
2/11/15

1

2/12/15 CS161 Spring 2015 1 1

Scheduling

•  Topics
•  The scheduling problem
•  Mechanism and policy
•  Approaches to scheduling

•  Learning Objectives:
•  Define the scheduling problem that an operating system

must solve.
•  Discuss the trade-offs between fairness and efficiency.
•  Describe several different scheduling algorithms.

The Scheduling Problem

•  The OS must make sure that processes do not interfere
with one another. This means it must:
•  Guarantee that all processes get to run: fair scheduling or

multiplexing.
•  Make sure they do not modify each other’s state: protection.

•  At the heart of an operating system, its functionality is
simple: it is a dispatcher:
•  Let the current process run.
•  Save the current process state.
•  Load the state of another process.
•  Run the new process.

•  The act of selecting a process to run is called scheduling.

2/12/15 CS161 Spring 2015 2

2/11/15

2

Goals of scheduling

•  Preserve the illusion that we present to each process that
that process is the sole user of the hardware resources.

•  A correct program should be oblivious to the scheduling
decisions that are made.

•  Each process (in the absence of parallel threads) acts as
if it were a sequential process with full control over all the
hardware resources.

•  Resources come in two flavors:
•  Preemptible: you can take the resource away

•  Need a scheduling policy: How long do you get the resources? In what order
to you grant resources?

•  Non-preemptible: once you give the resource away, it’s gone
until the process gives it back.

•  Need an allocation policy: Who gets what resource?

2/12/15 CS161 Spring 2015 3

Mechanism vs Policy

•  Mechanisms are the basic tools and techniques you use
to accomplish tasks.

•  Policies are how you use those mechanisms to
accomplish things.

•  There are real-world examples:
•  Teaching my kids fiscal responsibility.
•  Completing problem sets.

•  There are many examples in computer systems.
•  Disk block allocation.
•  Network management (QoS: Quality of service).
•  Web site security
•  Facebook privacy settings
•  More?

2/12/15 CS161 Spring 2015 4

2/11/15

3

Scheduling Mechanisms

•  Create thread: a way to create items to schedule.
•  Run queue: a list of threads that are runnable.
•  Wait channel: a list of threads that are blocked on some particular event.
•  Timer interrupts: can set a CPU timer that will generate an interrupt at a

particular time.

2/12/15 CS161 Spring 2015 5

Run queue

Wait channel

Create thread

Event!

Enhancing the Mechanism

•  What are some of the limitations of our existing
mechanism?
•  The run queue is FIFO.
•  Threads are only de-scheduled when they voluntarily

relinquish the processor.
•  So, what can we add to our mechanism?

•  A more sophisticated data structure for the run queue.
•  Timers: allow us to generate an interrupt so that we can de-

schedule threads.
•  Perhaps multiple run queues:

•  Perhaps have different queues for different priorities.
•  Perhaps have different queues for different processors.

2/12/15 CS161 Spring 2015 6

2/11/15

4

Metrics for a Scheduling Policy

•  Throughput: Efficiency of resource utilization
•  Keep the CPUs and disks busy.

•  Latency: Minimize response time
•  Avoid unnecessary context switches

•  Fairness: Distribute resources equitably
•  What does that mean?

•  I get more cycles because I’m the professor.
•  You get more cycles because you’re being graded.
•  We all get the same number of cycles, because that’s “fair.”
•  I have more work to do so I get more cycles.

2/12/15 CS161 Spring 2015 7

FIFO (First Come First Serve; FCFS)

•  Run process until finished.
•  In the simplest case, this results in uni-programming (run

one job until it’s done, run the next).
•  Usually, “finished” can also mean blocked.
•  While a process waits (on the disk, the keyboard, a

semaphore), another process can use the CPU. When the
event on which the process is waiting happens, it can go
back on the ready queue.

•  Problems?

•  Solution?

2/12/15 CS161 Spring 2015 8

2/11/15

5

FIFO (First Come First Serve; FCFS)

•  Run process until finished.
•  Inthe simplest case, this results in uni-programming (run

one job until it’s done, run the next).
•  Usually, “finished” can also mean blocked.
•  While a process waits (on the disk, the keyboard, a

semaphore), another process can use the CPU. When the
event on which the process is waiting happens, it can go
back on the ready queue.

•  Problems?
•  One process can monopolize CPU.

•  Solution?
•  Limit maximum amount of time a process can run. Call this unit

a time slice.

2/12/15 CS161 Spring 2015 9

Round Robin

•  Run a process for one time slice (or until it blocks), then let another process
run.

•  If process blocked voluntarily, it goes into a blocked state.
•  If not, process is put at the end of the ready queue.
•  Each process gets approximately equal fraction of the CPU.

2/12/15 CS161 Spring 2015 10

Process 1 Process 2 Process 3

Blocking events

•  What happens if the time slice isn’t chosen properly?
•  Too short?
•  Too long?

2/11/15

6

Priority-based Round Robin

•  Run highest priority first.
•  Use round robin within a priority.
•  When de-scheduling; put at end of queue of

appropriate priority.
•  Problems?

•  Round Robin sometimes produces weird results.
•  How long will it take 10 processes of 100 time slices each to

complete?
•  What is the average time to completion?
•  What would it be with FCFS?

•  What is the absolute best we can do?

2/12/15 CS161 Spring 2015 11

Shortest Time to Completion First

•  Assume we have total information.
•  We know the future, in particular, when a process will either exit or

voluntarily block.
•  We can see all the processes all the time.

•  Run the job with the shortest time to completion first (STCF).
•  This will minimize the average response time.

2/12/15 CS161 Spring 2015 12

2/11/15

7

Let’s all use STCF!

•  Problems:
•  Need to be able to see into the future.
•  Since knowing the future is challenging, use the past to predict

the future.
•  Turns out that we use this a lot, both in real life and in

computer:
•  How do you pick classes?
•  How do employers decide to hire you?
•  Are you likely to pet the dog that bit you yesterday?

•  Translate to scheduling:
•  If the process has already taken a long time to run, it’s likely to take a long

time still.
•  If a process does I/O regularly, it will continue to do I/O regularly.
•  Use some mechanism to disfavor long running processes.

2/12/15 CS161 Spring 2015 13

