
2/10/15 CS161 Spring 2015 1 1 

Thread, Processes, and Address Spaces 

•  Topics 
•  What is a process? 

•  Learning Objectives: 
•  Explain the manifestation of a thread, process, and address 

space within the operating system. 
•  Compare and contrast the different possible mappings 

between user and kernel level threads. 
•  Explain all the pieces that comprise an address space. 



Process = Address Space + Thread(s) (1) 

•  A process is composed of two parts: 
•  A part that keeps track of “stuff”: Address space 
•  A dynamic part: Thread 

•  Address space: 
•  A “place” in which execution happens. 
•  The set of addresses (e.g., memory locations) to which a 

running computation has access. 
•  An address space can be physical (addresses map directly 

to locations in the hardware) or virtual (addresses are “make 
believe” but get translated into locations in hardware). 

•  Address spaces provide protection boundaries. 

2/10/15 CS161 Spring 2015 2 



Process = Address Space + Thread(s) (2) 

•  A process is composed of two parts: 
•  A static part: Address space 
•  A dynamic part: Thread 

•  Thread: 
•  A logical flow of control 
•  Execution state 

•  A process has one address space and one or more 
threads in it. 

•  Threads share the address space, i.e., memory – that is 
why you need to synchronize access to memory between 
threads and (unless you go to great length) do not need to 
synchronize access to memory across processes. 

2/10/15 CS161 Spring 2015 3 



User/Kernel Thread/Address Space 

•  User level processes can contain one or more 
threads. 

•  The operating system (kernel) can contain one or 
more threads. 

•  You can think of user processes and the kernel as 
running in their own address spaces. 
•  The details sometimes get a little fuzzy and we’ll talk more 

about that later, but for now, this is a reasonable model. 

•  There are a variety of ways to map user threads to 
kernel threads. 

2/10/15 CS161 Spring 2015 4 



Architecture 1: 
 Single-threaded processes and kernel 

•  Historically, both the OS and user processes were 
single-threaded. 

•  Design is easy! 

2/10/15 CS161 Spring 2015 5 

User level 

Kernel level System Call 



Architecture 2: Single-threaded processes; 
multi-threaded kernel 

•  Processes are still single-threaded. 
•  Design is easy: a process maps to a single OS 

thread. 

2/10/15 CS161 Spring 2015 6 

User level 

Kernel level System Call 



Architecture 3: Multithreaded process per 
kernel thread  

•  Process may be multi-threaded 
•  Each process maps to a single kernel thread 
•  Sometimes called user-level threads 

2/10/15 CS161 Spring 2015 7 

User level 

Kernel level 

Thread switch 

System Call 



Architecture 4: Multithreaded 1:1 

•  Processes may be multi-threaded 
•  Every user-level thread maps to a kernel thread 

2/10/15 CS161 Spring 2015 8 

User level 

Kernel level 



Architecture 5: Multithreaded N:M 

•  User processes are multi-threaded 
•  N user threads map to M kernel threads 

2/10/15 CS161 Spring 2015 9 

User level 

Kernel level 


