
A Non-Work-Conserving Operating System
Scheduler For SMT Processors

Alexandra Fedorova†‡, Margo Seltzer† and Michael D. Smith†

†Harvard University, ‡Sun Microsystems

ABSTRACT
 Simultaneous multithreading (SMT) processors run multiple
threads simultaneously on a single processing core, and the
threads compete for the processor’s shared resources. Severe
resource contention can lead to performance degradation. On
SMT processors it is often beneficial to employ a non-work-
conserving scheduling policy: running fewer threads
simultaneously than the processor allows even if there are threads
ready to run. In cases of severe resource contention, non-work-
conserving scheduling can alleviate the contention significantly
enough so as to result in better performance than if the processor
were utilized to the full extent. Conventional operating systems
typically do not employ non-work-conserving policies. We
present a prototype of an operating system thread scheduler that
uses a non-work-conserving policy whenever it may result in
better performance. To determine when to use the non-work-
conserving policy, the scheduler uses an analytical model that,
unlike existing models, is sufficiently simple and practical for use
inside the operating system. We demonstrate that the scheduler
using our model correctly determines when to use the non-work-
conserving policy and improves performance in those cases.

1. INTRODUCTION
 An SMT processor is equipped with multiple hardware
contexts, or virtual processors, that enable concurrent execution
of multiple threads [1-4,6,22,23]. Although SMT processors differ
from conventional processors, it is common to use the operating
systems designed for conventional processors on SMT systems.
Conventional operating systems are work-conserving: they
schedule a thread to run on every virtual processor, never leaving
a virtual processor idle if there are threads ready to run. On SMT
processors work-conserving scheduling can result in sub-optimal
performance [12]. The threads running simultaneously contend
for the SMT processor’ s shared resources, and if contention
becomes too great the threads may complete altogether less work
than they would if some virtual processors were left idle and the
competition for the shared resources were less severe. In systems
this phenomenon is known as thrashing. To prevent thrashing, a
scheduler must be able to predict whether using a non-work-
conserving policy [21,25], i.e., keeping some virtual processors
idle even if there are threads ready to run, might result in better
performance.

We present a user-level prototype of a non-work-conserving
operating system scheduler. At the heart of the scheduler is a new
analytical model that helps decide when it is beneficial to employ
non-work-conserving scheduling. The model estimates the
instructions per cycle (IPC), or throughput, of the workload for a
given degree of concurrency, i.e. the numbers of threads running
simultaneously. The scheduler uses this model to determine the
degree of concurrency yielding the highest IPC, and then uses
only as many virtual processors as needed to achieve the optimal
degree of concurrency.

The analytical model is the key contribution of our work.

Similar models proposed in the past [16,17] were designed for
offline studies of SMT architectures. Their main objective was
accuracy. Efficiency, i.e. the number of steps it takes to produce
the IPC estimates using the model, was less important. It was also
acceptable to obtain the inputs for the model offline.

In contrast, our model is designed specifically for use inside
an operating system scheduler. The scheduler is a performance
critical component of the operating system invoked hundreds of
times per second, and any computation that it performs must be
quick, in order to impose little overhead on performance of user
applications. Therefore, our model has two critical requirements
of simplicity and practicality: a) the model calculations must be
simple enough so they could be performed in a small number of
steps and implemented without floating-point operations (many
modern operating systems do not permit floating-point operations
inside the kernel); b) inputs for the model must be obtainable at
runtime or at compilation time.

We achieve simplicity in the model by focusing on those
resources, contention for which is most likely to cause thrashing.
We model them precisely, while representing the effects of
contention for other resources with simple, less precise, models.
We identify contention for the L2 cache as the prime cause of
performance degradation and thrashing. Our decision is based on
previous studies that have shown that contention for the L2 cache
can significantly affect throughput on SMT processors [8,9,31]
(also see Figures 1a and 1b). Contention for the L2 cache
increases the miss rate, requiring more accesses of the main
memory. The cost of memory access has now reached 200-300
processor cycles and has been growing at 50% per year [24]. It is,
therefore, probable that thrashing due to L2 cache contention
remains a problem in the future, and this is another reason why we
focus on the L2 cache. Our model precisely expresses the
relationship between the L2 cache miss rate and the IPC; we
approximate contention for other resources with models derived
using linear regression, which significantly simplifies our model.
To foster simplicity we model the effect of the L2 cache miss rate
on the IPC using basic probability theory, which results in the
model that is notably less complex than those based on Markov
chains, used in the past [16,17].

We assume the SMT architecture of the UltraSPARC T1
[6] processor released by Sun Microsystems in 2006, and we
validate our model for this architecture. This is a first step towards
creating a general model. We compare our model’s IPC
predictions for the SPEC CPU2000 integer benchmarks to actual
measurements from an execution-driven simulator of UltraSPARC
T1 [5], and find them to be accurate to within 10% for most
workloads, with the largest observed difference between predicted
and measured values of 31%. This accuracy is comparable to
results previously reported in literature for more complex off-l ine
models [16,17].

With our prototype we demonstrate that a scheduler using
our model is able to correctly determine the optimal degree of
concurrency in most cases. We show that applications using our
scheduler achieve throughput improvement of 3 to 56% when

 2

there is benefit to be gained from non-work-conserving
scheduling, and perform no worse than with the default scheduler
otherwise. In this study we focus on homogeneous workloads –
multithreaded workloads where all threads are performing similar
work. Such workloads are common in data mining and
bioinformatics [28-30].

The rest of the paper is organized as follows: In Section 2
we describe our target SMT architecture and the simulator used
for our experiments. In Section 3 we present the model and
evaluate its accuracy. In Section 4 we present the scheduler
prototype and the performance results. In Section 5 we discuss
related work, and in Section 6 we conclude.

2. THE SMT ARCHITECTURE
 On modern SMT processors switching among the running
threads occurs if more than one thread requires exclusive use of a
shared resource [6,22,23]. Our model is designed for the
UltraSPARC T1 [4,6] architecture where all components of a
single-issue pipeline are shared, and switching occurs on every
CPU clock cycle. We assume a single-core SMT processor with
four virtual processors, shared first-level (L1) instruction and data
caches, and a second-level (L2) unified cache. The L2 cache is
connected to main memory (DRAM) by a shared bus. We assume
a single core, because our model’ s novelty is in representing the
interaction among the threads inside the core. We believe our

model can be easily extended to work for multi-core architectures.
We run our experiments on an execution-driven full-system

simulator [5] of UltraSPARC T1. Using a simulator allowed us to
validate our model for various hardware configurations. We
validated the simulator against the UltraSPARC T1 hardware.
Table 1 summarizes the architectural characteristics of the
simulated processor. The configuration differs from that of
UltraSPARC T1 in the number of cores (we simulate a single
core, while the T1 has eight), the memory bandwidth, and the
clock speed (we could not model the precise clock speed of the T1
due to simulator constraints). Our simulator can execute the
Solaris operating system and all applications that commonly run
on Solaris/SPARC platforms.

3. THE MODEL
 Processor’ s cycles per instruction can be broken down into
two components: 1) the busy cycles 2) the blocked cycles: the
cycles spend handling L2 cache misses. We define the first
component as ideal cycles per instruction (ideal CPI) – the CPI
when there are no non-compulsory L2 cache misses: this is when
the processor runs at its ideal IPC. The second component is
determined by the L2 cache miss rate. And so we express the IPC
as the function of the ideal IPC and the L2 cache miss rate:

 IPC = F(ideal_IPC, L2 miss rate)

Since our goal is to prevent thrashing due to contention for the L2
cache, we precisely model the effect of the L2 cache miss rate on
the IPC. Contention for other shared resources, for which we use
simpler models, is captured by ideal_IPC. In this section we
describe how we model the IPC based on the L2 miss rate,
assuming that the ideal IPC is known. We explain how to
approximate the ideal IPC in Section 4.

Our model requires the following parameters:

Architectural parameters – obtained on system configuration:
• the number of virtual processors,
• DRAM latency,
• L2 cache size,
• memory bus bandwidth.

Workload parameters – measured at runtime and provided by a
compiler:

Figure 1a. Normalized throughput for memory-intensive
SPEC CPU2000 benchmarks. The experiment is run on a
simulated SMT processor with four virtual processors. There is a
set of bars for each benchmark/L2 cache size. Each bar within a
set corresponds to a different number of concurrent threads.
Each thread runs its own benchmark instance. Using a high
degree of concurrency causes thrashing due to extreme
contention for the L2 cache (see Figure 1b). Lowering the
degree of concurrency eliminates thrashing and improves the
throughput.

Figure 1b. Normalized L2 miss rate cor responding to the
exper iments in Figure 1a.

Processor 992 MHz, single processing core, 4
virtual processors

L1 data cache Shared, 8KB, 4-way set associative

L1 instruction cache Shared, 16KB, 4-way set associative

L2 cache Shared, 12-way set associative, size
varies from 48KB to 192KB.
(We use the L2 cache size that is smaller
than a typical L2 cache on modern SMT
processors because we eventually want
to target architectures that have multiple
SMT cores sharing the L2 cache [6,35],
and on these architectures, the amount of
L2 cache per core is smaller.)

M emory bandwidth 5.2 GB/s

Table 1. Simulator configuration.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

crafty-
48KB

crafty-
96KB

gcc-
48KB

gcc-
96KB

gcc-
192KB

vortex-
48KB

4 threads 3 threads 2 threads

N
O

R
M

A
L

IZ
E

D
 T

H
R

O
U

G
H

P
U

T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

crafty-
48KB

crafty-
96KB

gcc-
48KB

gcc-
96KB

gcc-
192KB

vortex-
48KB

4 threads 3 threads 2 threads

N
O

R
M

A
L

IZ
E

D
 L

2
 M

IS
S

 R
A

T
E

 3

• the number of concurrently running threads
• ideal IPC – the IPC with an infinitely-sized L2 cache.
• L2 cache miss rate for a given number of concurrently

running threads.

In Section 4 we explain how we obtain the workload parameters
at runtime.
 For a machine with given architectural parameters, our
model is expressed as follows:

 IPC = F(N, L2 miss rate, ideal_IPC(N)),

where N is the number of concurrent threads.
 We begin by describing the IPC model for a processor
running in a single-threaded mode (Section 3.1), then we extend
the model for the multithreaded mode (Section 3.2).

3.1 Single-threaded model
 For simplicity we explain how we model cycles per
instruction (CPI), the inverse of instructions per cycle (IPC).

CPI

IPC
1

= (1)

First, we introduce some definitions:

L2_CPI – for a given L2 miss rate, the number of cycles per

instruction that a thread is blocked handling misses in the
L2 cache.

Ideal_CPI – the inverse of ideal IPC, the cycles per instruction
achieved with an infinitely sized L2 cache.

L2_RMR – L2 read miss rate – the number of L2 read misses per
instruction. This includes data read misses and instruction
fetch misses.

L2_WMR – the number of L2 write misses per instruction.
L2_MCOST – the cost, in cycles, of handling a miss in the L2

cache. This includes the memory latency and the memory-
bus delay. While the memory latency of a given architecture
is fixed, the memory-bus delay varies depending on the
workload. We now assume that memory-bus delay is zero,
and relax this assumption at the end of Section 3.

L2_CPI depends on the L2 miss rate and the cost of each miss:

MCOSTLWMRLRMRLCPIL _2*)_2_2(_2 += (2)

The CPI is comprised of its ideal_CPI and its L2_CPI:

 CPI_LCPI_idealCPI 2+= (3)

 On processors with write-back caches, such as UltraSPARC
T1, a cache transaction may trigger a write-back: an operation of
writing a dirty cache line back to the memory. A write-back may
be triggered on a cache read miss or on a write miss. As will
become clear soon, we must distinguish among those write-back
operations triggered by read misses and those triggered by write
misses. We express the respective write-back rates as follows:

L2_WBR_R – the write-back rate (operations per instruction)

triggered by read and instruction-fetch misses.
L2_WBR_W – the write-back rate (operations per instruction)

triggered by write misses.

We found that the fraction of write-back operations triggered by
each type of cache misses can be accurately approximated by the
fraction of the corresponding cache misses: for example, if 60% of
the cache misses are read misses, then roughly 60% of the write-
back transactions are triggered by the read misses.
 To account for write-back transactions, we extend our
definitions of read/write miss rates as follows:

L2_COMB_RMR – combined L2 read miss rate – the L2 read miss

rate that includes the write-back operations triggered by
these misses:

 L2_COMB_RMR = L2_RMR + L2_WBR_R

L2_COMB_WMR – combined L2 write miss rate – the L2 write

miss rate that includes the write-back operations triggered
by write misses:

 L2_COMB_WMR = L2_WMR + L2_WBR_W.

On modern processors, not all L2 cache misses stall the processor.
Usually there is a write buffer that absorbs the effects of write
misses and the write-back operations triggered by write misses. A
processor only blocks when the write buffer becomes full. To
account for the write-buffer effect we derive an architecture-
specific parameter write stall coefficient (WSC). WSC expresses
the fraction of write misses that stall the processor for a given
write miss rate. We derive this parameter empirically by
measuring the fraction of write transactions that stall our
processor for SPEC CPU 2000 integer workloads [10]. We found
that for workloads with the combined L2 write miss rate of greater
than 0.005, 90% of the writes stall the processor, while for
workloads with a smaller miss rate, most of the writes are non-
blocking. Accordingly, we set WSC as:

�
�
�

≤

>
=

005.0__ 0,

,005.0__2 ,9.0

WMRCOMBL2

WMRCOMBL
WSC

In our model we multiply the L2 write miss rate by WSC to
account only for those write-miss transactions that stall the
processor: those writes that do not stall the processor do not have
the effect on the IPC, so we do not account for them. Using the
WSC coefficient instead of modeling the full complexity of the
write buffer is a reasonable simplification: for most workloads, the
write buffer absorbs most writes, and, therefore, having a detailed
write buffer model is not necessary. WSC needs to be derived for
a specific architecture.

Expression for L2_CPI changes as follows:

MCOSTLWSCWMRCOMBLRMRCOMBL

CPIL

_2*)*__2__2(

_2

+
=

 (4)

Substituting the L2_CPI, computed using equation (4), into
equation (3) we compute the CPI, and then the IPC (equation (1)).

3.2 Multithreaded model
When the processor executes in multithreaded mode, one or

more virtual processors may be blocked handling an L2 cache
miss while others continue executing instructions (See Figure 2).

 4

The entire processor is blocked only when all virtual processors
are blocked. In Section 3.1 we showed how to model the time that
a single virtual processor is blocked on L2 misses (L2_CPI). In
this section we show how to use L2_CPI to estimate the time that
the entire processor is blocked due to handling L2 misses.

We introduce an individual blocking probability – the
probability that an individual virtual processor is blocked on an
L2 cache miss. Then we combine individual blocking
probabilities to estimate the time that the overall processor is
blocked.

3.2.1 Individual blocking probability
 We derive the individual blocking probability in single-
threaded mode using ideal_CPI and L2_CPI (Section 3.1):

CPILCPIideal

CPIL
indblockedprob

2

_2
__

+
=

The individual blocking probability in multithreaded mode

is expressed using the individual ideal CPI of the thread when the
processor runs in multithreaded mode, ideal_CPI_mt_ind.
Ideal_CPI_mt_ind is obtained using ideal_CPI_mt – the ideal CPI
for the entire workload. For our architecture, the relationship
between ideal_CPI_mt_ind and ideal_CPI_mt is determined by
the number of virtual processors V. Recall that the processor
switches threads on every cycle, so for each cycle that a thread is
busy, it waits for the rest of the threads to take their turn using the
processor:

V*mtideal_CPI_mt_indideal_CPI_ = (5).

The individual blocking probability for the multithreaded mode is
expressed as:

CPILindmtCPIideal

CPIL
indmtblockedprob

_2___

_2

+
= (6),

3.2.2 Modeling multithreaded IPC
 Let V be the number of virtual processors. An SMT
processor can be in one of these V+1 states:

(0) All V virtual processors are blocked,
(1) Exactly one virtual processor is busy – (V-1) are blocked,
(2) Exactly two virtual processors are busy,
…

(V) All virtual processors are busy.

In State V, the processor is running at IPC equal to ideal_IPC_mt
(the inverse of ideal_CPI_mt). In State 0, the processor is running
at the IPC equal to zero. In the remaining states the processor is
running at some IPC that is less than or equal to ideal_IPC_mt –
we will refer to this quantity as R_IPC(i), where i corresponds to
the number of virtual processors that are busy. So, for example, if
exactly three virtual processors are busy and one is blocked (i=3),
the processor is running at R_IPC(3). We show how we derive
R_IPC in the next section.
 We use the probability that a virtual processor is blocked to
compute the corresponding probability that a virtual processor is
busy (prob_busy_mt_ind):

prob_busy_mt_ind = 1 – prob_blocked_mt_ind .

We compute probabil ities P(i) that a processor is in state i,

(0 ≤ i ≤ V) as follows:

iVi ind_mt_blocked_prob*ind_mt_busy_prob*
i
V

)i(P −
�
�

�
�
�

	=

where i is the number of virtual processors that are busy in state i.
We then compute the IPC in multithreaded mode (IPC_mt) by
multiplying the IPC achieved in each state by the probability of
that state and summing across all states:

 == N
i

iIPCRiPmtIPC
0

)(_*)(_ (7).

3.2.3. Deriving R_IPC

The model for R_IPC is derived using linear regression
analysis. The resulting equation expresses the dependence of
R_IPC(i) on ideal_IPC_mt and i. We use SPEC CPU2000 integer
benchmarks for derivation and arrive at an equation with a good
fit (R-squared of 0.9):

mtIPCidealiiIPCR __*94.0*2.069.0)(_ ++−= (8).

Although we derived our equation offline, a recent study suggests
that this could also be done online [31]. SPEC CPU2000
benchmark suite consists of a heterogeneous set of benchmarks, so
we expect the equation derived using this benchmark suite to
generalize well to integer workloads. A different equation needs to
be derived for workloads that perform many floating-point
operations.

3.3. Model evaluation
 We evaluate our model using integer benchmarks in the
SPEC CPU2000 benchmark suite [10]. We do not use perlbmk,
because it is a multi-process benchmark, and we needed single-
process benchmarks. For each benchmark, we estimate the overall
IPC for multiple concurrent instances of the benchmark using our
model. We obtain the inputs for our model by measurement. Also,
for each benchmark we measure the actual IPC by running
multiple concurrent instances of the benchmark on our simulator.
We compare the estimated and measured IPC. We study the
sensitivity of our model to variations in two of the input factors:
the L2 cache miss rate and the degree of concurrency.

For the first analysis we alter the L2 cache size of the
simulated machine from 48KB to 192KB: this creates variation in
the L2 miss rate. Figure 3 shows the data. The difference between
the measured and estimated IPC is 4% on average, with a median

vp0

vp1

vp2

vp3

C M

C M C

C M C

M C M

C computation memory access
triggered by an L2 missM

time

Figure 2. M emory-access latencies over lap in multithreaded
processors.

 5

difference of 3%, and a maximum of 12%. The estimates were
less accurate for gzip (12% difference between measured and
estimated IPC) because the R_IPC estimate was less accurate for
gzip than for other benchmarks. Gzip is notably more compute-
bound than the rest of the benchmarks, and the R_IPC equation
did not suit it as well as the other benchmarks. The model for
R_IPC could be made more accurate if parameterized by the
workload’s instruction mix. For the majority of the benchmarks,
however, the simple R_IPC equation works well, as we expected.

Next we analyze the model’s sensitivity to the number of
concurrent threads. We set the cache size to 48KB and vary the
number of concurrent benchmark instances: two, three, and four.
The input ideal_IPC_mt for degrees of concurrency smaller than
the maximum is estimated using equations derived in a similar
fashion as the equation for R_IPC (equation 8).

Table 2 shows the data. The difference between the
measured and estimated IPC is 4.21% (mean), 4.44% (median),

and 12.20% (largest) for four concurrent benchmarks, 10.29%
(mean), 7.89% (median), and 22.58% (largest) for three
concurrent benchmarks, and 11.51% (mean), 9.38% (median),
21.74% (largest) for two concurrent benchmarks. The accuracy is
comparable to that of the SMT models described in the past: the
mean, median and maximum errors reported by Saavedra-Barrera
[16] are 7%, 4% and 28% respectively.

Our model is less accurate when the degree of concurrency
is smaller than the number of virtual processors, because in this
case ideal_IPC_mt is estimated using a regression-derived linear
equation. A precise model of ideal_IPC_mt would account for the
architecture of the processor’ s shared resources and how these
resources are used by a particular workload. Ongoing work on
modeling SMT performance [7,12,31] suggests alternative
avenues for approximating ideal_IPC_mt without sacrificing the
model’ s simplicity.

A final enhancement to the model is accounting for the

4 threads 3 threads 2 threads

Measured Estimated Difference Measured Estimated Difference Measured Estimated Difference

bzip 0.50 0.53 6.00% 0.64 0.67 4.69% 0.89 0.74 16.85%

crafty 0.46 0.47 2.17% 0.40 0.49 22.50% 0.34 0.41 20.59%

eon 0.42 0.40 4.76% 0.34 0.35 2.94% 0.26 0.27 3.85%

gap 0.50 0.54 8.00% 0.46 0.49 6.52% 0.43 0.46 6.98%

gcc 0.35 0.35 0.00% 0.31 0.38 22.58% 0.23 0.28 21.74%

gzip 0.82 0.72 12.20% 0.68 0.71 4.41% 0.52 0.55 5.77%

mcf 0.50 0.50 0.00% 0.18 0.20 11.11% 0.15 0.16 6.67%

parser 0.62 0.59 4.84% 0.49 0.56 14.29% 0.35 0.42 20.00%

twolf 0.45 0.47 4.44% 0.38 0.35 7.89% 0.32 0.29 9.38%

vortex 0.46 0.46 0.00% 0.37 0.43 16.22% 0.27 0.31 14.81%

vpr 0.52 0.54 3.85% 0.45 0.45 0.00% 0.35 0.35 0.00%

 M ean 4.21% M ean 10.29% M ean 11.51%

 M edian 4.44% M edian 7.89% M edian 9.38%

 Maximum 12.20% Maximum 22.58% Maximum 21.74%

Table 2. Analysis of model sensitivity to the number of threads running in parallel. The data is obtained with the assumption of
unlimited memory bandwidth.

Figure 3. Comparison between measured and estimated IPC.
Figure 4. M easured vs. estimated IPC with limited memory
bandwidth.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2

L2 CACHE SIZE (KB)

IP
C

Measured Estimated

bzip crafty eon gcc gzip tw olfpar-
ser

vor-
tex

vprgap mcf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2

L2 CACHE SIZE (KB)

IP
C

Measured Estimated

bzip crafty eon gcc gzip tw olfpar-
ser

vor-
tex

vprgap mcf

 6

memory-bus delay. The existing models for memory-bus delay
[26,27] are typically based on mean-value analysis of closed
queuing networks [13,14,34]. We designed a model that is simpler
to solve than the existing models. We omit presentation of our
memory bus model due to space constraints and encourage the
reader to refer to the manuscript providing the details [33]. We
account for the memory-bus delay in our model by adding the
estimated delay to L2_MCOST (equation (4)). Figure 4 shows
how the IPC estimated using our model that accounts for the
memory-bus delay compares with the IPC measured on a
simulated machine configured to have limited memory
bandwidth. The differences between the measured and estimated
values are 11% (mean), 10% (median), and 31% (largest).

4. THE SCHEDULER

We implemented a user-level scheduler prototype that uses
our model to determine the optimal number of concurrency to use
on an SMT processor. The scheduler starts the multi-process or
multithreaded job specified by the user, running a thread on each
virtual processor, collects the machine statistics used to generate
inputs for the model (preparation phase), uses the model to
estimate the IPC for each degree of concurrency smaller than the
maximum, and finally forces the degree of concurrency
corresponding to the highest predicted IPC by disabling one or
more virtual processors (optimization phase). If the IPC obtained
with the highest degree of concurrency (measured during the
preparation phase) is higher than any of the estimated IPC for
smaller degrees of concurrency the scheduler keeps all virtual
processors busy.

4.1 Obtaining input parameters for the model
To estimate the IPC for a degree of concurrency N, where N

< V, the scheduler must furnish the following inputs to the model:
(1) the ideal IPC for N threads, (2) the L2 cache miss rate when N
threads share the cache. All statistics necessary to generate the
inputs are obtained using standard hardware counters.

4.1.1 Obtaining the ideal IPC

The scheduler first computes the ideal IPC for N = V,
ideal_IPC(V). Then it estimates ideal_IPC(N) using ideal_IPC(V)
and a regression-derived linear equation. Recall the specification
of our IPC model:

IPC = F(N, ideal_ IPC(N), L2 miss rate).

The actual IPC and the L2 miss rate for N = V are obtained during
the preparation phase from the hardware counters. Ideal_IPC(V)
is then estimated by applying the inverse of the model:

 ideal_IPC(V) = F′(V, IPC, L2 miss rate)

Once ideal_IPC(V) is known, the ideal IPC for N < V is
estimated using the same process (described in Section 3.3) as we
use to estimate ideal_IPC_mt for degrees of concurrency smaller
than the maximum. Recall that we use linear equations derived in
a similar fashion as the equation for R_IPC (equation (8)).

4.1.2 Obtaining the L2 miss rate

There are two known techniques to estimate the L2 miss
rate when N < V threads run in parallel. They are based on (1) the
stack-distance model and (2) the reuse-distance model. The stack-
distance model requires a stack-distance profile of the program. A
stack-distance profile captures the temporal reuse behavior of an

application; it can be obtained statically by the compiler [18], or at
runtime if the machine has appropriate hardware counters [19].
Multiple stack-distance profiles are combined to estimate the miss
rate for multiple threads running in parallel [20].

A reuse-distance model [32] requires a reuse-distance
histogram, which, similarly to the stack-distance profile, captures
the temporal reuse behavior of the program. Reuse-distance
histogram can be obtained online with some performance
overhead.

More work is needed to determine which is the better
method for estimating the L2 cache miss rate by the scheduler. In
our prototype we used the method based on the stack-distance
model.

4.2 Performance results

Figure 5 shows the IPC achieved with our non-work-
conserving (NWC) scheduler during the optimization phase and
compares it to the IPC achieved with the default scheduler
(default) and to the optimal IPC (optimal) determined via
simulation. Each set of bars is labeled <benchmark - L2 cache
size>, indicating that four instances of a benchmark run on a
machine configured with L2 cache size.

On the left side of the graph are the cases where better
performance can be achieved with non-work-conserving
scheduling (CAN IMPROVE). These are the cases when the
optimal IPC is greater than the IPC with the default scheduler. The
NWC scheduler improves performance in each case, from 3% to
56%, often achieving the IPC as high as the optimal.

On the right side of the graph are the cases where no
performance improvement can result from non-work-conserving
scheduling (CANNOT IMPROVE): the IPC with the default
scheduler is already as high as the optimal. In these cases the
NWC scheduler correctly decides to keep all virtual processors
busy, achieving the IPC equal to the optimal. Note that each
memory-intensive benchmark that appears in the “CAN
IMPROVE” section of the graph also appears in the “CANNOT
IMPROVE” section with a larger cache size, where performance
can no longer be improved by lowering the degree of concurrency.
 These results demonstrate feasibility of implementing a non-
work-conserving scheduler that uses an online analytical model to
determine the optimal degree of concurrency on SMT processors.
The key to obtaining these results is our simple model that works
with inputs obtainable during compilation and at runtime.

Figure 5. Normalized IPC with the default scheduler NWC
scheduler, and the optimal.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

crafty-
48KB

crafty-
96KB

gcc-
48KB

gcc-
96KB

gcc-
192KB

vortex-
48KB

crafty-
192KB

gcc-
384KB

vortex-
96KB

gzip-
48KB

N
O

R
M

A
L

IZ
E

D
 T

H
R

O
U

G
H

P
U

T
 (

IP
C

)

default NWC optimal

CAN IMPROVE CANNOT IMPROVE

 7

5. RELATED WORK
 Detailed IPC models for SMT processors proposed in the
past [16,17] use Markov processes to model transitions between
the busy and blocked states. These models are not trivial to solve;
closed form solutions are approximated. Our model uses basic
probability theory and is simpler, but no less accurate.
Additionally, our model works with inputs that are obtainable at
runtime or from a compiler.
 Matick et al. described an IPC model for a single-threaded
processor [11]. We use similar principles for our single-threaded
IPC model.
 Jung and et al. proposed a compiler technique to determine
the optimal number of threads to execute a parallelizable loop on
an SMT processor [12]. Their IPC model is derived using linear
regression and is parameterized by the workload instruction mix.
We would like to use the modeling techniques presented in this
work to develop more precise models for R_IPC and
ideal_IPC_mt (recall section 3.3).
 Moseley et al. [31] presented IPC models for SMT
processors that are used at runtime but are less accurate than ours.
The authors model all sources of resource contention with simple
models derived using linear regression and recursive partitioning.
In contrast, we model the most significant source of contention
using an accurate model, resorting to regression-derived models
only for less important sources of contention. This could explain
why we achieve higher accuracy. Although Moseley’ s models are
less accurate and were not designed for a non-work conserving
scheduler, their advantage is that they are designed to work across
different architectures. We envision using the results of this work
when applying our model to other architectures.

6. CONCLUSIONS
 We presented a user-level prototype for a non-work-
conserving scheduler for SMT processors. The scheduler uses a
new analytical model designed specifically for the use inside an
operating system scheduler. We succeeded in creating a simple
model without sacrificing accuracy by precisely modeling the
sources of resource contention that have a high impact on the IPC
and approximating contention for other resources using simple
methods.
 We demonstrated that our scheduling prototype improves
performance whenever possible, and does not make it worse when
improvement cannot be achieved using the non-work-conserving
policy. In the future we would like to apply our model to other
SMT architectures and improve its accuracy when this can be
done without sacrificing simplicity.

7. REFERENCES

[1] D. Tullsen, S. Eggers, H. Levy, Simultaneous

Multithreading: Maximizing On-Chip Parallelism, ISCA’95.
[2] R. Alverson et al., The Tera Computer System, Proc. 1990

Intl. Conf. on Supercomputing.
[3] A. Agarwal, B-H. Lim, D. Kranz, J. Kubiatowicz, APRIL:

A Processor Architecture for Multiprocessing, ISCA’90
[4] J. Laudon, A. Gupta, M. Horowitz, Interleaving: A

Multithreading Technique Targeting Multiprocessors and
Workstations, ASPLOS VI, October 1994.

[5] Daniel Nussbaum, Alexandra Fedorova and Christopher
Small, "An overview of the Sam CMT simulator kit",
Technical Report TR-2004-133, Sun Microsystems
Research Labs, March 2004.

[6] P. Kongetira. A 32-way Multithreaded SPARC(R)
Processor. http://www.hotchips.org/archives/hc16/,

HOTCHIPS 16, 2004.
[7] A. Snavely, D. Tullsen. Symbiotic Job Scheduling for a

Simultaneous Multithreading Machine. In Proc. of ASPLOS
IX, pp. 234-244, 2000.

[8] S. Hily, A. Seznec. Standard Memory Hierarchy Does Not
Fit Simultaneous Multithreading. MTEAC'98.

[9] A. Fedorova, M. Seltzer, C. Small and D. Nussbaum.
Performance of Multithreaded Chip Multiprocessors And
Implications For Operating System Design, USENIX 2005

[10] SPEC CPU2000 Web site: http://www.spec.org
[11] R. E. Matick, T. J. Heller, and M. Ignatowski, Analytical

analysis of finite cache penalty and cycles per instruction of
a multiprocessor memory hierarchy using miss rates and
queuing theory, IBM Journal Of Research And
Development, Vol. 45 No. 6, November 2001.

[12] C. Jung, D. Lim, J. Lee, S. Han, Adaptive Execution
Techniques for SMT Multiprocessor Architectures, in Proc.
Of PPoPP, 2005.

[13] R. Onvural, Survey of Closed Queuing Networks With
Blocking, ACM Computing Surveys, v. 22, issue 2, pp. 83-
121, 1990

[14] L. Kleinrock, Queuing Systems Vol I, Wiley, 1975.
[15] P. J. Denning. 1968. Thrashing: Its Causes and Prevention.

In Proc. of AFIPS, 1968 Fall Joint Computer Conference,
vol. 33, pp. 915-922.

[16] R. Saavedra-Barrera, D. Culler and T. von Eicken, Analysis
of Multithreaded Architectures for Parallel Computing,
SPAA 1990.

[17] P. K. Dubey, A. Krishna and M. Squillante, Analytic
Performance Modeling for a Spectrum of Multithreaded
Processor Architectures, MASCOTS 1995.

[18] C. Cascaval, L. DeRose, D.A. Padua, and D. Reed,
Compile-Time Based Performance Prediction, 12th Intl.
Workshop on Languages and Compilers for Parallel
Computing, 1999.

[19] G.E. Suh, S. Devadas, and L. Rudolph, A New Memory
Monitoring Scheme for Memory-Aware Scheduling and
Partitioning, In Proc. Of Intl. High Performance Computer
Architecture, 2002.

[20] D. Chandra, F. Guo, S. Kim, and Y. Solihin, Predicting
Inter-Thread Cache Contention on a Multi-Processor
Architecture, In Proc. Of 11th Int’ l. Symposium on High-
Performance Computer Architecture (HPCA-11), 2005.

[21] E. Rosti, E. Smirni, G. Serazzi, L. Dowdy, Analysis of Non-
Work-Conserving Processor Partitioning Policies, In Proc.
Of the Workshop on Job Scheduling Strategies for Parallel
Processing, 1995.

[22] M. Funk, Simultaneous Multi-threading (SMT) on eServer
iSeries Power5 Processors, http://www-03.ibm.com/
servers/eserver/iseries/perfmgmt/pdf/SMT.pdf

[23] Deborah T. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty,
J. Miller, M. Upton, Hyper-threading technology
architecture and microarchitecture. Intel Technical Journal,
pp. 4-15, February 2002.

[24] D. Patterson and K. Yelick, Final Report 2002-2003 for
MICRO Project #02-060, University of California,
Berkeley, CA 2003.

[25] E. Smirni, E. Rosti, G. Serazzi, L. W. Dowdy, and K. C.
Sevcik, Performance gains from leaving idle processors in
multiprocessor systems, In Proc. Of ICPP 1995, Vol. III,
pp. 203-210, 1995.

[26] Daniel J. Sorin, et al., Analytic Evaluation of Shared-
memory Systems with ILP Processors. In Proc. Of ISCA
1998, pp. 380-391.

 8

[27] D. Will ick and D. Eager, An Analytical Model of
Multistage Interconnection Networks, In Proc. of 1990
ACM SIGMETRICS, pp. 192-199.

[28] mpiBLAST: Open-Source Parallel BLAST
http://mpiblast.lanl.gov

[29] D.A. Bader et al., BioSPLASH: A sample workload for
bioinformatics and computational biology for optimizing
next-generation performance computer systems, Technical
Report, University of New Mexico, May 2005.

[30] Y. Chen et al., Compute-Intensive, Highly Parallel
Applications and Uses, Intel Technology Journal, v.9(2),
2005.

[31] T. Moseley, J. Kihm, D. Connors and D. Grunwald,
Methods for Modeling Resource Contention on
Simultaneous Multithreading Processors, In Proceedings of
the 2005 International Conference on Computer Design
(ICCD), 2005.

[32] E. Berg and E. Hagersten, StatCache: A Probabilistic
Approach to Efficient and Accurate Data Locality Analysis,
International Symposium on Performance Analysis of
Systems And Software (ISPASS-2004), 2004.

[33] Alexandra Fedorova, Margo Seltzer, and Michael D. Smith.
“Modeling the Effects of Memory Hierarchy Performance
On Throughput of Multithreaded Processors” , Technical
Report TR-15-05, Harvard University, 2005.

[34] M. Reiser and S. S. Lavenberg. Mean-value analysis of
closed multichain queuing networks. Journal of the ACM,
27(2):313-322, April 1980.

[35] K. Krewell, Cell Moves into the Limelight, Microprocessor
Report, February 14, 2005.

