
File Systems: Introduction 
•  Learning Objective 

•  Describe the layers of software between the file system system 
call API and the disk. 

•  Decompose those layers in a collection of independent 
problems. 

•  Derive solutions to the key problems of: 
•  File representation 
•  Naming & Name Spaces 
•  Disk Allocation 
•  Recovery 

•  Topics: 
•  From “open/close/read/write” to spinning media. 
•  File representation 
•  Naming 
•  Allocation 

3/27/14 CS161 Spring 2014 1 



From Syscall API to Disk 

3/27/14 CS161 Spring 2014 2 

close open read/write 

Map name to 
internal ID 

filename 

File system ID 
File table 

File descriptor 
File descriptor 

Old API: move disk arm to Track T; 
read/write sector S from Platter P API: read/write block B 

Map 
from file 
to disk 
blocks 

File index 

Read/write 

data 

Success/failure 



From Syscall API to Disk 

3/27/14 CS161 Spring 2014 3 

close open read/write 

Map name to 
internal ID 

filename 

File system ID 
File table 

File descriptor 
File descriptor 

API: read/write block B 

Map 
from file 
to disk 
blocks 

File index 

Buffer cache 
Read/Write 



Components of a File System 

•  Directory: maps names to internal IDs 
•  File table: keeps track of file state 
•  File index: maps from a file to a collection of disk 

blocks 
•  Buffer cache: keeps copies of recently used blocks in 

memory. 
•  What kinds of design parameters are likely to be 

important? 
•  Transfer sizes: how much do you move to/from disk? 
•  Allocation size: in what unit to you allocate disk blocks? 
•  Placement: Where do you place files on disk? 

3/27/14 CS161 Spring 2014 4 



Exercise 1: File Representation 

•  How might you represent a file? 
•  Must support sequential and random access to a file. 
•  Must be reasonably efficient. 
•  Address the following two questions: 

1.  In what size pieces will you allocate disk space to files? 
2.  What metadata (data that describes the data) do you need? 

•  Questions to think about: 
•  Where will you store metadata? 
•  What is the ratio of metadata to data for your representation? 
•  What kind of internal fragmentation can your representation support? 
•  What are the advantages/disadvantages of the approach you picked? 

3/27/14 CS161 Spring 2014 5 



Allocation Units 

•  Allocation units 
•  Fixed sized block 
•  A small number of fixed size blocks 
•  Variable sizes blocks (called extents) 

•  Tradeoffs: 

3/27/14 CS161 Spring 2014 6 



File Representation 

•  Single extent: Metadata is a single address (and 
perhaps a length) 

•  A small (fixed) number of extents: Metadata is a few 
disk addresses (perhaps with length) 

•  File is a large number of blocks 
•  Put blocks together in a linked list: metadata is an address 
•  Build a large flat index: Metadata is a large array of one 

address per block/extent 
•  Build a multi-level index (like a multi level page table) 

3/27/14 CS161 Spring 2014 7 



File Representation: Single Extent 

•  Pros: 

•  Cons: 

3/27/14 CS161 Spring 2014 8 

Index File 
data 



File Representation: A Few Extents 

3/27/14 CS161 Spring 2014 9 

•  Pros: 

•  Cons: 

File 
data 

Index 

…
 File 

data 

…
 



File Representation: Linked Blocks 

3/27/14 CS161 Spring 2014 10 

•  Pros: 

•  Cons: 

Index 



File Representation: Flat Index 

3/27/14 CS161 Spring 2014 11 

•  Pros: 

•  Cons: 

Index 



File Representation: Multi-level Index 

3/27/14 CS161 Spring 2014 12 

•  Pros: 

•  Cons: 

Index 

Design alternatives: 
•  Have a constant depth 

index 
•  Start with pointers in 

index referencing data 
(direct pointers) When 
that fills, add first level 
of indirection and copy 
pointers, repeat 



File Representation: Hybrid Index 

3/27/14 CS161 Spring 2014 13 

•  Pros: 

•  Cons: 

Index 

…
 

…
 

…
 



File Structure Summary 

3/27/14 CS161 Spring 2014 14 

Index 

Index 

Index 

…
 

Index 

…
 …

 

…
 

Extent-based Hybrid Index 

Linked 

Indexed 



Exercise 2: Free Space Management 

•  Assume you allocate in fixed size blocks: 
•  How do you keep track of free space? 
•  How do you select which blocks to allocate to a particular 

file? 

 
•  Assume that you allocate variable size extents: 

•  How do you select the extent size? 
•  How do you manage free space? 
•  Where do you allocate extents? 

3/27/14 CS161 Spring 2014 15 


