Thread, Processes, and Address Spaces

« Topics

What is a process?

« Learning Objectives:

2/10/15

Explain the manifestation of a thread, process, and address
space within the operating system.

Compare and contrast the different possible mappings
between user and kernel level threads.

Explain all the pieces that comprise an address space.

CS161 Spring 2015 1



Process = Address Space + Thread(s) (1)

* A process is composed of two parts:
o A part that keeps track of “stuff’: Address space
A dynamic part: Thread

« Address space:
e A “place” in which execution happens.

e The set of addresses (e.g., memory locations) to which a
running computation has access.

* An address space can be physical (addresses map directly
to locations in the hardware) or virtual (addresses are “make
believe” but get translated into locations in hardware).

e Address spaces provide protection boundaries.

2/10/15 CS161 Spring 2015 2



Process = Address Space + Thread(s) (2)

* A process is composed of two parts:
e A static part: Address space
* A dynamic part: Thread

* Thread:
e A logical flow of control
* Execution state

* A process has one address space and one or more
threads in it.

« Threads share the address space, i.e., memory — that is
why you need to synchronize access to memory between
threads and (unless you go to great length) do not need to
synchronize access to memory across processes.

2/10/15 CS161 Spring 2015 3



User/Kernel Thread/Address Space

« User level processes can contain one or more
threads.

* The operating system (kernel) can contain one or
more threads.

* You can think of user processes and the kernel as
running in their own address spaces.

* The details sometimes get a little fuzzy and we’ll talk more
about that later, but for now, this is a reasonable model.

* There are a variety of ways to map user threads to
kernel threads.

2/10/15 CS161 Spring 2015



Architecture 1.
Single-threaded processes and kernel

« Historically, both the OS and user processes were
single-threaded.

* Design is easy!

User level

System Call Kernel level

2/10/15 CS161 Spring 2015 5



Architecture 2: Single-threaded processes; B
multi-threaded kernel

* Processes are still single-threaded.
« Design is easy: a process maps to a single OS
thread.

User level

System Call Kernel level

2/10/15 CS161 Spring 2015 6



Architecture 3. Multithreaded process per ™
kernel thread

* Process may be multi-threaded
« Each process maps to a single kernel thread
« Sometimes called user-level threads

Thread switch

User level

System Call Kernel level

2/10/15 CS161 Spring 2015 7



Architecture 4: Multithreaded 1:1

* Processes may be multi-threaded
* Every user-level thread maps to a kernel thread

User level

Kernel level

2/10/15 CS161 Spring 2015 8



Architecture 5: Multithreaded N:M

« User processes are multi-threaded
N user threads map to M kernel threads

User level

Kernel level

2/10/15 CS161 Spring 2015 9



