Thread, Processes, and Address Spaces

« Topics

What is a process?

« Learning Objectives:
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Explain the manifestation of a thread, process, and address
space within the operating system.

Compare and contrast the different possible mappings
between user and kernel level threads.

Explain all the pieces that comprise an address space.
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Process = Address Space + Thread(s) (1)

* A process is composed of two parts:
o A part that keeps track of “stuff’: Address space
A dynamic part: Thread

« Address space:
e A “place” in which execution happens.

e The set of addresses (e.g., memory locations) to which a
running computation has access.

* An address space can be physical (addresses map directly
to locations in the hardware) or virtual (addresses are “make
believe” but get translated into locations in hardware).

e Address spaces provide protection boundaries.
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Process = Address Space + Thread(s) (2)

* A process is composed of two parts:
e A static part: Address space
* A dynamic part: Thread

* Thread:
e A logical flow of control
* Execution state

* A process has one address space and one or more
threads in it.

« Threads share the address space, i.e., memory — that is
why you need to synchronize access to memory between
threads and (unless you go to great length) do not need to
synchronize access to memory across processes.
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User/Kernel Thread/Address Space

« User level processes can contain one or more
threads.

* The operating system (kernel) can contain one or
more threads.

* You can think of user processes and the kernel as
running in their own address spaces.

* The details sometimes get a little fuzzy and we’ll talk more
about that later, but for now, this is a reasonable model.

* There are a variety of ways to map user threads to
kernel threads.
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Architecture 1.
Single-threaded processes and kernel

« Historically, both the OS and user processes were
single-threaded.

* Design is easy!

User level

System Call Kernel level
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Architecture 2: Single-threaded processes; B
multi-threaded kernel

* Processes are still single-threaded.
« Design is easy: a process maps to a single OS
thread.

User level

System Call Kernel level
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Architecture 3. Multithreaded process per ™
kernel thread

* Process may be multi-threaded
« Each process maps to a single kernel thread
« Sometimes called user-level threads

Thread switch

User level

System Call Kernel level
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Architecture 4: Multithreaded 1:1

* Processes may be multi-threaded
* Every user-level thread maps to a kernel thread

User level

Kernel level

2/10/15 CS161 Spring 2015 8



Architecture 5: Multithreaded N:M

« User processes are multi-threaded
N user threads map to M kernel threads

User level

Kernel level
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