VM Case Study: x86

* Topics
o X&86 (lots of helpful hardware)

» Learning Objectives:

3/12/15

Describe the x86 MMU support
Discuss the tradeoffs between hardware and software
managed VM

Explain why the current x86 processors have so many
different modes of operation (e.g., real, protected, etc).

Explain how to achieve flat addressing on a segmented
architecture.

Discuss the tradeoffs in memory sharing flexibility between
segmented and non-segmented architectures.

CS161 Spring 2015

O

Py
Intel x86 VM System

* The Intel x86 Virtual Memory Architecture is a
reflection of many major revisions that have occurred
over various generations of Intel microprocessors.

 The changes between these revisions were substantial
enough that learning x386 addressing is a lot like learning at
least three different virtual memory systems!

e We will study the three addressing models in the order in
which they were introduced.

e This also roughly matches the level of complexity of the early
systems.

3/12/15 CS161 Spring 2015 2

X86 Historical Summary

O

Introduced | N Instr Phys. Mem | VAS size
8008 1972 66 16 KB None
8080 1974 111 64 KB None
8086 1978 133 1 MB None
8088 1981 133 1 MB None
80286 1982 169 16 MB 16 MB
80386 1985 187 4 GB 64 TB
80486 1989 193 4 GB 64 TB
Pentium 1993 198 4 GB 64 TB
Pentium Pro | 1995 234 64 GB 64 TB
Pentium 4 2004 1TB 16 EB
Core i7 2008 16 TB 16 EB

3/12/15

CS161 Spring 2015

The Intel 8080

8 bit arithmetic
* 16 bit addressing
« 3registers

 An 8-bit accumulator
e Two 8-bit address registers, called Hand L

« The address registers could be used together to form
a 16-bit address.

 Memory was addressed in bytes, so the number of
bytes that could be addressed was 27 = 65536 (64K)
bytes.

3/12/15 CS161 Spring 2015 4

O

O

The Intel 8086: Real Mode

 The memory addressing model of the Intel 8086 is
used by PC programs that run in real mode.

« Memory is addressed by taking a 16-bit segment base,
shifting left by four bits, and adding a 16-bit index.

e This yields a 20-bit address, for up to 1 megabyte of physical
memory.

* The size of the index registers limits the segment size to 64K
bytes.

* Windows systems provide an emulator for 8086
memory addressing inside a "DOS box.”

 The Intel 8088, which was used in the first IBM PC,
was the low cost version of the 8086, and had an
identical architecture to the 8086.

3/12/15 CS161 Spring 2015 5

16-bit

arithmetic

AX
BX

CX
DX

AH

AL

BH

BL

CH

CL

DH

DL

15

data registers

7

0

8086 Example

16-bit index

SI
DI

BP
SP

Src ndx

Dst ndx

Base ndx

Stack ndx

15

0

CS
DS

SS
ES

16-bit

segment

Code seg

Data seg

Stack seg

Extra seg

15

« Let's say that Register SS contains OxFFFO

* And that Register SP contains: 0x17

0

O

* What address is referenced by the instruction push AX?

3/12/15

CS161 Spring 2015

8-bit 8086 Example 16-bit
arithmetic 16-bit index segment
AX | AH | AL Sl Src ndx CS | Code seg
BX | BH | BL DI Dst ndx DS | Data seg

CX [CH| CL BP | Base ndx SS
DX | DH | DL SP _ ES | Extra seg
15 70 15 0 15 0

data registers
« Let's say that Register SS contains OxFFFO
* And that Register SP contains: 0x17

* What address is referenced by the instruction push XA?
e Shift segment base left by four: OXFFFO -> OxFFFOO
e Add index to segment address: OxFFFOO + Ox17 = OxFFF17

3/12/15 CS161 Spring 2015 7

20286 Segmented Virtual Memory

* Introduced virtual memory in the x86 family.

« Added a level of "indirection" or address mapping between the
segment number and the address of the segment.

« This was achieved through a number of architectural changes:
termed protected mode.

 The interpretation of the contents of the segment registers
changed.

e The 20286 supports two segment descriptor tables.

e Segment registers contain a segment selector.
+ The TI bit (bit 2) selects one of two segment descriptor tables.
* The segment descriptor index indexes into that table, which contains a segment
descriptor

» The segment descriptor holds all the information needed to access a segment,
including base address, size, and other attributes.

+ The RPL field (bits 0 and 1) is used to implement the 80286 protection model

Segment descriptor index Tl | RPL
15..3 2 110

3/12/15 CS161 Spring 2015

16-bit
arithmetic

AX

BX

CX

DX

15

3/12/15

80286 Registers

16-bit index

SI
DI

BP
SP

Src ndx

Dst ndx

Base ndx

Stack ndx

15

CS161 Spring 2015

0

CS
DS
SS
ES
FS
GS

16-bit

segment

O

Code seg

Data seg

Stack seg

Extra seg

Extra seg

Extra seg

15

0

O

80286 Example

* Register ES contains 0x0018
« What address is referenced by the instruction:

mov word ptr es:[0x6e70], esp

Es| 000000000011000

Base Size Attributes
0 1000 No access
100000 3000 RX, present, ...
400000 8000 Rw, present ...
480000 8000 Gate, AVL

Segment descriptor table 0

3/12/15 CS161 Spring 2015 10

80286 Example

* Register ES contains 0x0018
« What address is referenced by the instruction:

mov word ptr es:[0x6e70], esp

ES | |000000000011GOO
Index TIRPL
Base Size Attributes
0 1000 No access
100000 3000 Rx, present, ...
400000 8000 Rw, present ...
480000 8000 Gate, AVL
Segment descriptor table 0 486E70

3/12/15

CS161 Spring 2015

11

80386: Paged Virtual Memory

 Introduced paged virtual memory to the x86 family.
« Extends the 80286 architecture.

3/12/15

Two additional segment registers.

Segment register selected depending on the instruction, the
addressing mode, and an optional prefix which explicitly
selects a reqister.

Segment descriptors are similar to the80 286.

There are two types of descriptor tables:

» Global Descriptor Table (GDT): normally used for operating system
segments.

» Local Descriptor Table (LDT): normally used for user mode segments.
Typically one per process/task (although Windows uses a single LDT
for all applications).

As in the 80286, the Tl bit selects the table.

CS161 Spring 2015 12

80386 Translation

 Instruction selects a segment register.

« Segment register selects a Descriptor table.

« Segment register indexes into Descriptor table.
» Descriptor provides a base address.

« Offset is added to base address.

« Constrained by limit in descriptor (properly modified
by the G-bit to indicate whether max segment size is
1 MB or 4 GB).

3/12/15 CS161 Spring 2015 13

©

80386 Data Structures
GDT LDT

Instruction

Indexes into table

Segment registers

Seflects which table T

1-byte field indicating units used in
bounds: either 4 KB or bytes. Changes
segment size from 1 MB to 4 GB.

Base (32 bits) Bounds (20 bits) | G protection

3/12/15 CS161 Spring 2015 14

Linear Addressing on the 80386

« By setting all segment registers to reference the same
4GB segment, memory can be referenced using a "flat"
4GB address space (as opposed to a segmented one).

« (Itis not coincidence that this is much like the R2000.)

« So-called flat addressing is a convention, not a processor
mode.

3/12/15 CS161 Spring 2015 15

Paging on the 80386

* The address that comes out of the previously described translation can then

be fed into a paging unit.

« As with the MIPS R2000, page translation occurs (in concept) by using the
virtual page number as an index into the Page Table, yielding a physical

page number

« A 32-bit "linear" (e.g., non-segmented) address is made up of a 20-bit page

number and a 12 bit offset.

 The page number is further divided into a 10-bit directory index and a 10-bit

page number.

Linear 32-bit address

Page directory

1024 entries
3/12/15

1024 entries
CS161 Spring 2015

dirindex | page table offset
|
—>
> Page Table \Physical page

4 KB
16

Parting Notes on the x86

In the 80386, all the segments map into the same linear address
space and the linear address space is paged.

The IBM 370 also combines segmentation and paging, except that
it uses a separate page table for each segment.

How can sharing be implemented?

* On a segment basis: two processes can share the same segment
descriptor.

* On a page basis: two segments can have page tables entries, which map
the same physical page into each segment.

e How does location of permission bits affect this?

What about fragmentation?
. Page)s eliminate external fragmentation (allocation is done in page sized
units).
e Internal fragmentation is the same for paging (you always allocate full
pages, so you waste any part of a page that is unused).
» If page size is small, you can reduce internal fragmentation.

Later x86 architectures
e Look like the x86 with increased virtual and physical memory sizes.

3/12/15 CS161 Spring 2015 17

