
3/12/15 CS161 Spring 2015 1 1 

VM Case Study: x86 

•  Topics 
•  X86 (lots of helpful hardware) 

•  Learning Objectives: 
•  Describe the x86 MMU support 
•  Discuss the tradeoffs between hardware and software 

managed VM 
•  Explain why the current x86 processors have so many 

different modes of operation (e.g., real, protected, etc). 
•  Explain how to achieve flat addressing on a segmented 

architecture. 
•  Discuss the tradeoffs in memory sharing flexibility between 

segmented and non-segmented architectures. 



Intel x86 VM System 

•  The Intel x86 Virtual Memory Architecture is a 
reflection of many major revisions that have occurred 
over various generations of Intel microprocessors. 
•  The changes between these revisions were substantial 

enough that learning x386 addressing is a lot like learning at 
least three different virtual memory systems! 

•  We will study the three addressing models in the order in 
which they were introduced. 

•  This also roughly matches the level of complexity of the early 
systems. 

3/12/15 CS161 Spring 2015 2 



X86 Historical Summary 
Introduced N Instr Phys. Mem VAS size 

8008 1972 66 16 KB None 
8080 1974 111 64 KB None 
8086 1978 133 1 MB None 
8088 1981 133 1 MB None 
80286 1982 169 16 MB 16 MB 
80386 1985 187 4 GB 64 TB 
80486 1989 193 4 GB 64 TB 
Pentium 1993 198 4 GB 64 TB 
Pentium Pro 1995 234 64 GB 64 TB 
Pentium 4 2004 1 TB 16 EB 
Core i7 2008 16 TB 16 EB 

3/12/15 CS161 Spring 2015 3 



The Intel 8080 

•  8 bit arithmetic 
•  16 bit addressing 
•  3 registers 

•  An 8-bit accumulator 
•  Two 8-bit address registers, called H and L 

•  The address registers could be used together to form 
a 16-bit address. 

•  Memory was addressed in bytes, so the number of 
bytes that could be addressed was 216 = 65536 (64K) 
bytes. 

3/12/15 CS161 Spring 2015 4 



The Intel 8086: Real Mode 

•  The memory addressing model of the Intel 8086 is 
used by PC programs that run in real mode. 
•  Memory is addressed by taking a 16-bit segment base, 

shifting left by four bits, and adding a 16-bit index. 
•  This yields a 20-bit address, for up to 1 megabyte of physical 

memory. 
•  The size of the index registers limits the segment size to 64K 

bytes. 
•  Windows systems provide an emulator for 8086 

memory addressing inside a "DOS box.” 
•  The Intel 8088, which was used in the first IBM PC, 

was the low cost version of the 8086, and had an 
identical architecture to the 8086. 

3/12/15 CS161 Spring 2015 5 



8086 Example 

•  Let’s say that Register SS contains 0xFFF0 
•  And that Register SP contains: 0x17 
•  What address is referenced by the instruction push AX? 

3/12/15 CS161 Spring 2015 6 

AH AL AX 
BH BL BX 

DH DL DX 
CH CL CX 

16-bit 
arithmetic 

data registers 

16-bit index 
Src ndx SI 
Dst ndx DI 

Stack ndx SP 
Base ndx BP 

0 0 15 15 7 

16-bit 
segment 

Code seg CS 
Data seg DS 

Extra seg ES 
Stack seg SS 

0 15 



8086 Example 

•  Let’s say that Register SS contains 0xFFF0 
•  And that Register SP contains: 0x17 
•  What address is referenced by the instruction push XA? 

•  Shift segment base left by four: 0xFFF0 -> 0xFFF00 
•  Add index to segment address: 0xFFF00 + 0x17 = 0xFFF17 

3/12/15 CS161 Spring 2015 7 

AH AL AX 
BH BL BX 

DH DL DX 
CH CL CX 

8-bit 
arithmetic 

data registers 

16-bit index 
Src ndx SI 
Dst ndx DI 

Stack ndx SP 
Base ndx BP 

0 0 15 15 7 

16-bit 
segment 

Code seg CS 
Data seg DS 

Extra seg ES 
Stack seg SS 

0 15 

0xFFF0 
0x17 



20286 Segmented Virtual Memory 

•  Introduced virtual memory in the x86 family. 
•  Added a level of "indirection" or address mapping between the 

segment number and the address of the segment. 
•  This was achieved through a number of architectural changes: 

termed protected mode. 
•  The interpretation of the contents of the segment registers 

changed. 
•  The 20286 supports two segment descriptor tables. 
•  Segment registers contain a segment selector. 

•  The TI bit (bit 2) selects one of two segment descriptor tables. 
•  The segment descriptor index indexes into that table, which contains a segment 

descriptor 
•  The segment descriptor holds all the information needed to access a segment, 

including base address, size, and other attributes. 
•  The RPL field (bits 0 and 1) is used to implement the 80286 protection model 

3/12/15 CS161 Spring 2015 8 

Segment descriptor index 
15 .. 3 

TI 
2 

RPL 
1-0 



80286 Registers 

3/12/15 CS161 Spring 2015 9 

AX 
BX 

DX 
CX 

16-bit 
arithmetic 16-bit index 

Src ndx SI 
Dst ndx DI 

Stack ndx SP 
Base ndx BP 

0 0 15 15 

16-bit 
segment 

Code seg CS 
Data seg DS 

Extra seg ES 
Stack seg SS 

0 15 

Extra seg FS 

Extra seg GS 



80286 Example 

•  Register ES contains 0x0018 
•  What address is referenced by the instruction: 

mov word ptr es:[0x6e70], esp!

3/12/15 CS161 Spring 2015 10 

Base Size Attributes 
0 1000 No access 
100000 3000 Rx, present, … 
400000 8000 Rw, present … 
480000 8000 Gate, AVL 
… Segment descriptor table 0 

ES 000000000011000 



80286 Example 

•  Register ES contains 0x0018 
•  What address is referenced by the instruction: 

mov word ptr es:[0x6e70], esp!

3/12/15 CS161 Spring 2015 11 

Base Size Attributes 
0 1000 No access 
100000 3000 Rx, present, … 
400000 8000 Rw, present … 
480000 8000 Gate, AVL 
… Segment descriptor table 0 

ES 000000000011000 
RPL TI Index 

480000 + 6e70 486E70 



80386: Paged Virtual Memory 

•  Introduced paged virtual memory to the x86 family. 
•  Extends the 80286 architecture. 

•  Two additional segment registers. 
•  Segment register selected depending on the instruction, the 

addressing mode, and an optional prefix which explicitly 
selects a register. 

•  Segment descriptors are similar to the80 286. 
•  There are two types of descriptor tables: 

•  Global Descriptor Table (GDT): normally used for operating system 
segments. 

•  Local Descriptor Table (LDT): normally used for user mode segments. 
Typically one per process/task (although Windows uses a single LDT 
for all applications). 

•  As in the 80286, the TI bit selects the table. 

3/12/15 CS161 Spring 2015 12 



80386 Translation 

•  Instruction selects a segment register. 
•  Segment register selects a Descriptor table. 
•  Segment register indexes into Descriptor table. 
•  Descriptor provides a base address. 
•  Offset is added to base address. 
•  Constrained by limit in descriptor (properly modified 

by the G-bit to indicate whether max segment size is 
1 MB or 4 GB). 

3/12/15 CS161 Spring 2015 13 



80386 Data Structures 

3/12/15 CS161 Spring 2015 14 

Instruction 

LDT GDT 

Indexes into table 

Selects which table 

Segment registers 

Base (32 bits) Bounds (20 bits) protection G 

1-byte field indicating units used in 
bounds: either 4 KB or bytes. Changes 
segment size from 1 MB to 4 GB. 



Linear Addressing on the 80386 

•  By setting all segment registers to reference the same 
4GB segment, memory can be referenced using a "flat" 
4GB address space (as opposed to a segmented one). 

•  (It is not coincidence that this is much like the R2000.) 
•  So-called flat addressing is a convention, not a processor 

mode. 

3/12/15 CS161 Spring 2015 15 



Paging on the 80386 
•  The address that comes out of the previously described translation can then 

be fed into a paging unit. 
•  As with the MIPS R2000, page translation occurs (in concept) by using the 

virtual page number as an index into the Page Table, yielding a physical 
page number 

•  A 32-bit "linear" (e.g., non-segmented) address is made up of a 20-bit page 
number and a 12 bit offset. 

•  The page number is further divided into a 10-bit directory index and a 10-bit 
page number. 

3/12/15 CS161 Spring 2015 16 

page table offset dir index 
Linear 32-bit address 

Page directory 
1024 entries 

Page Table 
1024 entries 

Physical page 
4 KB 



Parting Notes on the x86 
•  In the 80386, all the segments map into the same linear address 

space and the linear address space is paged. 
•  The IBM 370 also combines segmentation and paging, except that 

it uses a separate page table for each segment. 
•  How can sharing be implemented? 

•  On a segment basis: two processes can share the same segment 
descriptor. 

•  On a page basis: two segments can have page tables entries, which map 
the same physical page into each segment. 

•  How does location of permission bits affect this? 
•  What about fragmentation? 

•  Pages eliminate external fragmentation (allocation is done in page sized 
units). 

•  Internal fragmentation is the same for paging (you always allocate full 
pages, so you waste any part of a page that is unused). 

•  If page size is small, you can reduce internal fragmentation. 
•  Later x86 architectures 

•  Look like the x86 with increased virtual and physical memory sizes. 

3/12/15 CS161 Spring 2015 17 


