
4/21/15 CS161 Spring 2015 1 1 

Virtualization 

•  Learning Objectives 
•  Explain how today’s virtualization movement is actually a re-

invention of the past. 
•  Explain how virtualization works. 
•  Discuss the technical challenges to virtualization. 
•  Identify the key similarities and differences between a virtual 

machine monitor (hypervisor) and an operating system. 

•  Topics 
•  In the beginning: VM/370 
•  What is virtualization? 
•  Challenges to virtualization and how to address them. 



Virtual Machines 
•  Re-inventing operating systems all over again! 
•  In the 1960’s, IBM developed a family of machines (System/360, 

System/370) and an operating system called VM/360. 
•  Enable multiple users to share a single machine by giving each user 

his/her own machine. 
•  Real hardware partitioned into per-”machine” components: 

•  Disk 
•  Processors 
•  Memory 

•  Compared to operating systems, it’s just a different way of sharing 
resources. 

4/21/15 CS161 Spring 2015 2 

Conventional OS Virtual Machine Monitor 
Share processor via processes Share processor across “machines” 

Share disk through a global namespace Share disk by giving each machine its 
own “disk” and “file system namespace” 

Share memory through virtual memory Share memory by partitioning among 
machines. 



API 

•  Conventional operating systems use programmatic 
APIs: system calls. 

•  Virtual machine monitors use the hardware as its API. 
Think about this for a minute … 

•  Virtual machines largely died out in the 80’s. 
•  They made a (major) a resurgence in the 90’s and 

continue to do so. 
WHY? 

4/21/15 CS161 Spring 2015 3 



Why? 
•  Original VM/370: Only way to provide sharing. 
•  Motivation when re-introduced: 

•  Allow geeks like us to run UNIX/Linux and still read MS docs. 
•  Provide effective fault containment on multiprocessors. 

•  Distracting motivations: 
•  One OS can reboot while others keep running. 
•  Can test out new installations (both OS or major servers). 

•  Today’s motivations: 
•  Security: can run dangerous things in a “sandbox.” 
•  Provide a new software delivery vehicle. 
•  Optimized application and OS integration. 
•  Makes it easy for infrastructure providers to use resources 

efficiently. 
•  Provides isolation between different customers. 

4/21/15 CS161 Spring 2015 4 



Virtual Machine Architecture 

4/21/15 CS161 Spring 2015 5 

Hardware 

Virtual machine monitor 

Virtual 
Hardware 

Virtual 
Hardware 

Virtual 
Hardware 

Linux FreeBSD Windows 

Applications Applications Applications 



So, what is the VMM? 

•  A layer of software that multiplexes the actual 
hardware. 

•  While an OS multiplexes among processes, a VMM 
multiplexes among machines. 

•  From the point of view of the OS on a virtual machine 
or an application, anything running on a different 
virtual machine looks the same as if it were running 
on a different piece of hardware. 

4/21/15 CS161 Spring 2015 6 



Virtualization Goals 
•  Must give each virtual machine the complete illusion of a 

real machine, including: 
•  I/O devices 
•  interrupts, 
•  virtual memory hardware 
•  protection levels 
•  etc... 

•  Must be 100% compatible with existing hardware 
•  Run existing, unmodified operating systems and applications 

directly on the VM!! 
•  Must completely isolate VMs from each other 

•  Should not allow one VM to stomp on another's memory or CPU 
state 

•  Must have high performance 
•  Otherwise nobody will want to use it. 

4/21/15 CS161 Spring 2015 7 



Why is Virtualization hard? 
•  Terminology: 

•  VMM:The layer of software that lets you run virtual machines. 
•  HostOS: An OS that acts as a VMM; runs natively on the hardware. 
•  GuestOS: The OS running in a virtual machine. 

•  Guest OS needs to call privileged instructions 
•  E.g., to perform I/O, manipulate hardware state, etc. 
•  Should we let it do this directly?? 

•  Guest OS needs to manipulate page tables 
•  To set up virtual->physical mappings for its applications 
•  Why is this potentially a bad idea? 

•  Guest OS needs to believe it's running on a real machine 
•  Must support complete instruction set of processor 
•  Must support all the weird virtual memory features (segments, paging, 

etc.) 
•  Must support (at least some) “real” I/O devices (disk, network, etc.) 

4/21/15 CS161 Spring 2015 8 



In what mode does a VM run? 
•  Typically an operating system runs in supervisor mode, but if we 

really want to prevent individual machines from executing 
privileged instructions or directly manipulating the memory 
manager, then we cannot run a virtual machine in supervisor 
mode! 
•  Running the VM in unprivileged mode is the only way to ensure that a 

Guest OS doesn’t do bad stuff. 
•  How do we get the Guest OS to behave like an OS then? 

•  Option 1: Interpretation 
•  The VMM is simply a software layer that interprets every CPU 

instruction executed by the VM. 
•  Can safely emulate privileged instructions. 
•  All machine accesses (CPU execution, memory access, I/O) go through 

VMM. 
•  This works, but … 

•  It’s SLOW! 
•  VMM is a full CPU emulator (e.g., superset of Sys161) 

4/21/15 CS161 Spring 2015 9 



Option 2: Direct Execution 

•  Let the Guest OS run directly on the machine, but in 
user mode. 
•  Much faster. 

•  What happens when the guest issues a privileged 
instruction? 

4/21/15 CS161 Spring 2015 10 



Option 2: Direct Execution 

•  Let the Guest OS run directly on the machine, but in 
user mode. 
•  Much faster. 

•  What happens when the guest issues a privileged 
instruction? 
•  Trap! 
•  Who catches this trap? 

•  The software running in supervisor mode, which is the VMM! 

•  The VMM examines the faulting instruction and decides what 
to do: 

•  Handle the fault (issue the privileged instruction for the Guest). 
•  Disallow the operation and kill the VM 

4/21/15 CS161 Spring 2015 11 



Example: Application issues System Call 

4/21/15 CS161 Spring 2015 12 

Hardware 

Virtual 
Hardware 

Virtual 
Hardware 

Virtual 
Hardware 

Linux FreeBSD Windows 

Applications Applications Applications 

VMM 
 

write 

Trap 

Trap handler(sys) 

Trap 



Example: Guest accessing hardware 

4/21/15 CS161 Spring 2015 13 

Hardware 

Virtual 
Hardware 

Virtual 
Hardware 

Virtual 
Hardware 

Linux FreeBSD Windows 

Applications Applications Applications 

VMM 
 

Send a packet 

Trap 

Trap handler (prot) 

Someone tried to execute 
a protected instruction! 
Oh wait, it’s a Guest OS. 
That’s OK, I’ll do it for 
them! 

Write to network 



Protection 

•  If the OS and regular applications are both running in 
unprivileged mode, how do we protect them from 
each other? 
•  For example, how do we prevent the user application from 

stomping all over kernel memory? 

•  Recall that the x86 has multiple protection levels (four 
to be exact). 

•  Let’s take advantage of them: 
•  Run user code in Ring 3 
•  Run the GuestOS in Ring 1 
•  Run the VMM in Ring 0 

4/21/15 CS161 Spring 2015 14 



Onward: Memory Management 

•  The Guest OS thinks that it has its own page tables 
(because that’s what operating systems do and 
because when it does actually perform operations on 
behalf of processes, it needs to be able to translate 
addresses correctly). 

•  But … we still do not want the Guest OS to actually 
manipulate PTEs (or TLB entries). 
•  If we let it directly manipulate PTEs, it could map any page. 
•  Including pages from other VMs! 
•  That would be badTM. 

4/21/15 CS161 Spring 2015 15 



Shadow Page Tables 
•  Give each virtual machine make-believe page tables (called 

shadow page tables). 
•  The Guest OS will trap to the VMM when it manipulates page tables, 

allowing the VMM to update the real page tables appropriately. 

4/21/15 CS161 Spring 2015 16 

Virtual Machine 

VAS 

Shadow page table 
(READ ONLY) 

Real Physical Memory 

VM’s Physical 
Memory 

VMM 
 

Real page table 

Write real page table entry 

Trap 



Physical Memory Management 

•  How does the VMM allocate memory across virtual 
machines? 
•  Each VM/OS needs “some” physical memory (enough to 

run). 
•  How do you reclaim space from a VM? 

•  Option 1: Swap the entire VM (just like the OS swaps 
a process) 

•  Option 2: VMM-managed paging (just like the OS 
pages processes). 

•  Is the problem any different? Can’t we just use the 
same techniques in the VMM that we use in the OS? 

4/21/15 CS161 Spring 2015 17 



VMM-based Paging 
•  VMM has no idea what pages are used for (or even when 

they were used recently). 
•  VMM can’t distinguish between the operating system’s pages 

and application’s pages. 
•  If the VMM is solely responsible for paging, bad things can 

happen. 
•  Double Paging: 

•  VMM picks a page from the Guest OS and evicts it 
•  This just means that a page that appears to be in the virtual machine’s 

physical memory is really on disk. 
•  Now imagine that the Guest OS is under memory pressure and 

it decides to evict a page from its physical memory. 
•  It could choose a page that the VMM has already evicted. 
•  Now, the Guest OS is going to write it … a second time! 
•  And, in order for the Guest OS to access it to write it to its swap partition, it’s 

going to need to page it back in. 
•  This is also badTM. 

4/21/15 CS161 Spring 2015 18 



Example: Double Paging 

4/21/15 CS161 Spring 2015 19 

Virtual Machine 

VAS 

Shadow page table 
(READ ONLY) 

Real Physical Memory 

VM’s Physical 
Memory 

VMM 
 

Real page table 

Write this page to disk 

Fault 
Let’s evict this page 



Avoiding Double Paging: Ballooning 

•  Whenever we need to evict a real, physical page, we 
want to trick a Guest OS into picking the page to pick. 

•  This suggests that we need the Guest OS to feel 
memory pressure. 

•  How do we induce memory pressure on the guest? 
•  Add a balloon driver to each Guest OS 

•  The driver allocates (pinned) physical pages. 
•  When you “inflate the balloon” it pins more pages. 
•  These pages aren’t actually needed; all they do is consume 

part of the virtual machine’s address space; thus they are 
perfect candidates for the VMM to take away from the Guest! 

4/21/15 CS161 Spring 2015 20 



Example: Ballooning in action 

4/21/15 CS161 Spring 2015 21 

Real Physical Memory 

VM1 physical 
memory 

VM2 physical 
memory 

VM3 physical 
memory 

I’d like to evict 
a page… and 
I’d like to take 
it from VM1 

this driver needs 
another page of 
pinned memory Here is a page 

I’m not using… 
Thanks! I needed 
that page! 

Thank you! I’m 
giving that page to 
VM2 

Memory allocated to balloon drivers 



Optimizing Memory Usage 
•  In many cases, you may run many copies of the same 

Guest OS. 
•  These copies use many of the same pages. 
•  Just like an OS would like to avoid multiple copies of the same 

text page, the VMM would like to avoid having multiple copies of 
the same (OS) text page. 

•  How can you identify redundant pages? 
•  Borrow a page from the file system folks who do deduplication. 
•  Maintain a table of the hash values of all the contents of all the 

pages in memory. 
•  When you are about to allocate a new chunk of real physical 

memory for a page, lookup its hash value. 
•  If the hash is already in the table, compare contents to be sure. 
•  If they really are the same, reuse the physical page marking it 

copy-on-write. 
•  This technique is called “content-based page sharing.” 

4/21/15 CS161 Spring 2015 22 



I/O Device Interfaces 

•  All access to I/O devices must go through VMM 
•  This can be very expensive! 

•  Many real I/O devices have complex interfaces. 
•  Many programmed I/O operations to do simple things 
•  E.g., Reading a disk block or sending an Ethernet frame 

require a lot of interaction with the VMM. 
•  Observation: The VMM provides “virtual” devices 

•  Those devices can be dirt simple! 
•  Example: 

•  Simple network driver with two PIO interfaces. 
•  One PIO transmits a packet, another receives a packet. 

•  Lesson: If you get to design the hardware, make it 
simple! 

4/21/15 CS161 Spring 2015 23 



Hardware Nastiness 
•  So far, we’ve pretended that it’s actually possible to virtualize 

the CPU, but some architectures are not actually fully 
virtualizable: 
•  Every privileged instruction must trap to the OS when executed in user 

mode. 
•  Except for protection, instructions in privileged and unprivileged mode 

must operate identically. 
•  Guess what: the x86 is not virtualizable! 
•  Example: The POPF instruction 

•  Restores the CPU state from the stack, into the EFLAGS register. 
•  Some bits in the EFLAGS be modified only in supervisor mode. 

•  E.g., Interrupt enabled bit 
•  When execute in user mode, POPF will not modify the interrupt 

enabled bit. 
•  This leads to different behavior in different modes. 

•  This means a Guest OS is not going to observe the behavior it 
expects if we execute it in user mode. 

4/21/15 CS161 Spring 2015 24 



VMware Approach 
•  Binary translation 

•  Code running in each VM is scanned on-the-fly for “non-virtualizable” 
instructions 

•  Code is rewritten into a safe form 
•  This allows you to play some games. 

•  When you translate code in the Guest OS, you can incorporate some of 
the functionality from the virtual machine monitor. 

•  Example: Fast versions of I/O processing code 
•  Binary translation can be slow, so much of the secret sauce is in 

making it fast. 
•  Once you’ve translated a page once, you probably don’t want to do it 

again… 
•  Maintain a translation cache of recently-rewritten code pages. 
•  If you observe the same page again, use its already translated version. 
•  Must trap writes to any code page to invalidate the cache 

•  This only matters if you allow writable code pages 
•  But even if you do, you can get this to work. 

4/21/15 CS161 Spring 2015 25 



Para-virtualization 

•  Binary translation is fairly complex and slow. 
•  Paravirtualization is an alternative: 

•  Define a virtualizable subset of the x86 instruction set. 
•  Port the Guest OS to the new instruction set architecture. 

•  Xen uses this approach. 
•  Advantages 

•  Simple 
•  Fast 
•  Allows you to simplify OS/VMM interaction. 

•  Disadvantages 
•  Requires that you port the Guest OS 
•  Requires that Guest OS does not depend on any non-

virtualizable features. 

4/21/15 CS161 Spring 2015 26 



VMware Workstation 
•  Virtual machine monitor runs as an application (not a special 

layer running on the hardware!) 

4/21/15 CS161 Spring 2015 27 

Hardware 

Host Operating System 

Applications 

Virtual 
Hardware 

Virtual 
Hardware 

Linux FreeBSD 

VMM 
VMdriver 

Applications 

VMX (an application that 
runs directly on the host OS) 

One instance per VM 

Host World 

VMM World 

VMM 



References 
•  The Origin of the VM/370 Time-Sharing System 

•  R. J. Creasy, IBM J. Res. Develop, 25:5, Sep. '81 
•  The double paging anomaly 

•  R. P. Goldberg, R. Hassinger, AFIPS 1974 
•  DISCO: Running Commodity Operating Systems on Scalable 

Multiprocessors 
•  E. Bugnion, S. Devince, M. Rosenblum, SOSP 1997 

•  Virtualizing I/O Devices on VMware Workstation’s hosted Virtual 
Machine Monitor 
•  J. Sugerman, G. Venkitachalam, B. Lim, USENIX ATC, 2001 

•  Memory Resource Management in the VMWare ESX Server 
•  C. Waldspurger, OSDI'02 

•  Xen and the Art of Virtualization 
•  P. Barham et al., SOSP'03 

4/21/15 CS161 Spring 2015 28 


