From Program to Process @

« Topics
 Managing and constructing processes.
« Learning Objectives:

e Explain the difference between a program and a process.

» |dentify the different pieces that the operating system needs
to keep track of for each process.

2/10/15 CS161 Spring 2015 1



Managing the Wily Process

« The operating system is tasked with keeping track of all
the processes executing (or attempting to execute) on a
system.

« The OS would like to keep track of as little information as
possible, but it must keep track of enough to facilitate
execution.

« The OS also keeps track of enough information to make
intelligent resource allocation decisions.
* S0, the OS keeps track of various things for each process:
e Execution state(s)
* Resource Information
e The memory comprising the process’ address space

2/10/15 CS161 Spring 2015



O

Programs to Processes

« A program is a simple executable file.
« A process is an entity able to run on a processor.

 What are the basic pieces of a process?
e Parts visible in the executable

e Parts that only happen when you run or get ready to execute
the process

2/10/15 CS161 Spring 2015 3



The Parts of the Executable (1)

* An executable [file] is constructed from a set
of [compiled] object modules and libraries.

 Linking is the process of constructing an
executable.

o Static linking: the executable contains all the code
and data that will be needed to run the program.

e Dynamic linking: the executable contains

references to modules that will be accessed at
load time.

2/10/15 CS161 Spring 2015

O



O

The Parts of an Executable (2)

 (Code: the instructions that are executed when this
runs; typically read-only.

 Rdata: read-only data

e Constant strings
e Jump [dispatch] tables

« Data: initialized global variables
« Bss: “Block Started by Symbol”

e Uninitialized global variables

2/10/15 CS161 Spring 2015 5



Organizing your executable

ELF is a commonly used format for executables.
ELF = Executable and Linkable Format.

If you have never learned about linking, view the
linking video on the web site.

Whether you have or not, you will find it useful to
examine the the OS/161 files that deal with elf

headers:
e kern/include/elf.h
e kern/syscall/loadelf.c

The function 1load elf will read an elf executable
into an address space; you might find this useful
when you are exec-ing processes.

2/10/15 CS161 Spring 2015



O

Parts of a Process not in the Executable

Execution State
Resources
Address space
Miscellaneous

2/10/15 CS161 Spring 2015 7



Execution State

» |f the process is currently running, the execution state is
captured in the hardware:
» Register contents
e Program counter
o Stack pointer
e Etc.

» |f the process is not running, then the OS needs to have a
snapshot of this information.
e PC (program counter)
e SP (stack pointer)
e General registers
* Interrupt and exception flags/registers
* Floating point registers

 The structure that holds this information is hardware
dependent? (Why?)

2/10/15 CS161 Spring 2015 8



Resource Information

« The list of constraints on how much of any given
resource the process can use.

* File information

* A collection of open files (including things like file pointers)
e The identity of the current working directory
« Scheduling information
e How much time the process has used
e |ts priority
o Statistics about its resource consumption

2/10/15 CS161 Spring 2015



O

Address Space

* Mostly bookkeeping

* Do not need to keep copies of memory, just records
of where the memory is or how to find it.
* Virtual memory management (details later)

2/10/15 CS161 Spring 2015 10



Other Attributes of a Process

 |dentity information
* A unique id, often called a process id (PID).

 Credentials

* A way of describing what permissions or capabilities a
process has.

e Example: superuser, administrator

« Signal information
* Which signals this process catches
* Which signals this process ignores

2/10/15 CS161 Spring 2015

11



Process Data Structures (1)

« Without careful design, process management
structures can become unwieldy!

* |tis useful to think about the parts of a process in a
variety of different ways:
e Which parts of the process are machine (in)dependent?

 Which parts need to be per-thread and which are pre-
process?

 How do you find information for a particular process?
 How do you map PIDS to/from processes?

2/10/15 CS161 Spring 2015 12



Process Data Structures (2)

Typically you have one data structure to encapsulate an
entire process.

e Traditionally called a process control block (PCB).
e Called a task struct in Linux.
e (Called a proc struct in *BSD.

PCB typically contains references to other structures:
e Address space
e Threads associated with the process
e Credentials

All the PCBs are gathered together into a process table.

Examples:
e Linux task structure
e BSD proc structure

2/10/15 CS161 Spring 2015



