
2/10/15 CS161 Spring 2015 1 1 

From Program to Process 

•  Topics 
•  Managing and constructing processes. 

•  Learning Objectives: 
•  Explain the difference between a program and a process. 
•  Identify the different pieces that the operating system needs 

to keep track of for each process. 



Managing the Wily Process 

•  The operating system is tasked with keeping track of all 
the processes executing (or attempting to execute) on a 
system. 

•  The OS would like to keep track of as little information as 
possible, but it must keep track of enough to facilitate 
execution. 

•  The OS also keeps track of enough information to make 
intelligent resource allocation decisions. 

•  So, the OS keeps track of various things for each process: 
•  Execution state(s) 
•  Resource Information 
•  The memory comprising the process’ address space 

2/10/15 CS161 Spring 2015 2 



Programs to Processes 

•  A program is a simple executable file. 
•  A process is an entity able to run on a processor. 
•  What are the basic pieces of a process? 

•  Parts visible in the executable 
•  Parts that only happen when you run or get ready to execute 

the process 

2/10/15 CS161 Spring 2015 3 



The Parts of the Executable (1) 

•  An executable [file] is constructed from a set 
of [compiled] object modules and libraries. 

•  Linking is the process of constructing an 
executable. 
•  Static linking: the executable contains all the code 

and data that will be needed to run the program. 
•  Dynamic linking: the executable contains 

references to modules that will be accessed at 
load time. 

2/10/15 CS161 Spring 2015 4 



The Parts of an Executable (2) 

•  Code: the instructions that are executed when this 
runs; typically read-only. 

•  Rdata: read-only data 
•  Constant strings 
•  Jump [dispatch] tables 

•  Data: initialized global variables 
•  Bss: “Block Started by Symbol” 

•  Uninitialized global variables 

2/10/15 CS161 Spring 2015 5 



Organizing your executable 

•  ELF is a commonly used format for executables. 
•  ELF = Executable and Linkable Format. 
•  If you have never learned about linking, view the 

linking video on the web site. 
•  Whether you have or not, you will find it useful to 

examine the the OS/161 files that deal with elf 
headers: 
•  kern/include/elf.h!
•  kern/syscall/loadelf.c!

•  The function load_elf will read an elf executable 
into an address space; you might find this useful 
when you are exec-ing processes. 

2/10/15 CS161 Spring 2015 6 



Parts of a Process not in the Executable 

•  Execution State 
•  Resources 
•  Address space 
•  Miscellaneous 

2/10/15 CS161 Spring 2015 7 



Execution State 

•  If the process is currently running, the execution state is 
captured in the hardware: 
•  Register contents 
•  Program counter 
•  Stack pointer 
•  Etc. 

•  If the process is not running, then the OS needs to have a 
snapshot of this information. 
•  PC (program counter) 
•  SP (stack pointer) 
•  General registers 
•  Interrupt and exception flags/registers 
•  Floating point registers 

•  The structure that holds this information is hardware 
dependent? (Why?) 

2/10/15 CS161 Spring 2015 8 



Resource Information 

•  The list of constraints on how much of any given 
resource the process can use. 

•  File information 
•  A collection of open files (including things like file pointers) 
•  The identity of the current working directory 

•  Scheduling information 
•  How much time the process has used 
•  Its priority 
•  Statistics about its resource consumption 

2/10/15 CS161 Spring 2015 9 



Address Space 

•  Mostly bookkeeping 
•  Do not need to keep copies of memory, just records 

of where the memory is or how to find it. 
•  Virtual memory management (details later) 

2/10/15 CS161 Spring 2015 10 



Other Attributes of a Process 

•  Identity information 
•  A unique id, often called a process id (PID). 

•  Credentials 
•  A way of describing what permissions or capabilities a 

process has. 
•  Example: superuser, administrator 

•  Signal information 
•  Which signals this process catches 
•  Which signals this process ignores 

2/10/15 CS161 Spring 2015 11 



Process Data Structures (1) 

•  Without careful design, process management 
structures can become unwieldy! 

•  It is useful to think about the parts of a process in a 
variety of different ways: 
•  Which parts of the process are machine (in)dependent? 
•  Which parts need to be per-thread and which are pre-

process? 

•  How do you find information for a particular process? 
•  How do you map PIDS to/from processes? 

2/10/15 CS161 Spring 2015 12 



Process Data Structures (2) 

•  Typically you have one data structure to encapsulate an 
entire process. 
•  Traditionally called a process control block (PCB). 
•  Called a task struct in Linux. 
•  Called a proc struct in *BSD. 

•  PCB typically contains references to other structures: 
•  Address space 
•  Threads associated with the process 
•  Credentials 

•  All the PCBs are gathered together into a process table. 
•  Examples: 

•  Linux task structure 
•  BSD proc structure 

2/10/15 CS161 Spring 2015 13 


