
File Systems: V6 Case study
•  Learning Objective

•  Describe the UNIX V6 file system.
•  Identify the strengths and weaknesses of the V6 file system.
•  Why V6: simple, but ancestor of most modern file systems.

•  Topics:
•  Overview of the V6 file system

•  Disk representation
•  Directory structure
•  Recovery characteristics

•  With enormous thanks to:
•  Ken Thompson and Dennis Ritchie
•  John Lions (

https://en.wikipedia.org/wiki/
Lions'_Commentary_on_UNIX_6th_Edition,_with_Source_Code)

•  Keith Bostic
•  Whoever is behind: http://v6.cuzuco.com/

3/31/15 CS161 Spring 2015 1

Overview

•  Disk is divided up into 512-byte blocks
•  Block 0: boot block
•  Block 1: superblock (struct filsys)
•  Blocks 2 – f(Ninodes): inodes (16 inodes/block)
•  Rest of disk contains file data (and spare blocks for “bad

block” handling)

•  Free Space management
•  Up to 99 blocks, referenced directly in the superblock.
•  1 block as the head of a linked list of blocks containing

addresses of other free blocks (pictures coming).

3/31/15 CS161 Spring 2015 2

Disk Layout

3/31/15 CS161 Spring 2015 3

Block numbers

Boot block

Super block
inode blocks data blocks

… … 0 1 2 – (1 + f.s_isize) (2 + f.s_isize) – (f.s_fsize – 1)

Free Space Management

3/31/15 CS161 Spring 2015 4

Super block

…
s_free

s_nfree

nfree

next in chain

free block number

free block number

free block number

free block number

free block number

…

Number (up to 100
Block numbers in
this block)

Block numbers
of free blocks

File system level metadata
•  struct filsys!

•  Today, we call this the superblock
•  Created when you create the file system
•  Read when you mount the file system

struct filsys {!
!int s_isize; !/* size in blocks of the I list */!
!int s_fsize; !/* size in blocks of the entire volume */!
!int s_nfree; !/* number of in core free blocks!
! ! ! (between 0 and 100) */!
!int s_free[100]; !/* in core free blocks */!
!int s_ninode; !/* number of in core I nodes (0-100) */!
!int s_inode[100]; !/* in core free I nodes */!
!char s_flock; !/* lock during free list manipulation */!
!char s_ilock; !/* lock during I list manipulation */!
!char s_fmod; !/* super block modified flag */!
!char s_ronly; !/* superb lock modified flag */!
!int s_time[2]; !/* current date of last update */!
!int pad[50];!
}!

3/31/15 CS161 Spring 2015 5

Per-file Metadata (on-disk)

•  On disk inode:
struct ino {!

!int !i_mode;! !/* File mode */!
!char !i_nlink; !/* Link count */!
!char !i_uid; ! !/* Owner user id */!
!char !i_gid; ! !/* Group id */!
!char !i_size0; !/* most significant of size */!

!char !*i_size1; !/* least sig */!
!int !i_addr[8]; !/* Disk addresses of blocks */!
!int !i_atime[2]; !/* Access time */!
!int !i_mtime[2]; !/* Modified time */!

}!

3/31/15 CS161 Spring 2015 6

Per-file Metadata (in-memory)

•  In-memory inode:
struct inode {!

!char !i_flag;!
!char !i_count; !/* reference count */!
!int !i_dev; ! !/* device where inode resides */!
!int !i_number; !/* i number 1:1 w/device addr */!
!int !i_mode;! !!

!char !i_nlink; !/* directory entries*/!
!char !i_uid; ! !/* owner */!
!char !i_gid; ! !/* group of owner */!
!char !i_size0; !/* most significant of size */!
!char !*i_size1; !/* least sig */!
!int !i_addr[8]; !/* device addresses constituting file */!
!int !i_lastr; !/* last logical block read */!

}!

3/31/15 CS161 Spring 2015 7

Different sized files (1)

3/31/15 CS161 Spring 2015 8

flag

…

daddr[0]

daddr[1]

daddr[2]

daddr[3]

daddr[4]
 daddr[5]
 daddr[6]
 daddr[7]

ino
Zero in file size bit here indicates “small” file

Small file:
•  8 or fewer blocks.
•  Daddr[0-7] contain

addresses of data blocks.
•  Max size:

•  512 * 8 = 4 KB

Different sized files (2)

3/31/15 CS161 Spring 2015 9

flag

…

daddr[0]

daddr[1]

daddr[2]

daddr[3]

daddr[4]
 daddr[5]
 daddr[6]
 daddr[7]

ino
One in file size bit here indicates “large” file

Large file:
•  Daddr[0-] contain addresses

of indirect blocks.
•  Daddr[7] contains the

address of a doubly indirect
block.

•  Assume that daddr[7] is 0 for
now.

•  Max size:
•  7 * 256 * 512 = 896 KB

Different sized files (3)

3/31/15 CS161 Spring 2015 10

flag

…

daddr[0]

daddr[1]

daddr[2]

daddr[3]

daddr[4]
 daddr[5]
 daddr[6]
 daddr[7]

ino
One in file size bit here indicates “large” file

Huge file:
•  7 indirect blocks addresses

in Daddr, AND
•  Daddr[8] contains a doubly

indirect block.
•  Max size:

•  7 * 256 * 512 = 896 KB
•  256 * 256 * 512 = 32 MB
•  MAX = 32 MB + 896 KB

…

Directory Entries

•  Hierarchical directory structure that you know and
love, including “.” and “..”.

•  Directory entries are 16 bytes:
•  2 bytes of inode number
•  14 bytes (right padded) of name

•  A directory entry with inode = 0 is unused

3/31/15 CS161 Spring 2015 11

Exercise

•  Critique this file system design:
1.  How well does it handle sequential access?
2.  How well does it handle random access?
3.  What kinds of free space management problems can you

foresee?
4.  Would this work well for a system of many tiny files?
5.  How about a system of many huge files?
6.  What kinds of errors might arise if you crash with dirty data

buffered in memory?
7.  What would you do while the system is running to protect

against such errors?

3/31/15 CS161 Spring 2015 12

