
Provenance in the Wild

Peter Macko, Margo Seltzer
June 14, 2012

2

What’s the Problem?

•  What does it mean to collect provenance
when you don’t control:
–  The data (types, format, organization, structure)
–  The operators
–  The environment in which its processed

June 2011

•  Can you impose/
extract any semantic
meaning to
provenance when it’s
collected by a herd
of cats?

http://www.newsrealblog.com/wp-content/uploads/2011/04/Herding-Cats.jpg

3

What do the Cats do?

•  They use data in arbitrary formats
–  Flat files
–  Unstructured, semi-structured, badly-structured
–  Proprietary formats
–  The cram twelve different kinds of data into a single container.

•  Transformations are arbitrary code
–  Pick your favorite turing-complete language.
–  Apply said language to data.
–  Transformations can depend on the environment.
–  Repeat

•  They move data around
–  Download objects from the web
–  Copy, rename objects
–  Replace objects

•  They install new software
–  New programs
–  New libraries
–  New compilers

June 2011

4

A Proposed Architecture

June 2011

Hbase MySQL Riak BDB

Provenance Library
C++

Python Perl Java R C

DB adapter DB adapter DB adapter DB adapter

Applications
In multiple languages

Language
adapters

Database
adapters

Provenance Store
With multiple implementations

ODBC driver

PostgreSQL
SPARQL/RDF

adapter

4store

Cmd
line

5

Why do we think this is a
good idea?

•  Heterogeneous environments are the norm.
•  Provenance must span those environments.
•  Users and/or applications can:

–  create connections that are implicit or
unobservable by software systems.

–  Integrate both static and dynamic dependencies.

Bring provenance to the users rather
than the users to the provenance.

June 2012

6

Basic Use Model

•  Connect to the library: cpl_attach!
•  Disclose provenance

–  Create/lookup objects: cpl_create_object,
cpl_lookup_object!

–  Disclose data flow: cpl_data_flow!
–  Disclose control flow: cpl_control_flow!
–  Add properties to objects: cpl_add_property!

•  Disconnect from the library: cpl_detach!

June 2012

7

Naming

•  Goal is to allow interoperability with minimal
coordination.

•  Objects are identified by three parameters:
–  Namespace: the application or system component that

“owns” the object. Examples: OS, a specific database,
workflow engine or application, or a project.

–  Name: local name (unique within a namespace)
–  Type: file, process, or namespace-specific type
–  Version: cycle avoidance algorithm create versions

June 2012

8

Additional Automatic Capture

•  Capture object creation MAC address so that
we can transmit provenance across a network
(and still identify it).

•  Capture provenance of provenance
–  Ties provenance to a specific instance of an

application (e.g., a process).
–  Results in capture of command line arguments

(e.g., size of the Java heap).

June 2012

9

Use Case: GraphDB Bench

•  A benchmark suite (and lots of experiments) to evaluate
absolute and relative performance of graph databases.

•  Instrument flow from the graph database to the
benchmark operators to results.

•  Modifications: 270 lines of code (out of 7500 total)
–  Most is cut and paste

•  Result: every csv result file has provenance indicating
which operations were run, what the source database
was, etc.

•  Helped us debug benchmark suite, identify missing
benchmark results, etc.

•  Integration with scripts led us to develop command-line
tool to track directory creation, file copies, etc.

June 2012

10

Discussion

•  Won’t this free for all lead to semantically
meaningless provenance?
–  Some provenance is better than no provenance.
–  Users/application developers who care are likely to provide

more semantically meaningful provenance than is available
by less flexible systems.

•  What do you do about missing provenance?
–  Some provenance is better than no provenance.
–  “Downstream” applications can connect upstream to bypass

provenance oblivious applications.
•  Bottom line: We make rope – make it possible to

have provenance without requiring that analysts or
programmers use specific languages or tools.

June 2012

