC 

The model for R_IPC is derived using linear regression 
analysis. The resulting equation expresses the dependence of 
R_IPC(i) on ideal_IPC_mt and i. We use SPEC CPU2000 integer 
benchmarks for derivation and arrive at an equation with a good 
fit (R-squared of 0.9): 
 

mtIPCidealiiIPCR __*94.0*2.069.0)(_ ++−=   (8). 

 
Although we derived our equation offline, a recent study suggests 
that this could also be done online [31]. SPEC CPU2000 
benchmark suite consists of a heterogeneous set of benchmarks, so 
we expect the equation derived using this benchmark suite to 
generalize well to integer workloads. A different equation needs to 
be derived for workloads that perform many floating-point 
operations.  
 
3.3.  Model evaluation 
 We evaluate our model using integer benchmarks in the 
SPEC CPU2000 benchmark suite [10]. We do not use perlbmk, 
because it is a multi-process benchmark, and we needed single-
process benchmarks. For each benchmark, we estimate the overall 
IPC for multiple concurrent instances of the benchmark using our 
model. We obtain the inputs for our model by measurement. Also, 
for each benchmark we measure the actual IPC by running 
multiple concurrent instances of the benchmark on our simulator. 
We compare the estimated and measured IPC. We study the 
sensitivity of our model to variations in two of the input factors: 
the L2 cache miss rate and the degree of concurrency.  

For the first analysis we alter the L2 cache size of the 
simulated machine from 48KB to 192KB: this creates variation in 
the L2 miss rate. Figure 3 shows the data. The difference between 
the measured and estimated IPC is 4% on average, with a median 
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Figure 2. M emory-access latencies over lap in multithreaded 
processors. 
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difference of 3%, and a maximum of 12%. The estimates were 
less accurate for gzip (12% difference between measured and 
estimated IPC) because the R_IPC estimate was less accurate for 
gzip than for other benchmarks. Gzip is notably more compute-
bound than the rest of the benchmarks, and the R_IPC equation 
did not suit it as well as the other benchmarks. The model for 
R_IPC could be made more accurate if parameterized by the 
workload’s instruction mix. For the majority of the benchmarks, 
however, the simple R_IPC equation works well, as we expected. 

Next we analyze the model’s sensitivity to the number of 
concurrent threads. We set the cache size to 48KB and vary the 
number of concurrent benchmark instances: two, three, and four. 
The input ideal_IPC_mt for degrees of concurrency smaller than 
the maximum is estimated using equations derived in a similar 
fashion as the equation for R_IPC (equation 8).  

Table 2 shows the data. The difference between the 
measured and estimated IPC is 4.21% (mean), 4.44% (median), 

and 12.20% (largest) for four concurrent benchmarks, 10.29% 
(mean), 7.89% (median), and 22.58% (largest) for three 
concurrent benchmarks, and 11.51% (mean), 9.38% (median), 
21.74% (largest) for two concurrent benchmarks. The accuracy is 
comparable to that of the SMT models described in the past: the 
mean, median and maximum errors reported by Saavedra-Barrera 
[16] are 7%, 4% and 28% respectively.  

Our model is less accurate when the degree of concurrency 
is smaller than the number of virtual processors, because in this 
case ideal_IPC_mt is estimated using a regression-derived linear 
equation. A precise model of ideal_IPC_mt would account for the 
architecture of the processor’ s shared resources and how these 
resources are used by a particular workload. Ongoing work on 
modeling SMT performance [7,12,31] suggests alternative 
avenues for approximating ideal_IPC_mt without sacrificing the 
model’ s simplicity.  

A final enhancement to the model is accounting for the 

4 threads 3 threads 2 threads  

Measured Estimated Difference Measured Estimated Difference Measured Estimated Difference 

bzip 0.50 0.53 6.00% 0.64 0.67 4.69% 0.89 0.74 16.85% 

crafty 0.46 0.47 2.17% 0.40 0.49 22.50% 0.34 0.41 20.59% 

eon 0.42 0.40 4.76% 0.34 0.35 2.94% 0.26 0.27 3.85% 

gap 0.50 0.54 8.00% 0.46 0.49 6.52% 0.43 0.46 6.98% 

gcc 0.35 0.35 0.00% 0.31 0.38 22.58% 0.23 0.28 21.74% 

gzip 0.82 0.72 12.20% 0.68 0.71 4.41% 0.52 0.55 5.77% 

mcf 0.50 0.50 0.00% 0.18 0.20 11.11% 0.15 0.16 6.67% 

parser 0.62 0.59 4.84% 0.49 0.56 14.29% 0.35 0.42 20.00% 

twolf 0.45 0.47 4.44% 0.38 0.35 7.89% 0.32 0.29 9.38% 

vortex 0.46 0.46 0.00% 0.37 0.43 16.22% 0.27 0.31 14.81% 

vpr 0.52 0.54 3.85% 0.45 0.45 0.00% 0.35 0.35 0.00% 

  M ean 4.21%  M ean 10.29%  M ean 11.51% 

  M edian 4.44%  M edian 7.89%  M edian 9.38% 

  Maximum 12.20%  Maximum 22.58%  Maximum 21.74% 

Table 2. Analysis of model sensitivity to the number of threads running in parallel. The data is obtained with the assumption of 
unlimited memory bandwidth. 

Figure 3. Comparison between measured and estimated IPC.  
Figure 4. M easured vs. estimated IPC with limited memory 
bandwidth.  
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memory-bus delay. The existing models for memory-bus delay 
[26,27] are typically based on mean-value analysis of closed 
queuing networks [13,14,34]. We designed a model that is simpler 
to solve than the existing models. We omit presentation of our 
memory bus model due to space constraints and encourage the 
reader to refer to the manuscript providing the details [33]. We 
account for the memory-bus delay in our model by adding the 
estimated delay to L2_MCOST (equation (4)). Figure 4 shows 
how the IPC estimated using our model that accounts for the 
memory-bus delay compares with the IPC measured on a 
simulated machine configured to have limited memory 
bandwidth.  The differences between the measured and estimated 
values are 11% (mean), 10% (median), and 31% (largest). 

 
4. THE SCHEDULER 

We implemented a user-level scheduler prototype that uses 
our model to determine the optimal number of concurrency to use 
on an SMT processor. The scheduler starts the multi-process or 
multithreaded job specified by the user, running a thread on each 
virtual processor, collects the machine statistics used to generate 
inputs for the model (preparation phase), uses the model to 
estimate the IPC for each degree of concurrency smaller than the 
maximum, and finally forces the degree of concurrency 
corresponding to the highest predicted IPC by disabling one or 
more virtual processors (optimization phase). If the IPC obtained 
with the highest degree of concurrency (measured during the 
preparation phase) is higher than any of the estimated IPC for 
smaller degrees of concurrency the scheduler keeps all virtual 
processors busy. 
 

4.1 Obtaining input parameters for the model 
To estimate the IPC for a degree of concurrency N, where N 

<  V, the scheduler must furnish the following inputs to the model: 
(1) the ideal IPC for N threads, (2) the L2 cache miss rate when N 
threads share the cache. All statistics necessary to generate the 
inputs are obtained using standard hardware counters. 

 
4.1.1 Obtaining the ideal IPC 

The scheduler first computes the ideal IPC for N = V, 
ideal_IPC(V). Then it estimates ideal_IPC(N) using ideal_IPC(V) 
and a regression-derived linear equation. Recall the specification 
of our IPC model: 

 
IPC =  F(N, ideal_ IPC(N), L2 miss rate). 
 

The actual IPC and the L2 miss rate for N =  V are obtained during 
the preparation phase from the hardware counters. Ideal_IPC(V) 
is then estimated by applying the inverse of the model: 
 
 ideal_IPC(V) =  F′(V, IPC, L2 miss rate) 
 

Once ideal_IPC(V) is known, the ideal IPC for N < V is 
estimated using the same process (described in Section 3.3) as we 
use to estimate ideal_IPC_mt for degrees of concurrency smaller 
than the maximum. Recall that we use linear equations derived in 
a similar fashion as the equation for R_IPC (equation (8)).  

 
4.1.2 Obtaining the L2 miss rate 

There are two known techniques to estimate the L2 miss 
rate when N <  V threads run in parallel. They are based on (1) the 
stack-distance model and (2) the reuse-distance model. The stack-
distance model requires a stack-distance profile of the program. A 
stack-distance profile captures the temporal reuse behavior of an 

application; it can be obtained statically by the compiler [18], or at 
runtime if the machine has appropriate hardware counters [19]. 
Multiple stack-distance profiles are combined to estimate the miss 
rate for multiple threads running in parallel [20].   

A reuse-distance model [32] requires a reuse-distance 
histogram, which, similarly to the stack-distance profile, captures 
the temporal reuse behavior of the program. Reuse-distance 
histogram can be obtained online with some performance 
overhead.  

More work is needed to determine which is the better 
method for estimating the L2 cache miss rate by the scheduler. In 
our prototype we used the method based on the stack-distance 
model.    

 
4.2 Performance results 

Figure 5 shows the IPC achieved with our non-work-
conserving (NWC) scheduler during the optimization phase and 
compares it to the IPC achieved with the default scheduler 
(default) and to the optimal IPC (optimal) determined via 
simulation. Each set of bars is labeled <benchmark - L2 cache 
size>, indicating that four instances of a benchmark run on a 
machine configured with L2 cache size.  

On the left side of the graph are the cases where better 
performance can be achieved with non-work-conserving 
scheduling (CAN IMPROVE). These are the cases when the 
optimal IPC is greater than the IPC with the default scheduler. The 
NWC scheduler improves performance in each case, from 3% to 
56%, often achieving the IPC as high as the optimal.  

On the right side of the graph are the cases where no 
performance improvement can result from non-work-conserving 
scheduling (CANNOT IMPROVE): the IPC with the default 
scheduler is already as high as the optimal. In these cases the 
NWC scheduler correctly decides to keep all virtual processors 
busy, achieving the IPC equal to the optimal. Note that each 
memory-intensive benchmark that appears in the “CAN 
IMPROVE” section of the graph also appears in the “CANNOT 
IMPROVE” section with a larger cache size, where performance 
can no longer be improved by lowering the degree of concurrency.   
 These results demonstrate feasibility of implementing a non-
work-conserving scheduler that uses an online analytical model to 
determine the optimal degree of concurrency on SMT processors. 
The key to obtaining these results is our simple model that works 
with inputs obtainable during compilation and at runtime. 
 
 

Figure 5. Normalized IPC with the default scheduler NWC 
scheduler, and the optimal.  
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5. RELATED WORK 
 Detailed IPC models for SMT processors proposed in the 
past [16,17] use Markov processes to model transitions between 
the busy and blocked states. These models are not trivial to solve; 
closed form solutions are approximated. Our model uses basic 
probability theory and is simpler, but no less accurate. 
Additionally, our model works with inputs that are obtainable at 
runtime or from a compiler. 
 Matick et al. described an IPC model for a single-threaded 
processor [11].  We use similar principles for our single-threaded 
IPC model.  
 Jung and et al. proposed a compiler technique to determine 
the optimal number of threads to execute a parallelizable loop on 
an SMT processor [12]. Their IPC model is derived using linear 
regression and is parameterized by the workload instruction mix. 
We would like to use the modeling techniques presented in this 
work to develop more precise models for R_IPC and 
ideal_IPC_mt (recall section 3.3).  
 Moseley et al. [31] presented IPC models for SMT 
processors that are used at runtime but are less accurate than ours. 
The authors model all sources of resource contention with simple 
models derived using linear regression and recursive partitioning.  
In contrast, we model the most significant source of contention 
using an accurate model, resorting to regression-derived models 
only for less important sources of contention. This could explain 
why we achieve higher accuracy. Although Moseley’ s models are 
less accurate and were not designed for a non-work conserving 
scheduler, their advantage is that they are designed to work across 
different architectures. We envision using the results of this work 
when applying our model to other architectures. 
 
6. CONCLUSIONS 
 We presented a user-level prototype for a non-work-
conserving scheduler for SMT processors. The scheduler uses a 
new analytical model designed specifically for the use inside an 
operating system scheduler. We succeeded in creating a simple 
model without sacrificing accuracy by precisely modeling the 
sources of resource contention that have a high impact on the IPC 
and approximating contention for other resources using simple 
methods.  
 We demonstrated that our scheduling prototype improves 
performance whenever possible, and does not make it worse when 
improvement cannot be achieved using the non-work-conserving 
policy.  In the future we would like to apply our model to other 
SMT architectures and improve its accuracy when this can be 
done without sacrificing simplicity. 
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