
A General-Purpose Provenance Library

Peter Macko
Harvard University

Margo Seltzer
Harvard University

Abstract

Most provenance capture takes place inside particular
tools – a workflow engine, a database, an operating sys-
tem, or an application. However, most users have an ex-
isting toolset – a collection of different tools that work
well for their needs and with which they are comfort-
able. Currently, such users have limited ability to collect
provenance without disrupting their work and changing
environments, which most users are hesitant to do. Even
users who are willing to adopt new tools, may realize
limited benefit from provenance in those tools if they do
not integrate with their entire environment, which may
include multiple languages and frameworks.

We present the Core Provenance Library (CPL), a
portable, multi-lingual library that application program-
mers can easily incorporate into a variety of tools to col-
lect and integrate provenance. Although the manual in-
strumentation adds extra work for application program-
mers, we show that in most cases, the work is minimal,
and the resulting system solves several problems that
plague more constrained provenance collection systems.

1 Introduction

Adoption of provenance among computational scientists
is low, because most existing systems require that users
adopt a particular toolset. For example, PASS [11] and
Story Book [12] require users to run a modified ver-
sion of the operating system, StarFlow [5] requires the
use of Python, Kepler [3], VisTrails [6], and many other
workflow engines require the use of a particular engine
– but users are often reluctant to change their work envi-
ronments. Moreover, many provenance systems require
users to conduct all their data analysis in a single pro-
gramming language or an environment, while in reality,
heterogeneity is the norm. For example, it is not uncom-
mon to process data produced by a simulation written
in C or Java using a Perl script and then process it fur-

ther using a shell script or a combination of analysis pro-
grams.

Taking these and several other previously identified
lessons [4] into account, we developed the Core Prove-
nance Library (CPL), which can be integrated easily into
existing scripts and applications. The CPL is portable
across operating systems, has multiple language bind-
ings, and can use any one of a variety of database back-
ends. Applications can use the library’s API to disclose
provenance by creating provenance objects and describ-
ing data and control flow between them. Existing prove-
nance and workflow systems can use the same API to
disclose provenance to the CPL, so that in the end, the
provenance from different tools in the system is together
and integrated. The library takes care of persistent stor-
age, cycle detection and resolution, query, and visualiza-
tion in addition to providing an API to access the col-
lected provenance programmatically.

Even though the manual instrumentation adds ex-
tra work, we find that such work requires little effort
and the resulting system solves several problems that
plague other systems [4], such as version disconnect and
provenance integration. It enables applications to ex-
port provenance at whatever granularity is most logical
to them. For example, a provenance system that auto-
matically collects provenance might not know that two
objects, which are not directly related from its viewpoint,
are, in fact, an older and a newer version of the same ob-
ject. We discuss this further in Section 2.1.

2 Disclosing Provenance

The main design considerations of the provenance li-
brary are simplicity and the ability to integrate prove-
nance across multiple applications easily.

An application using the library calls cpl_attach to
initialize the library for the current process and to attach
it to the appropriate storage backend. The application
then uses the library to obtain unique IDs correspond-



ing to its logical objects, such as actors in workflow en-
gines or tables in databases, using cpl_create_object

for new objects or cpl_lookup_object for extant ob-
jects. It then calls cpl_data_flow whenever an object
uses data from another object, such as when an actor in
a workflow reads the contents of a file or when it trans-
mits a computed value to another actor in the workflow.
The application uses cpl_control to indicate that an
object influences the execution of a task without pass-
ing any data; for example, a loop operand in a workflow
engine influences execution inside the loop. The appli-
cation can attach arbitrary key/value pairs to objects us-
ing cpl_add_property. Finally, the application calls
cpl_detach before it exists (such as via atexit). There
is no need to clean up any other state, such as closing or
otherwise disposing of provenance objects; the library
does this automatically. This automated cleanup was an
explicit design decision to simplify integration of the li-
brary to existing applications. Appendix A presents the
API in more detail.

The CPL internally assigns a globally unique ID to
each object. Externally, it identifies an object using a
combination of three fields:

• Namespace: The name of an application or a com-
ponent of the system to which the object belongs.
For example, an actor in a workflow engine should
be defined in the engine’s private namespace, while
a file should be defined in the file system’s names-
pace. This field is important to prevent name col-
lisions between unrelated applications and to facil-
itate sharing of objects from cooperating applica-
tions.

• Name: The local name of the object.
• Type: The type of the object, such as whether it is

a file or a process. This can be a standard (CPL-
defined) or a user-defined type.

If there are multiple objects with the same namespace,
name, and type, the lookup operation returns the most
recently created object by default; others can be retrieved
using cpl_lookup_object_ext.

The library defines several special namespaces for
shared objects, such as for files that reside on a file sys-
tem, and special convenience functions to access some
of them. For example, cpl_lookup_file looks up (and
optionally creates, if necessary) a unique ID that can be
used to reference a specific file. This facilitates prove-
nance integration between non-cooperating applications,
since it does not require them to pass IDs of their respec-
tive objects to each other.

The CPL also tags each object with the MAC address
of the machine on which it was created, so that an appli-
cation can easily share an object and its provenance over
a network. The library automatically versions each ob-

ject using the Cycle Avoidance algorithm [11] to avoid
creating cycles in provenance and so that applications
can reference older versions of objects as appropriate.

The library annotates each provenance record with
provenance of provenance, so that each piece of prove-
nance can be attributed to a specific instance of an appli-
cation running on a specific computer. It records the user
name, time, name of the binary image, command line ar-
guments, and the MAC address of the machine. This is
useful, for example, to answer the “where does this piece
of provenance come from?” question, to list provenance
objects produced by a specific instance of an application,
and to get information about an application that produced
a specific object (see Section 5.1).

2.1 Advantages
A critical characteristic of this approach is that applica-
tions can disclose provenance to the CPL in a way that is
most logical and appropriate for them, eliminating sev-
eral problems that plague other systems [4].

The first problem systems frequently encounter is ver-
sion disconnect: For example, most text editors save a
file by first creating a temporary file and then moving it
into place, replacing the older version of the file. Systems
such as PASS [11] that collect provenance by observing
system calls frequently miss this connection and treat the
old and the new version of the document as different ob-
jects, even though the version connection is obvious to
the user. An editor that uses the CPL can choose whether
to treat a new version of the document as a new version
of the old document or as a separate object connected
via a data dependency relationship, depending on what
is most logical for the application.

The second problem CPL addresses is provenance in-
tegration: Cooperating applications can share and refer-
ence the GUIDs of their objects, eliminating many uses
of the alternate relation from the W3C provenance stan-
dard [10]. If the object is a file on a file system (or a dif-
ferent kind of shared object), even non-cooperating ap-
plications can easily reference it uniformly.

Another problem that frequently arise is the discon-
nect between different notions of provenance: For exam-
ple, StarFlow [5] statically analyzes a Python program
to determine its call graph and the files that it reads and
writes, instead of capturing dynamic information at run-
time. It can export this to the CPL, while exporting it to
PASS was more difficult in our experience.

2.2 Disadvantages
While using the CPL requires effort on the part of ap-
plication programmers, we have found the effort to be
quite small; we present anecdotal evidence in Section 5.

2



The second disadvantage is that the library cannot guar-
antee that the provenance is complete or even correct.
Programmers can forget to disclose relevant information,
they can inadvertently disclose erroneous information, or
they can misuse standard types, thus introducing errors
into later inference over the provenance. We will need to
gain more experience with a variety of users to assess the
significance of these possibilities.

3 Accessing Provenance

The CPL includes an API for programmatically access-
ing the collected provenance. It includes functions such
as cpl_get_object_ancestry to list ancestors and de-
scendants of an object or cpl_get_object_info to re-
trieve information about an object, such as its names-
pace, name, type, creation time, current version, and
provenance of provenance. Appendix A contains more
details.

The CPL distribution also includes a command-line
tool for issuing simple provenance queries on files, and
it is also integrated with Orbiter [9] for visualization.

4 Implementation

We implemented the library in C++ and currently support
C, Java, and Perl bindings, plus a command-line tool for
instrumenting shell scripts and for manually disclosing
provenance. Our own use of this tool has proven indis-
pensable, as it enables us to disclose the provenance of
simple operations that we perform from the command
line, such as copying files. The CPL works on Linux, OS
X, and with some limitations on Windows.

Each application that uses the CPL loads it as a shared
library and makes a call to cpl_attach as described
above, which in turn opens its database connection.
There is thus one running instance of the CPL embed-
ded in each provenance-enabled process, instead of each
application communicating with a single service. The
individual instances of the CPL rely on the database for
caching and on shared semaphores to perform synchro-
nization in a few rare instances when it is necessary.

The advantage of this approach is simplicity from the
user’s point of view, since there is no need to worry about
running a separate service. The disadvantage is that this
puts more stress on the database, because it limits the
kinds of information the library can cache. On the other
hand, our experience shows that database caches are ef-
fective, and we save on the IPC overhead that we would
have if the CPL were running as a separate process.

The CPL is designed to work with multiple database
engines – both relational and graph databases. We im-
plemented ODBC and SPARQL/RDF [8] drivers, which

we tested on MySQL, PostgreSQL, and 4store [1]. The
library communicates with the drivers using a high-level
interface, in which the individual API functions are de-
signed to be sufficiently expressive so that the database
driver can implement them efficiently, leveraging the
specific features of the database. At the same time, the
actions are designed to be simple enough that they can
be trivially decomposed into smaller actions if necessary.
Almost all tasks in practice can be performed using a
single SQL or SPARQL query. The CPL requires that
each database operation is atomic and durable and pre-
serves database consistency. The CPL does not require
the atomic guarantee across multiple operations. The
documentation accompanying the source code contains
more details (see Appendix B).

5 Use Cases

We have used the CPL in two projects: GraphDB Bench
(a part of the Tinkubator [13] project) and Kepler [3].

5.1 GraphDB Bench
GraphDB Bench [13] is a tool for benchmarking graph
databases – both to compare different databases to each
other and to better understand performance of a single
database system. The benchmark is organized as a series
of operators (such as ingesting a GraphML file, adding a
vertex, getting the k-hop neighborhood of a node) acting
on an instance of a graph database. The program writes
result, the elapsed time, and the memory usage of each
completed operation to a .csv file.

We instrumented the benchmark to disclose data flow
from the database to every operator that accesses it and
from each operator to the .csv file with the results. The
benchmark also discloses data flow from operators that
modify the database (such as ingest) to the instance of
the database. We annotate every operator with its param-
eters, such as the value of k in k-hop microbechmarks or
the values of model parameters in random graph genera-
tors. The instrumentation involved adding or modifying
approximately 270 lines of the source code (excluding
comments), most of which was copy and paste.

The result is that we easily track how each .csv was
produced – such as what operators were used, which in-
stance of the database they operated on, and what pa-
rameters we used to configure the operators and the
benchmark tool. We can also learn additional infor-
mation about the benchmark by examining provenance
of provenance, which includes the command-line argu-
ments passed in to the Java Virtual Machine running the
benchmark, such as the maximum size of the Java heap.

The collected provenance also enables us to query the
ancestors of a database in order to learn which operators

3



modified it and from which GraphML file the database
was originally constructed. This is useful, so that for ex-
ample, if we find out that the database was not modified
after the initial ingest, we can reuse it safely for subse-
quent benchmarks. Otherwise we might need to restore
it to the original state.

5.2 Kepler
Kepler [3] is a workflow engine that automatically col-
lects provenance into one of several storage backends,
such as a SQL database, an OPM file, or a text file.

It took us less than an hour to implement basic CPL
support. We based our implementation on the source
code of Kepler’s OPM module, and the work was rela-
tively straightforward. The module discloses data depen-
dencies between actors and artifacts just like OPM mod-
ule, except it stores the actor parameters as properties
instead of as artifacts with data dependency relationships
with their respective actors. This significantly de-clutters
the provenance graph and enables our visualization tool
to display the actor properties in a simple, concise table.

We further extended our CPL module to integrate its
provenance with the file system by disclosing data flow
from an input file to a file-reading actor just before it is
executed, and from a file-writing actor to its output file
after it is executed. This required on average 1-2 lines
of actor-specific code in the provenance module per each
actor that does file I/O to retrieve the file name from its
parameters. This enabled us to easily track provenance
across multiple workflows and data processing stages
outside of the workflow engine.

6 Related Work

PASS [11] enables applications to disclose their prove-
nance using the Disclosed Provenance API (DPAPI) and
to integrate it with the provenance that it automatically
infers from observing system calls. An advantage of
the DPAPI is its deep integration with the operating sys-
tem, which enables the application programmers to bun-
dle provenance information with the write system call
(called pawrite in PASS), so that the provenance is dis-
closed if and only if the write succeeds. The primary
advantages of the CPL over the DPAPI are its portabil-
ity, ease of use, and the ability to query provenance. The
CPL does not require a modified operating system, and it
allows the applications to look up objects they previously
created using their namespace, name, and type, without
requiring them to maintain their own name to ID/version
mapping. The CPL further solves the problems outlined
previously in Section 2.1.

The CPL is, in many ways, similar to PLUS [2, 7],
which also supports an API that enables third-party ap-

plications to disclose their provenance and a method
for easy provenance traversal (such as backwards and
forwards lineage), and which also stores the collected
provenance in a SQL database. But unlike the CPL,
the authors solve the problem of provenance integration
by instrumenting the “coordination” points that are often
used in cross-organizational data sharing, such as the en-
terprise service bus (ESB – a tool for integration of ap-
plications), instead of instrumenting cooperating appli-
cations directly. PLUS also implements an access control
mechanism and provenance security by replacing pro-
tected subgraphs by surrogate nodes.

VisTrails SDK [14] allows their OEM partners to em-
bed the VisTrails Provenance Engine within their appli-
cations, enabling provenance capture without the need
of substantial changes to their products. The SDK is cur-
rently under development and thus not publicly available,
so we are unfortunately unable to compare it to the CPL.

7 Conclusion

We designed the CPL as a general-purpose provenance
library and demonstrated its use in applications and data
analysis pipelines. The CPL provides an easy, viable so-
lution for collecting provenance in heterogeneous envi-
ronments. It solves several problems that plague existing
provenance systems, integrates provenance across mul-
tiple programs and environments, and provides API to
access the provenance and facilitate its integration with
provenance analysis tools.

References
[1] 4STORE.ORG. 4store - scalable RDF storage, 2012. http://

4store.org/.
[2] ALLEN, M. D., CHAPMAN, A., BLAUSTEIN, B. T., AND

SELIGMAN, L. Capturing provenance in the wild. In IPAW
(2010), vol. 6378 of LNCS, Springer, pp. 98–101.

[3] ALTINTAS, I., BARNEY, O., AND JAEGER-FRANK, E. Prove-
nance collection support in the Kepler scientific workflow system.
IPAW (2006).

[4] ANGELINO, E., BRAUN, U., HOLLAND, D. A., MACKO, P.,
MARGO, D., AND SELTZER, M. Provenance integration requires
reconciliation. In TaPP (2011).

[5] ANGELINO, E., YAMINS, D., AND SELTZER, M. I. StarFlow:
A script-centric data analysis environment. In IPAW (2010),
vol. 6378 of LNCS, Springer, pp. 236–250.

[6] CALLAHAN, S. P., FREIRE, J., SANTOS, E., SCHEIDEGGER,
C. E., SILVA, C. T., AND VO, H. T. VisTrails: visualization
meets data management. In SIGMOD (2006), ACM, pp. 745–
747.

[7] CHAPMAN, A., BLAUSTEIN, B. T., SELIGMAN, L., AND
ALLEN, M. D. PLUS: A provenance manager for integrated in-
formation. In IRI (2011), IEEE Systems, Man, and Cybernetics
Society, pp. 269–275.

[8] CLARK, K. G., FEIGENBAUM, L., AND TORRES, E.
SPARQL Protocol for RDF, 2008. Published online
on January 15th, 2008 at http://www.w3.org/TR/2008/

REC-rdf-sparql-protocol-20080115/.

4



[9] MACKO, P., AND SELTZER, M. Provenance map orbiter: Inter-
active exploration of large provenance graphs. In TaPP (2011).

[10] MOREAU, L., MISSIER, P., BELHAJJAME, K., CRESSWELL,
S., GIL, Y., GOLDEN, R., GROTH, P., KLYNE, G., MC-
CUSKER, J., MILES, S., MYERS, J., AND SAHOO, S. The
PROV data model and abstract syntax notation. W3C working
draft, W3C, Feb. 2012. http://www.w3.org/TR/2012/WD-prov-
dm-20120202/.

[11] MUNISWAMY-REDDY, K.-K., BRAUN, U., HOLLAND, D. A.,
MACKO, P., MACLEAN, D., MARGO, D., SELTZER, M., AND
SMOGOR, R. Layering in provenance systems. In Proceedings
of the 2009 USENIX Annual Technical Conference (June 2009).

[12] SPILLANE, R. P., SEARS, R., YALAMANCHILI, C., GAIKWAD,
S., CHINNI, M., AND ZADOK, E. Story book: An efficient ex-
tensible provenance framework. In TaPP (2009).

[13] TINKERPOP. Tinkubator wiki, 2012. https://github.com/

tinkerpop/tinkubator/wiki.
[14] VisTrails SDK, 2012. http://www.vistrails.com/sdk.

html.

A API Overview

We present a brief overview of selected API functions
from CPL’s C bindings; Perl and Java bindings are omit-
ted for brevity. Perl bindings are similar to C bindings.
We designed the Java API from scratch to make it very
Java-like.

A more complete documentation for C bindings is in-
cluded in the design documentation and Doxygen com-
ments (see Appendix B for a link to obtain a copy of the
library). The Perl and Java bindings are documented in a
man page and Javadoc comments, respectively.

The CPL functions fall into the following five cate-
gories:

• Attach/Detach: Functions to attach/detach the CPL
from the database backend.

• Object Creation and Lookup API: Functions to
lookup and create provenance objects.

• Disclosed Provenance API: Functions used to dis-
close provenance.

• Provenance Access API: Functions used to access
and query the recorded provenance.

• Helper Functions: Miscellaneous functions.

In C, all functions return an error or a success code,
which can be tested using the macro CPL_IS_OK; actual
return values are returned via pointer arguments. Func-
tions in languages that support exceptions, such as Java
and Perl, return the return values directly and throw ex-
ceptions on errors.

A.1 Attach/Detach Functions

cpl_attach(backend): Initialize the CPL bindings for
the current process and attach to the specified database
backend, which is an object created using either:

• cpl_create_odbc_backend(connection_str,

type, *out): Connect to a relational database us-
ing ODBC.

• cpl_create_rdf_backend(url_query,

url_update, type, *out): Connect to a triple-
store or a graph database using SPARQL/RDF.

cpl_detach(): Detach from the database backend.

A.2 Object Creation and Lookup API
cpl_create_object(namespace, name, type,

container, *out): Create a new object with the given
name and type in the given namespace. The container
argument is currently unused; it is reserved for future use
when we implement provenance containment.

cpl_lookup_object(namespace, name, type,

*out): Lookup and return a previously created object;
return the latest object if there are multiple objects with
the matching namespace, name, and type.

cpl_lookup_object_ext(namespace, name,

type, flags, iterator, context): Lookup and
return all objects with the matching namespace, name,
and type; pass information about each object plus the
caller-defined context to the specified iterator call-
back function. The C++ CPL extensions provide several
iterators for common operations, such as collecting the
returned objects in a std::list or std::vector.

cpl_create_or_lookup_object(namespace,

name, type, container, *out): Lookup and return
an existing object with the matching namespace, name,
and type. Create it if it does not already exist.

cpl_lookup_by_property(key, value,

iterator, context): Retrieve all objects with the
matching key/value pairs and pass each to the specified
iterator function alongside with the caller-provided
context. The C++ CPL extensions provide several
common callback functions.

cpl_lookup_file(name, flags, *out,

*out_version): Get a provenance object and its ver-
sion that corresponds to the specified file on the local file
system. Create the provenance object if necessary.

A.3 Disclosed Provenance API
cpl_data_flow(data_dest, data_source, type)

cpl_data_flow_ext(data_dest, data_source,

data_source_ver, type): Disclose a data flow from
data_source to data_dest of the given CPL-defined
type (use CPL_DATA_GENERIC as default; an example of
another type is CPL_DATA_COPY to be used when making
an exact copy of the given object).

cpl_control(object_id, controller, type)

5



cpl_control_ext(object_id, controller,

controller_ver, type): Disclose a control flow, in
which object_id was controlled by controller, and
the operation was of the given CPL-defined type (such as
CPL_CONTROL_GENERIC or CPL_CONTROL_START).

cpl_add_property(object_id, key, value): As-
sociate an arbitrary key/value pair with the given object.

A.4 Provenance Access API

cpl_get_version(object_id, *out): Get the cur-
rent version of the object.

cpl_get_current_session(*out): Return the ID of
the current session – the aforementioned provenance of
provenance tag associated with the current process.

cpl_get_session_info(session_id, *out): Re-
turn information about the given session, such as the user
name and the command line of the process. The caller
is responsible to destroy the returned struct by calling
cpl_free_session_info(info_struct).

cpl_get_object_info(object_id, *out): Return
information about the specified provenance object, such
as its namespace, name, type, version, creation time,
and the session that created it (i.e. the provenance
of provenance of the object). The caller is re-
sponsible to destroy the returned struct by calling
cpl_free_object_info(info_struct).

cpl_get_version_info(object_id, version,

*out): Get information about the specific version of the
provenance object, such as its creation time and the ses-
sion that created it (i.e. the provenance of provenance).
The caller is responsible to destroy the returned struct

by calling cpl_free_version_info(info_struct).

cpl_get_object_ancestry(object_id, version,

direction, flags, iterator, context): Get all
ancestors or descendants (depending on the value of the
direction argument) of the given object; pass each en-
countered provenance edge to the specified iterator

function alongside with the caller-provided context.
The C++ CPL extensions provide several common call-
back functions.

cpl_get_properties(object_id, version, key,

iterator, context): Retrieve all properties of the
given object that match the specified key, or all prop-
erties if the key is NULL, and pass each to the specified
iterator function alongside with the caller-provided
context. The C++ CPL extensions provide several
common callback functions.

A.5 Helper Functions
Miscellaneous functions for manipulating object IDs,
such as cpl_id_copy() and cpl_id_cmp() in C or
the corresponding overloaded operators in C++, and
cpl_error_string() to translate a return code to a
message string.

B Availability

A copy of the library, including additional documenta-
tion and API specification, can be obtained from:

code.google.com/p/core-provenance-library

6


